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ABSTRACT

Current methods for shock test specification and
shock testing treat the shock environment as a
deterministic source. The present study proposes to
treat shock sources as nonstationary random pro-
cesses. A model for a realistic nonstationary ran-
dom process shock source is specified, and the
effect of variation of parameters in the shock
source is shown. A method for estimating the para-
meters of the random process is established, and
some numerical examples show that the method yields
reasonable results. The use of this model in shock
testing is discussed.

INTRODUCTION

A fundamental objective of some mechanical tests is
to simulate a field environment and subject a struc-
ture to the simulation. When a structure survives
the simulated field environment in the laboratory,
then it is assumed that an identical structure would
survive the same environment in the field. When a
specific field environment can be accurately pre-
dicted, and when this environment can be faithfully
reproduced in the laboratory, any structure that
survives the environment is certain fo survive the
field input.

However, it is rare that field environments can be
axactly predicted because, usually, the factors that
influence them are random. This fact is accounted
for when random vibration environments are measured
in the field and applied in the laboratory.
Stationary random vibration environments occur fre-
quently in the field, and their measured samples can
he used to estimate their spectral densities. In
the laboratory, stationary random vibration signals
with approximately normal amplitude distributions
can be generated and used to test structures. The
specific excitation generated in the laboratory
differs in precise form from the excitation measured
in the field and those anticipated in future field
realizations, but the probabilistic character of the
excitation is matched accurately, and this is con-
sidered to constitute a reasonable simulation.
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Shock environments are treated differently. Shock
excitations realized in the field are also unpre-
dictable, but shock test specification techniques do
not usually take their randomness into considera-
tion, directly. Rather, laboratory excitations are
sought that are deterministically obtained and con-
servatively represent measured field shock environ-
ments. The technique used most commonly for shock
test specification is the method of shock response
spectra. This method seeks to establish, through a
simple peak response criterion, a laboratory shock
test that is more severe than an ensemble of field
excitations. Other techniques for shock test speci-
fication are used less frequently, but none of the
mathods in common use classifies the field environ-
ment as a nonstationary raadom process--in most
cases, what the environment is. A nonstationary
random process is any random process that is not
stationary. Random processes whose statistical
characteristics vary rapidly with time are generally
treated as nonstationary random processes.

A comprehensive, probability-based, test specifica-
tion technique for shock and short nonstationary
random vibration must have sevral components.

First, the technique must establish a method for
estimating the statistical parameters of a nonsta-
tionary random signal source. For the nethod to be
general, the random process model must be general so
that a reasonable variety of excitation sources can
be modelled. For the technique to be useful, it
must be possible to estimate the parameters of the
nonstationary random process using one {or a few)
measured realization{s}. Second, the random process
characteristics must be fully understood so that it
is possible to modify the estimated parameters to
obtain a test with a known level of conservatism,
Third, it must be feasible to use the parametars of
the test source to specify a test that can be exe-
cuted on available test equipment.

The present investigation addresses these matters,
with special emphasis on the first item, modeling a
signal source and estimating its parameters.
Several approaches are available for characterizing
nonstationary random sources. Among these are
techniques that require a measured ensemble of
signals, time averaging techniques, and techniques
that use the energy spectral density. {See
References 1 and 2.) The present investigation
starts with a parametric model of the nonstationary
random source and uses the method of maximum
likelihood {Reference 3) to estimate its parameters.

THE NONSTATIOMARY RANDOM PROCESS MODEL

The model used in the present study permits the
simulation of random sources that superimpose a
rapidly varying oscillatory shock pulse on a back-
ground oscillatory random signal with slowly varying
amplitude characteristic. The random process source
is a sum of narrowband, nonstationary random process
components. Let {X{t}, t20} denote the shock source
random process. {X{t)} is a zero mean, nonstation-
ary, normal random process that can be expressed

N
X(6) = gy x(e), o (1)
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“HSTRIEETION OF TIS DOCUMENT 1S UILRIED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



The {Xj(t), >0},j=1
Omponenus of {X{t)}.
zero mean nonstationary, norma
parametric form

