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ABSTRACT 

Current nethods fo r shock tes t spec i f i ca t i on and 
shock tes t ing t r ea t the shock environment as a 
de te rmin is t i c source. The present study proposes to 
t r ea t shock sources as nonstat ionary random pro­
cesses. A model for a r e a l i s t i c nonstationary ran­
don process shock source is spec i f i ed , and the 
e f f e c t of va r ia t ion of parameters in the shock 
source is shown. A method for est imat ing the para­
meters of the random process 1s es tab l ished, and 
SOTC numerical examples show that the method y i e l ds 
reasonable r e s u l t s . The use of t h i s model in shock 
tes t ing is discussed. 

INTROOUCTIOri 

A fundamental ob ject ive of some mechanical tests i s 
to simulate a f i e l d environnent and subject a s t ruc ­
ture to the s imula t ion . When a s t ructure survives 
the simulated f i e l d environment In the labora tory , 
then i t is assumed that m i den t i ca l s t ructure would 
survive the same environnent in the f i e l d . When a 
spec i f i c f i e l d environment can be accurately pre­
d i c t ed , and when th i s environiiient cm be f a i t h f u l l y 
reproduced in the labora tory , any s t ruc ture tha t 
survives the environnent is ce r ta in to survive the 
f i e l d input . 

However, i t Is rare that f i e l d environments can be 
exact ly predicted because, usua l l y , the factors tha t 
inf luence them are random. This fac t Is accounted 
for when randon v i b ra t i on environments are measured 
in the f i e l d and appl ied in the laboratory . 
Stat ionary random v ib ra t i on environments occur f r e ­
quently in the f i e l d , and t h e i r measured samples can 
be used to estimate t h e i r spectral dens i t ies . In 
the laboratory , s ta t ionary random v ib ra t i on s ignals 
w i th approximately normal amplitude d i s t r i b u t i o n s 
can be generated and used to tes t s t ruc tu res . The 
s p e c i f i c exc i t a t i on generated \n the laboratory 
d i f f e r s in precise form from the exc i ta t i on measured 
in the f i e l d and those ant ic ipated in future f i e l d 
r ea l i za t i ons , but the p r o b a b i l i s t i c character of the 
exc i t a t i on is matched accurate ly , and th is is con­
sidered to cons t i t u te a reasonable s imula t ion . 

Shock environments are treated d i f f e r e n t l y . Shock 
exc i ta t i ons rea l ized in the f i e l d are also unpre­
d i c t a b l e , but shock tes t spec i f i ca t i on techniques do 
not usual ly take t h e i r randomness in to considera­
t i o n , d i r e c t l y . Rather, laboratory exc i ta t ions ^ni 
sought tha t are de te rm ln l s t i ca l l y obtained and con­
serva t i ve ly represent measured f i e l d shock envi ron­
ments. The technique used most commonly fo r shock 
tes t spec i f i ca t i on is the rrethod of shock response 
spectra. This method seeks to e s t a b l i s h , through a 
simple peak response c r i t e r i o n , a laboratory shock 
tes t that i s more severe than an ensemble of f i e l d 
e x c i t a t i o n s . Other techniques fo r shock tes t spec i ­
f i c a t i o n are used less f requent ly , but none of the 
methods in coimon use c l a s s i f i e s the f i e l d environ­
ment as a nonstat ionary random process-- in nost 
cases, what the environment i s . A nonstat ionary 
random process i s any random process that is not 
s ta t i ona ry . Random processes whose s t a t i s t i c a l 
cha rac te r i s t i cs vary rap id ly wi th time are general ly 
t reated as nonstationary random processes. 

A comprehensive, p robab i l i t y -based , t e s t spec i f i ca ­
t i o n technique fo r shock and short nonstat ionary 
random v ib ra t i on most have sevral components. 
F i r s t , the technique must es tab l i sh a method for 
est imat ing the s t a t i s t i c a l parameters of a nonsta­
t ionary random signal source. For the method to be 
genera l , the random process nwdel must be general so 
tha t a reasonable va r ie ty of e x c i t a t i o n sources can 
be modelled. For the technique to be u s e f u l , i t 
must be possible to estimate the parameters of the 
nonstat ionary random process using one (or a few) 
measured r e a l i z a t f o n ( s ) . Second, the random process 
cha rac te r i s t i cs must be f u l l y understood so that i t 
i s possible to modify the estimated parameters to 
obta in a tes t wi th a known level of conservat is f i . 
T h i r d , i t must be feas ib le to use the parameters of 
the tes t source to specify a tes t that can be exe­
cuted on ava i lab le tes t equipment. 