Xj(t) = Zj(t){[l-aj(t~tc)] +

..,0, are the narrowband
Each {X;{t)} is itself a
4 random process with

bj(t—tS)H(t-tS)exp(-o:j(t-ts))}H(t),
j=l,... N, -o<tm, {2)
The {Z5(t), ==<t<] is a normally distributed,

hband-1imited white noise random process with spec-
tral density

A2 AR ..
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0 , elsewhere © {2a)

The &7 is a positive frequency constant and

ﬂj = {j~ 2)&& j=1,... 0 {2b)
The component white noise random processes are inde-
pendent of one another. The aj and bj are

arbitrary constants, and aj is a positive con-
stant. The t; and ts are positive time con-

stants. The tc can be taken as the central value

of a time period of interest where the random pro-
cess realizations are observed. ({(The start time is
taken as £=0.} The tg is the start time of the
superimposed pulse. H{.) is the Heaviside unit step
function.

Using the model given in {1} and (2} a wide variety
of random process sources can be simulated. HNote
that the narrowband random process component, (2},
in the frequency band {23i-40/2.2 +AQ/2) is

simply the product of a gand 11m1ted white noise
random process and a modulating function. The para-
meters of the white noise random process and the
modulating function can be adjusted to yield a vari-
ety of behaviors in each component. For example,
Figure 1 shows a 4.096 sec segment of a realization
of a band-limited white noise random process. This
was genarated using the technique of Reference 4,
the superposition of randomiy phased harmonic com-
ponents. The spectral density of the random process
is § = 1.0; the center frequency of the spectral
density is 93=600 rad/sec; the bhandwidth is a2=300
rad/sec. {The random process has signal content in
the frequency band (450, 750) rad/sec.) When the
spectral density is increased, the mean square value
of the random process increases, and when the spec-
tral density is decreased, the mean square value of
the random process decreases.

in order to demonstrate the range of shapes the
modulating function can be given, let t:=2.048 sec
and tg=1.0 sec in the following. The spectral
density of the underlying white noise random process
and the constant aj are adjusted to establish the
character of the background random process. The
constants bj and aj are adjusted to establish
the character of tge superimposed pulse. To start,
let bj=0. (Then the value of aj is arbitrary.

The units of the aj's, bj's and aj's are units

of X{t)/sec; this notation is omitted in the follow-
ing.} Figure 2 shows the modulating function for
valyes of a3=-0.1,-0.05,0.0,0. 05,0.1. The back-
ground s1gna1 can obv1ous1y be adJusted to yield a
random signal with linearly decreasing or increasing
amplitude characteristic. The amplitude, duration

PROCEEDINGS — Institute of Environmental Sciences

150

100

Ado b A dad o

. HJ 9} J. }{.‘ i

5
()

Y

TV

amplitude

P
N

0O 1 2 3
time (sec)

Figure 1 Band-limited White Noise Realization.
S=1, 7=4.Q096 sec, =600, A2=300 rad/sec.
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Figure 2 Modulating Function, b=0.

and decay rate of the pulse are controlled by bJ
and a;. Figure 3 shows the modulating function
when these constants take specific values. 1In
particular, is set to 0, and the combinations
bj=12 and «j %, bj=25 and «3=3, bj=24 and

aJ~4 are snhown.

Some examples of the nonstationary random processes
generated when the white noise is mu%tlplled by 2
particular modulating function are shown in Figures
4 and 5. 1In Figure 4, the white noise random pro-
cess realization of Flgure 1 is multiplied by the
modulating function of (2) where aJ—-O 10, by=0

and aj is arbitrary. In Figure 5, the wh1te noise
random process realization of F1gure 1 is muitipiied
by the modulating function where aj=0, bj=25,

and aj=3.

Numerous components like those shown in Figures 4
and 5 may combine to create a random process whose
realizations are similar to shock signals measured
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Figure 4 l!onstationary Random Process Realization.
=600 rad/sec, 42=300 rad/sec, a=-0.10,
b=0,5=1

in the field. Figure & shows the kind of random
process realization that can be created by super-
imposing the components described in {2). This
realization has five nonstationary, narrowband com-
poneants. For all components, 47=300 rad/sec. All

the other parameters are given in Table 1.