The present i nves t iga t ion addresses these matters, 
w i t h special emphasis on the f i r s t I tem, modeling a 
signal source and est imat ing i t s parameters. 
Several approaches are avai lab le for charac ter iz ing 
nonstat ionary random sources. Among these are 
techniques that require a ireasured ensemble of 
s i gna l s , time averaging techniques, and techniques 
tha t use the energy spectral dens i ty . (See 
References 1 and 2.) The present i nves t iga t i on 
s ta r t s wi th a parametric model of the nonstat ionary 
random source and uses the method of naxinum 
l i k e l i h o o d (Reference 3) to estimate i t s parameters. 

THE NOMSTATIOflARY RANDOM PROCESS MODEL 

The model used in the present study permits the 
s imulat ion of random sources that superimpose a 
rap id ly varying o s c i l l a t o r y shock pulse on a back­
ground o s c i l l a t o r y randon signal w i th slowly varying 
amplitude c h a r a c t e r i s t i c . The randon process source 
is a sura of narrowband, nonstationary randosi process 
components. Let X(t), t>.0} denote the shock source 
random process. X | t ) } Is a zero mean, nonstat ion­
ary , noniial random process that can be expressed 

X(t) 
j^=l 

X.{t) . t>0. (1) 
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The {Xj(t), t>0} ,j=l,... ,fi, are the narrowband 
components of {X(t)). Each (Xjft)} Is itself a 
zero mean nonstationary, normal randon process with 
parametric form 

X (t) = Zj(t)l[l-aj(t-t^)] •̂  

b.(t-t )H(t-t )exp(-a (t-t ))jH(t), 
J 5 S J -* 

j=l.....N, -<»<t<". 12) 

The { Z j ( t ) , -»<t<»| is a normally d is t r ibuted , 
band-limited white noise random process with spec­
tral density 

Afi 
S ( . ) = f S j . n . - - < Iw < Q 

A.9 _^..j . ~ , j = l , . . . . M . 

elsewhere {2a) 

The Â  is a posi t ive frequency constant and 

S j = ( j - ^)h{t j = l , . . . , M . (2b) 

The component white noise random processes are inde­
pendent of one another. The aj and bj are 
a rb i t ra ry constants, and aj is a positive con­
s tan t . The IQ and t j are posit ive time con­
s t an t s . The tc can be taken as the central value 
of a time period of in te res t where the random pro­
cess rea l iza t ions are observed. (The s t a r t time is 
taken as t=0.) The ts is the s t a r t time of the 
superimposed pulse. H(.) is the Heaviside unit step 
function. 

Using the model given in (1) and (2) a wide variety 
of random process sources can be simulated. Note 
that the narrowband random process component, (2) , 
in the frequency band (n i-iQ/2,aj+An/2) is 
simply the product of a oand-linnted white noise 
random process and a modulating function. The para­
meters of the white noise random process and the 
modulating function can be adjusted to yield a var i ­
ety of behaviors in each component. For example. 
Figure 1 shows a 4.096 sec segment of a rea l iza t ion 
of a band-limited white noise random process. This 
was generated using the technique of P>eference 4, 
the superposition of randomly phased harmonic com­
ponents. The spectral density of the random process 
Is S = 1.0; the center frequency of the spectral 
density is nj=600 rad/sec; the bandwidth is An=300 
rad/sec . (The random process has signal content in 
the frequency band (450, 750) rad/sec.) When the 
spectral density 1s increased, the nean square value 
of the randon process increases, and when the spec­
tral density is decreased, the mean square value of 
the random process decreases. 