TARLE 1 Parameters of the nonstationary random
arocess of Figure 5. 43=300 rad/sec.

Component

___No. 29 Sj aj Hj ay
i 150 1.0 0.0 10.0 3.0
2 450 2.0 0.0 20.0 3.0
3 750 0.5 -0.1 15.0 2.9
4 1050 0.2 G.05 13.0 4.0
5 1350 0.1 3.0 5.0 2.0
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Figure 6 Random Process Realization.
Characteristics Given in Table 1.

flecause the random process defined in {1) and (2}
and its components are not stat jonary, it does no*
have a spectral density. Howsver, the random oro-
cess and its components do have autocerrelatian
functions. The autocorrelation function of the ith
component random process, {Xj(t)}, is

.x'(tl,tz) = 4SJ €Os ﬁ.\"ti—tg) *

3% ti-t J
sin 58 (t, -t (e ity H{1ra (b -t ) +
b.(t;-t Mty -t ;exp(-a.(tl-t Wox

‘1+a {t;- t. )+b {t, - -t it - £ dexp(-a, (.a-bs.ﬁt,

el g2 o (3)



The mean square of the random process component s
ohtained by evaluating the autocorrelation function
at % =t; . This is

s}j(t) = ZSjAQ{1*aj(t-tc)%bj(“-tS)H(t—ts)
exp(-aj(t-ts))}, 0<t e, {3a}

The synthesized random process, {X{t)}, has an auto-

correlation function that depends on the component
autocorrelation functions. It is

N

Reltiated = oy ijxj(ti,tz3 s el (4)

The mean square of the random process {X{¢)} is
simply

2 (t), ©0. (4a)

The autocorrelation function given in {(4) and the
fact that the random process has mean zero and
normal distribution are sufficient to completely
specify the random process.

PARAMETER ESTIMATION FOR THE
NONSTATIONARY RANDOM PROCESS

The model defined in the previous section was shown
to have a wide range of realizations. Some of these
realizations might realistically represent a random
process source encountered in a specific applica-
tion. If an analyst is willing to assume that the
random source observed in a particular application
has the underlying model given in (1) and (2}, then
this model can be used to represent the random
source in analyses and tests, and the analyst has
only to estimate its parameters from measured data.
Various approaches can be used in the estimation of
parameters of probability models; the method of
maximum 1ikelihood is used frequently and will be
applied in the present iavestigation.

in order to use the method of maximum likelihood, it
is assumed that a sequence of measured random pro-
cess realizations is available. Further, it is
assumed that the probability density function {pdf)
governing these data is known and that the pdf has
certain parameters. When the measured data values
are substituted into the pdf expression, then it is
interpreted as a likelihood function., The method of
maxinum 1ikelihood chooses the parameters of the pdf
as those which jointly maximize the likelihood func-
tion.

In the present application, it is assumed that a
single random process realization can be filtered to
obtain M narrowband component realizations. It is
assumed that each narrowband compoent is a mean
zero, normally distributed random process with mean
square given by {(3a). The model in (1) and {2) simu-
lates a transient pulse superimposed on a background
signal; therefore, it is assumed that the measure-
ment includes a start-up period when only background
signal is present, and that the measurement is of
great enough duration to include a period at the end
when the effects of the pulse have become small.
From these assumptions, a muylti-stage process is
developed to estimate the parameters, Sj. aj,

5j, and aj. It is assumed that the parameters
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a2, 24, te and tg can be specified by the
analyst.

Let x5, i=1,...,n, represeat a narrowband compo-
nent of the measured sigaal. These x;'s are fil-
tered values of the measured random process realiza-
tion. The time interval between measurements is

at. Recause the component is assumed normally dis-
tributed, the joint pdf of the random variables

i, i=l,...,n, can be approximated by

n

1
P (X.,...,X )= ‘2
Xgen X T s (5t

?

=X
l! - O l
exp [ 2" (S,a,b,u,ti)] oty (5]

where UZ(S,a,b,a,t) is given by {3a). The j sub-
scripts on the parameters have been dropped because
only one signal component is analyzed in the follow-
ing, and there is no danger of confusion. This is
an approximation because it assumes independence
batween random variables in the sequence, and they
probably are not usually independent, in practice.
However, it leads to accurate results in this appli-
cation; therefore, it is used. When (5} is taken to
be a function of S,a,b, and a, it is a likelihood
function denoted L{S,a,b,a).