In order to demonstrate the range of shapes the 
modulating function can be given, l e t t(;=2.048 sec 
and ts=1.0 sec in the following. The spectral 
density of the underlying white noise random process 
and the constant aj are adjusted to establ ish the 
character of the background random process. The 
constants bj and a< are adjusted to es tabl ish 
the character of the superimposed pulse. To s t a r t , 
l e t bj=0. (Then the value of aj is a rb i t ra ry . 
The units of the a j ' s , b j ' s and a j ' s are units 
of X(t ) /sec; th is notation i s omitted in the follow­
ing.) Figure 2 shows the modulating function for 
values of a j=-0 .1 , -0 .05 ,0 .0 ,0 .05 ,0 .1 . The back­
ground signal can obviously be adjusted to yield a 
random signal with l inear ly decreasing or increasing 
amplitude cha rac t e r i s t i c . The amplitude, duration 
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Figure 1 Band-limited White Moise Realization. 

S=l, 1=4.096 sec, «=600, Aa=300 rad/sec. 
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Figure 2 Modulating Function, b=0. 

and decay rate of the pulse are controlled by bj 
a n d a ^ . Figure 3 shows the modulating function 
when these constants take specific values. In 
pa r t i cu la r , a, is set to 0, and the combinations 
bj=12 and aj=2, bj=25 and aj=3, bj=24 and 
aj=4, are shown. 

Some examples of the nonstationary random processes 
generated when the white noise is multiplied by a 
par t icu lar modulating function are shown in Figures 
4 and 5. In Figure 4, the white noise random pro­
cess real izat ion of Figure 1 is multiplied by the 
modulating function of (2) where aj=-0.10, bj=0 
and a j is a rb i t r a ry . In Figure 5, the white noise 
random process real iza t ion of Figure 1 is multiplied 
by the modulating function where aj=0, bj=2S, 
and a j=3. 

Mumerous components l ike those shown in Figures 4 
and 5 may combine to create a random process vAose 
rea l iza t ions are similar to shock signals measured 
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Figure 4 Slonstationary Random Process Realization, 
a=600 rad/sec, AS=300 rad/sec, a=-0 . i0 , 
b=0,S=l 

in the f ie ld . Figure 5 shows the kind of random 
process rea l iza t ion that can be created by super­
imposing the components described In (2) . This 
rea l iza t ion has five nonstationary, narrowband con-
ponents. For a l l components, 41=300 rad/sec . All 
the other paraneters are given In Table 1. 

TABLE 1 Parameters of the nonstationary random 
process of Figure 6. Al=300 rad/sec. 

ponent 
flo. 

I 
9 

3 
4 
5 

i l 
150 
450 
750 

1050 
1350 

!i 
1.0 
2.0 
O.S 
0.2 
0.1 

11 
0.0 
0.0 

-0.1 
0.05 
0.0 

21 
10.0 
20.0 
15.0 
10.0 
5.0 

21 
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Figure 5 Monstationary Random Process Realization. 
3=0, b=25, a=3, S=l, a=600 rad/sec, AT=300 
rad/sec . 
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Figure 6 Random Process Realization. 
Character is t ics Given in Table 1. 

Because the random process defined in (1) and {25 
and i t s components are not s ta t ionary, i t does not 
have a spectral density. However, the randoi oro-
cess and i t s conponents do have autocorrelation 
functions. The autocorrelat ion function of the j th 
component random process, ( X j ( t ) ' , 1s 

°\ . ( t i . t ^ ) = J f i cos n.iti-t,] X 
t i - t2 J " 

A l l 

^j'=J 

s i n - ^ Ct , - t , )H(ti )H(t, ) { n - a . ( t i - t ^ ) + 

bj ( t | - t j )H( ti - t j )exp(-a^(t, -t^)} X 

: 1+aj {t2 - \ J + i j C tz -t^ )H( t? - t j )exp( -a ( t . -t^ ) ) ' 

'<ti , t :< -
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The mean square of the random process component is 
obtained by evaluating the autocorrelat ion function 
at tj =t. . This Is 

o'̂  ( t ) = ZS.Aaf l + a . ( t - t ^ ) + b j ( t - t ^ ) H ( t - t j ) 

exp(-a ( t - t ^ ) )} , 0£t<». (3a) 

The synthesized randon process, ( X ( t ) j , has an auto­
corre la t ion function that depends on the component 
autocorrelat ion functions. I t Is 

tl 
S^x^^i'^^S^ = jfe, Rx.x.^^ ' '^2^ • -""=ti.t2<'» (4) 

The aean square of the random process fxl t)} is 
simply 

'1 

(t) = jlĵ  "xJ^^ • ^l^- (4a) 

The autocorrelation function given in (4) and the 
fact that the randon process has mean zero and 
normal distribution are sufficient to completely 
specify the random process. 

PARAMETER ESTIMATION FOR THE 
MONSTATIOHARY RANDOH PROCESS 

The model defined in the previous section was shown 
to have a wide range of realizations. Some of these 
realizations might realistically represent a random 
process source encountered in a specific applica­
tion. If an analyst is willing to assume that the 
random source observed in a particular application 
has the underlying node! given in (1) and (2), then 
this model can be used to represent the random 
source in analyses and tests, and the analyst has 
only to estimate its parameters from measured data. 
Various approaches can be used in the estimation of 
parameters of probability models; the method of 
maximum likelihood is used frequently and will be 
applied in the present investigation. 

In order to use the method of maxinum likelihood, it 
is assumed that a sequence of neasured random pro­
cess realizations is available. Further, it is 
assumed that the probability density function (pdf) 
governing these data is known and that the pdf has 
certain parameters. When the measured data values 
are substituted into the pdf expression, then it is 
interpreted as a likelihood function. The method of 
naxinura likelihood chooses the parameters of the pdf 
as those which jointly maximize the likelihood func­
tion. 

In the present application, it is assumed that a 
single random process realization can be filtered to 
obtain M narrowband component realizations. It is 
assumed that each narrowband compoent is a nean 
zero, normally distributed random process with mean 
square given by (3a). The model in (1) and (2) simu­
lates a transient pulse superimposed on a background 
signal; therefore, it is assumed that the measure-
went includes a start-up period when only background 
signal Is present, and that the measurement is of 
great enough duration to include a period at the end 
when the effects of the pulse have become snail. 
From these assumptions, a multi-stage process is 
developed to estimate the parameters, Sj, aj, 
bj, and aj. It is assumed that the paraneters 

Afl 

analyst 
£5j, t^ and t j can be specified by the 

Let x-j, 1=1 , . . . , n , represent a narrowband conpo-
nent of the treasured s ignal . These x-j's are f i l ­
tered values of the measured ranriom process rea l i za ­
t ion. The time interval between measurements is 
At. Because the component is assumed normally d i s ­
t r ibuted , the jo in t pdf of the random variables 
Xi, 1 = 1 , . . . , n , can be approximated by 

PX....X ^''i ^n^ 
1 n 

exp 

i"=l 

- x ! 

/ S ' a ^ ( S , a , b , a , t . ) 

2^(S,a,b,a.t.)J ' ""̂ N--» <x.<» (5) 

where a {S ,a ,b ,a , t ) is given by (3a) . The j sub­
scr ip t s on the parameters have been dropped because 
only one signal component is analyzed in the follow­
ing, and there is no danger of confusion. This is 
an approximation because i t assumes independence 
between randon variables in the sequence, and they 
probably are not usually independent, in p rac t ice . 
However, i t leads to accurate resul ts In th is appl i ­
cation; therefore, 1t is used. When (5) is taken to 
be a function of S,a,b, and a, i t is a l ikelihood 
function denoted L{S,a ,b ,a) . 

Recall that the beginning portion of the measured 
signal and the end of the treasured signal are times 
when the superimposed pulse has l i t t l e influence on 
the overall source; during these t i i s s s ' l t can be 
assumed that only the background random source oper­
a tes . Based on th is assumption, the parameters S 
and a of the background signal can be estimated In a 
preliminary analysis . Let tg denote the time when 
the superimposed pulse begins to operate, and l e t 
tb denote the time when the effects of the super­
imposed pulse become small. Then in the time in t e r ­
vals (0 , ta) and (t^.T) only the background 
signal is present . T is equal to n\t. During these 
time in te rva l s , the mean square value of the random 
process is given by 

oMS,a . t ) 2SAa{l+a(t-tc)} t>_0 (6) 