Recall that the beginning portion of the measured
signal and the end of the measured signal are times
when the suparimposed pulse has little influence on
the overall source; during these timeg™it can be
assumed that only the background random source oper-
ates. Based on this assumption, the parameters S
and a of the background signal can be estimated in a
preliminary analysis. Let ty denote the time when
the superimposed pulse begins to operate, and let

ty denote the time when the effects of the super-
imposed pulse become small. Then in the time inter-
vals {0,t3) and {ty,T) only the background

signal is present. 7T is equal to mit. During these
time intervals, the mean square value of the random
process is given by

oi(S.a,t) = 2saa{lealt-tc)} 00 (6)

This mean sguare expression and the points in the
measured signal from the time intervals {0,t;) and
{ty,T) can be used in the likelihood function to
estimate S and a. The likelihood function is

1 2
LS,y = s exp |1 (7}
1/ o, (5,2,t,) [ZGZ{S,a,tJ}’
X i

where the product includes only those values from
the appropriate time intervals. The values of 5 and
a that maximize L{S,a) are the maximum likelihood
estimators of S and a. Because {7) is an exponen-
tial expression, its logarithm can be maximized to
maximize the function itself. The log likelihood
function is

_ 1 e 3
en L{S,a) =z {- 5 en{2n)-2no (S,a,t;)- i !

i Zc;(S,a,ti)

{3

The maximum of this function may occur at the point
where the partial derivatives of £n L, with respect
to 5 and a, equal zero. We assume that it does.

The partial derivative of 2n L with respect o 5 is



el
Zoent-z |l X , (9)
ZSZAQ(1+a(ti—tC))“

This s zero where
2

. 1 . X
S Tma F T———l—————-‘z {10

Teal(t, -t 10

The partial derivative of £n L with respect to a is
2 3
pal " i[xi(:i-tc)/(1+a(ti-tc)) ] .
& 4
5o /iralt, -t ))

|w

a

a

{t,-t )
i ¢
L e {i1)
i 1+a(ti-tc)
A numerical procedure mist be used to determine
where this is zero, and a simple computer program

has been written to execute this computation.
Examples of its use are given later.

Once the estimates of 5 and a are obtained, esti-
mates of b and o« can be sought. The same basic
technique established above can be used here. In
the present analysis, though, the data values taken
in the time interval {t;,ty} are used, and the

mean square function used is that given in {3a).
The log likelihood function is

¢n Lib,a) =2 {- é n{2% }-2n cx(S,a,b,u,ti)-

-,

s
ST
200 (S,a,b,0,t,)§. (12)

¢

It is taken to be a function of b and a because §
and a have already been estimated. It is assumed
that the maximum occurs where the partial deriva-
tives of 2n L with respect to b and « are zerp. The
partial derivative of ¢n L with respect to b is

Ztie'“{ti'ts)

3

-— fn L ==

b i {(1+a(ti-tc))+b(ti_ts)e-a(ti-ts;}
’1 - x%

| ZSAQ[(1+a(ti-tc))+b(ti-ts)e'a(ti-tsj}s' (13)

and the partial derivative with respect to a is

, 268 e {t-ty)
— inl = -%

%a i [ttt )bt -t e (B8]

§i- G |
J-

| 2sae] (Tralt-t_11¥blt -t Je o o1 ts)]

{18)

A numerical procedure must be used to find the mini-
mum, and a computer program has been written to do
this. The program starts at an arbitrary point on
the surface of Ln L. The gradient at that point is
computed. The surface of &n L along the gradient is
assumed parabolic and the minimum is computed. At
this point, a new gradient is computed and the com-
putation cycle is repeated. The procedure.is repeated
until some convergence criterion is satisfied. The

final location yields the values of b and a.
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Figure 7 HNonstationary Random Signal and
Scaled Modulating Function

The estimation procedure outlined above was used on
some specific signals. In particular, some of the
signals used in the previous section to demonstrate
the random source model were analyzed. First, the
signal shown in Figure 4 was analyzed using the
above procedure. Table 2 summarizes the results
showing actual underiying parameters and estimated
parameters. Figure 7 shows the signal and the modu-
lating function based on the estimated parameters.
{The modulating function is scaled by the root-
mean-square value of the random process.)

TABLE 2 Underlying and estimated parameters of a
nonstationary random process.

S a b
Actual parameters 1.0 ~0.1 0
Estimated parameters 1.118 ~0.136 -

In the second analysis, the signal shown in Figure 5
was analyzed. Table 3 summarizes the results show-
ing the actual underlying parameters and the esti-
mated parameters. Figure 8 shows the signal and the
modulating function based on the estimated para-
meters. {The modulating function is scaled by the
root-mean-square value of the random process.)

TABLE 3 Underlying and estimated parameters of a
nonstationary random process.

(%]

a b o

Actual parameters
Estimated parameters

1.0 0 25 3
1.092 0.019 36.4 3.75
These examples show that the maximum likelihood
parameter estimation procedure can be used to accur-
ately estimate the parameters of a nonstationary
random process.

OISCUSSION AND CONCLUSIONS
Several elements are required to establish a shock

test specification and shock testing procedure.
Among these may be the establishment of a model for
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Figure 8 MNonstationary Random Signal and
Scaled Modulating Function.

the shock test source and a method to estimate its
parameters; these items were treated in the present
investigation.

Other elements are also needed. Specifically, a
method for assessing the quality of the parameter
estimates for the shock source and a means for
generating the excitation on an electrodynamic
shaker are required. The former requirement can be
satisfied when a statistical confidence analysis is
performed on the estimated parameters of the shock
signal. The latter requirement can be satisfield
when existing software is modified or new software
is developed to generate nonstationary random
signals on an electrodynamic shaker.

The elements provided in this study describe part of
a procedurs to be used in specifying a shock test.
It is possible to take the estimated parameters of
the random process and use these to generate a test
excitation by generating the band-limited white
noise random process in {2) and superimposing compo-
nents to form {1). Generally, though, some degree
of conservatism will be sought, achievable by
increasing the parameters S and b in each band-
width, A systematic way for increasing S and b must
be specified.

The technique established in this paper for estimat-
ing the parameters of a nonstationary random process
assumes that the analyst will specify a number of
parameters of the random process by inspection of
the signal. For example, the start and end times of
the superimposed pulse must be specified. To apply
a source specification technique, a method must be
developed for specifying almost all the parameters
of the random process source, automatically.
Automatic specification of model parameters can be
done with the present model through the use of other
statistical techniques.

The model proposed in this study is one of the
simplest available for a nonstationary random pro-
cess. Particularly, the superimposed pulse in (2)
is characterized by only two parameters. The use of
only two parameters for description of the pulse
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Vimits the spectrum of pulse shapes that can be
modeled, but for preliminary purposes the present
model is adequate. Other two-parameter models are
available, but these are similarly limited. Models
with more than two parameters can certainly be
defined, and this objective should be pursued in the
future. The problem with increasing the nurber of
parameters in the model is that as the number of
parameters estimated using a particular collection
of data increases, the confidence interval of each
estimate widens. Therefore, the parametric descrip-
tion should be limited.

Finally, note that the fundamental approach to shock
source specification proposed in this paper is dif-
ferent from others currently in use. MNo assumption
regarding the potential modes of damage in struc-
tures is made. An attempt is simply made to
probabilistically characterize the shock source,
then generate an excitation based on the source. If
this approach is used, then excitations that
directly simulate the probabilistic character of the
actual source will be generated and the environments
to which structures are subjected will be realistic.
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NOMENCLATURE

a,b amplitude parameters of random process

i, time and frequency indices

n number of points in a measured data sequence
p{-) oprobability density function

t time

te central time in measured data sequence

ts start time of pulse

X3 ith measured random process realization
H{-) heaviside unit step function

L 1ikelihood function

N number of components in random process
R autocorrelation function

S spectral density

X{t} nonstationary random process
Z{t) band-limited white noise random process
decay pavameter of random process

o mean square of random process

w frequency

Q central frequency of random process component
AR frequency band of random process component