This mean square expression and the points in the 
measured signal from the time intervals (0,ta) and 
(t!3,T) can be used in the likelihood function to 
estimate S and a. The likelihood function is 

j -

2<j"^(S,a,t.) 
(7) 

where the product Includes only those values from 
the appropriate time in t e rva l s . The values of S and 
a that maximize L(S,a) are the maximum likelihood 
estimators of S and a. Because (7) is an exponen­
t ia l expression, I t s logarithm can be maximized to 
maximize the function i t s e l f . The log likelihood 
function is 

1 v2 
in L(S,a) = E (- -̂  P,n(2iT)-£na CS,a , t . ) - _ _ _ L _ _ } 

-• ^ X I 2 a ; ( S , a . t . ) 

(3) 

i 

The tnaximum of this function may occur at the point 
where the par t ia l derivatives of £n L, with respect 
to S and a, equal zero. We assume that i t does. 
The par t ia l derivative of in L with respect to S Is 
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Fs*" 
x2. 

2?AS2(l+a(t.-t^))- ' 

This is zero where 

S L. 
2nAn 

1 
(l-^a(t - t , ) ) ^ 

(9) 

<10) 

The par t ia l derivat ive of an L with respect to a is 

3 -n E ( x ^ . ( t , - t . ) / ( l + a ( t , . - t J ) ^ ] 

z x^./(l+a(t.-t^)) '^ 

? l*a(t.-t^)- ( i l ) 

A numerical procedure must be used to determine 
where th is is zero, and a simple computer program 
has been written to execute this computation. 
Examples of i t s use are given l a t e r . 

Once the estimates of S and a are obtained, e s t i ­
mates of b and a can be sought. The same basic 
technique established above can be used here. In 
the present analysis , though, the data values taken 
in the time interval (ta,tt3) are used, and the 
mean square function used i s that given in (3a) . 
The log likelihood function is 

in L(b,a) = ^ • - 2 ^-"(2i)-tn o ^ ( S , a , b , « , t . ) -

î 
20^^(S,a .b ,a , t . ) | (12) 

I t is taken to be a function of b and a because S 
and a have already been estimated. I t is assumed 
that the maximum occurs where the par t ia l deriva­
t ives of Zn L with respect to b and a are zero. The 
par t ia l derivat ive of i.n L with respect to b is 

3 , 
3 - b ' " 

2t,.e-^<^^i-^s^ 

•̂ sh 

h 
I 

i [ { l + a ( t . - t ^ ) ) + b ( t . - t j ) e " ' ' ' S -

i __, 
2SAP.[(Ua(t^-t^))+b(t .- t j)e""^'^i" '^s ' 

.{ 
(13) 

and the par t ia l derivative with respect to a is 

2bt2. e - " ^ S - ^ s ' 
— in L 
3a 

; i -

( t , - t , )i 1 [ { l + a ( t . - t ^ ) ) 4 - b ( t . - t j ) e " ° ' * r S 

\ 
x2 

I 2SAJ5[ (Ua{ t . - t ^ ) )+b ( t . - t j ) e ' " ' ' ^ i "S ' ] | . (14) 

A numerical procedure must be used to find the mini-
mun, and a computer program has been written to do 
t h i s . The program s t a r t s a t an a rb i t ra ry point on 
the surface of an L. The gradient at that point is 
computed. The surface of tn L along the gradient is 
assumed parabolic and the minimum is computed. At 
this point , a new gradient is computed and the com­
putation cycle is repeated. The procedure 1s repeated 
until soie convergence criterion is satisfied. The 
final location yields the values of b and a. 

2 3 4 
time (sec) 

Figure 7 Nonstationary Random Signal and 
Scaled Modulating Function 

The estimation procedure outlined above was used on 
some specific s igna ls . In pa r t i cu la r , some of the 
signals used in the previous section to demonstrate 
the random source model were analyzed. F i r s t , the 
signal shown in Figure 4 was analyzed using the 
above procedure. Table 2 summarizes the resul t s 
showing actual underlying parameters and estimated 
parameters. Figure 7 shows the signal and the modu­
la t ing function based on the estimated parameters. 
(The modulating function is scaled by the root-
mean-square value of the random process.) 

TABLE 2 Underlying and estimated parameters of a 
nonstationary random process. 

Actual parameters 
Estimated parameters 

1.0 
i.iia 

-0.1 
-0.136 

In the second analysis , the signal shown in Figure 5 
was analyzed. Table 3 summarizes the resul t s show­
ing the actual underlying parameters and the e s t i ­
mated parameters. Figure 8 shows the signal and the 
modulating function based on the estimated para­
meters. (The modulating function is scaled by the 
root-mean-square value of the random process.) 

TABLE 3 Underlying and estimated parameters of a 
nonstationary random process. 

Actual parameters 
Estimated parameters 

1.0 
1.092 

0 
0.019 

25 
36. 75 

These examples show that the maximum likelihood 
parameter estimation procedure can be used to accur­
ately estimate the parameters of a nonstationary 
random process. 

DISCUSSION AND CONCLUSIOMS 

Several elements are required to es tabl ish a shock 
t e s t specification and shock test ing procedure. 
Among these may be the establishment of a model for 
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the shock t e s t source and a method to estimate i t s 
parameters; these items were treated in the present 
inves t iga t ion . 

Other elements are also needed. Speci f ica l ly , a 
method for assessing the quali ty of the parameter 
estimates for the shock source and a means for 
generating the exci ta t ion on an electrodynamic 
shaker are required. The former requirement can be 
sa t i s f i ed when a s t a t i s t i c a l confidence analysis is 
performed on the estimated parameters of the shock 
s igna l . The l a t t e r requirement can be s a t i s f i e l d 
when exis t ing software i s modified or new software 
is developed to generate nonstationary random 
signals on an electrodynamic shaker. 

The elements provided in this study describe part of 
a procedure to be used in specifying a shock t e s t . 
I t is possible to take the estimated parameters of 
the random process and use these to generate a t e s t 
exci ta t ion by generating the band-limited white 
noise random process in (2) and superimposing compo­
nents to form (1) . Generally, though, some degree 
of conservatism will be sought, achievable by 
increasing the parameters S and b in each band­
width. A systematic way for increasing S and b must 
be specif ied. 

The technique established in this paper for est imat­
ing the parameters of a nonstationary random process 
assumes that the analyst will specify a number of 
parameters of the random process by inspection of 
the s igna l . For example, the s t a r t and end times of 
the superimposed pulse must be specified. To apply 
a source specif icat ion technique, a method must be 
developed for specifying almost all the parameters 
of the random process source, automatically. 
Automatic specif icat ion of model parameters can be 
done with the present model through the use of other 
s t a t i s t i c a l techniques. 

The model proposed in this study is one of the 
simplest available for a nonstationary random pro­
ces s . Pa r t i cu l a r ly , the superimposed pulse in (2) 
is characterized by only two parameters- The use of 
only two parameters for description of the pulse 

l imits the spectrum of pulse shapes that can be 
modeled, but for preliminary purposes the present 
model Is adequate. Other two-parareter models are 
avai lable , but these are similarly limited. Models 
with iiwre than two parameters can cer ta inly be 
defined, and this objective should be pursued in the 
future. The problem with increasing the nunber of 
parameters in the model is that as the number of 
parameters estimated using a par t icu lar collection 
of data increases, the confidence interval of each 
estimate widens. Therefore, the parametric descrip­
tion should be l imited. 

Final ly , note that the fundamental approach to shock 
source specif icat ion proposed in this paper is dif­
ferent from others currently in use. No assumption 
regarding the potential modes of damage in s t ruc­
tures is made. An attempt is simply made to 
p robab i l i s t i ca l ly character ize the shock source, 
then generate an exci ta t ion based on the source. If 
th is approach is used, then exci tat ions that 
d i rec t ly simulate the p robab i l i s t i c character of the 
actual source will be generated and the environments 
to which structures are subjected will be r e a l i s t i c . 
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NOMENCLATURE 

a ,b ampl i tude p a r a n e t e r s of random p roces s 

1,j time and frequency i n d i c e s 

n number of p o i n t s In a treasured da ta sequence 

p( • ) probabil i ty density function 

t time 

t^ central time in measured data sequence 

tj start time of pulse 

x-j ith measured random process realization 

H(-) heaviside unit step function 

L likelihood function 

N number of components in random process 

R autocorrelation function 

S spectral density 

X(t) nonstationary random process 

Z(t) band-limited white noise random process 

a decay parameter of random process 

0 mean square of random process 

M frequency 

n central frequency of randon process component 

Afl frequency band of random process component 
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