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ABSTRACT

He have assessed the level of technology
utilized in automated systems that monitor indus-
trial rotating equipment and the potential of alter-
native surveillance methods. We conclude that
changes in surveillance methodology would upgrade
ongoing programs and yet still be practical for
implementation. We formulated an improved anomaly
recognition methodology and implemented these
methods on a minicomputer system. The effective-
ness of our monitoring system was evaluated in
laboratory tests on a small rotor assembly, using
vibrational signals from both displacement probes
and accelerometefs. Time and frequency domain
descriptors are selected to compose an overall
signature that characterizes the monitored equip-
ment. Limits for normal operation of the rotor
assembly are established automatically during an
initial learning period. Thereafter, anomaly
detection is accomplished by applying an approxi-
mate statistical test to each signature descriptor.
As demonstrated over months of testing, this moni-
toring system is capable of detecting anomalous
conditions while exhibiting a false alarm rate
below 0.5%.

INTRODUCTION

Scope of the work: The purpose of this work
Is the demonstration of surveillance techniques
that can-extend the performance capabilities of
automated systems for monitoring industrial rotat-
ing equipment. In preparation for this work we

*Research sponsored by the Division of Reactor
Research and Technology, U.S. Department of Energy,
under contract W-7405-eng-26 with the Union Carbide
Corporation.

have assessed the effectiveness of ongoing monitor-
ing programs and the potential improvements offered
by alternative programs. Based on our evaluation
of the merits and deficiencies in existing and pro-
posed surveillance systems, we formulated an
Improved anomaly recognition methodology. The
monitoring system implemented and tested at ORNL
offers improved monitoring performance, utilizing
methods that are practical for even large indus-
trial applications.

Background: The practice of monitoring gross
vibrational levels as an indication of machinery
health began more than 150 years ago. However, it
was not until 1939 that vibration sensors and rudi-
mentary signal analysis techniques enabled the com-
pilation of empirical vibrational severity criteria
(1-3). Only in the past 25 years have advancements
in data processing techniques and computer hardware
allowed machinery health to be evaluated using
signatures derived from the detailed structure of
vibrational signals (4,5).

Although the advantages of signature analysis
techniques are widely acknowledged, the demands
such analytical methods place on plant personnel
limit the use of such techniques for general sur-
veillance tasks (5,6). Computer automation of these
monitoring requirements alleviates this drawback and
allows maintenance personnel to direct their efforts
towards equipment most in need of attention. Addi-
tionally, a computerized surveillance system should
provide sufficient sensitivity to give early warning
of incipient failures, thus enhancing diagnostic
capabilities and allowing better scheduling of
maintenance. However, while monitoring of machinery
to detect excessive vibration is a well-established
practice, a best approach for automating such moni-
toring activities has not gained general acceptance.

Limitations of monitoring systems: There are
certain drawbacks associated with all systems
presently used for on-line surveillance of rotating
equipment. The most basic of such systems are those
which derive a set of parameters characterizing the
vibration signal (such as its peak-to-peak ampli-
tude, RMS power, or power at the rotational fre-
quency) for comparison with absolute limits (7-9).
To set such limits one must resort to a vibration
severity chart, perform analytical calculations for
the equipment to be monitored, or accumulate the
necessary Information from testing. Since fixed
limits muse encompass the "worst-case" conditions
over the entire range of normal operations, sensi-
tivity to anomalous performance at any given opera-
tional state is reduced (9,10). Another disadvan-
tage frequently associated with this approach is a
lack of information on which to base diagnostic
decisions (9,11) once an anomaly has been detected.



To compensate €or this deficiency some moni-
toring systems add trending capabilities or utilize
the detail available with complete spectral analy-
sis (12-16). Unfortunately, due to the storage
limitations which exist in systems monitoring
several hundred data channels, trending the entire
power spectrum is typically not practical. The
storage problems associated with maintaining full
spectral detail are further compounded if baseline
signatures and limiting criteria are to be saved
as a function of operational conditions. A common
compromise is to trend only gross vibrational
levels and to alarm if these parameters exceed
acceptable limits. The complete power spectra of
the vibrational signals are saved only at baseload
conditions at the outset of monitoring, with further
spectral analysis performed only upon operator
request, at widely spaced Intervals, or under alarm
conditions. A decision to monitor only gross vibra-
tional level sacrifices sensitivity (6,11,17).
However, the decision to monitor a larger set of
detailed descriptors makes it difficult to establish
meaningful detection criteria (particularly as a
function of operational conditions) and has, in some
cases, exhausted the patience of operations person-
nel (7).

Another approach taken by some researchers is
the implementation of statistical algorithms as a
basis for anomaly detection (17-19). Both the
experience and success in applying these techniques
have been limited. Our own previous efforts with
a strictly statistical approach revealed that the
rotating equipment being monitored was nonstatlon-
ary. Even at fixed conditions, the equipment would
operate for indefinite periods described by one set
of statistical parameters and then would randomly
change to other equally normal conditions with dif-
ferent statistics. Data taken under such condi-
tions results in biased samples of the statistical
populations, thereby destroying the rigor of sta-
tistical tests (19). Statistical techniques can
also be data intensive and thus become unmanageable
with the added complication of varying operational
conditions.

The most mathematically complex techniques
envisioned for automated surveillance systems may
be generally referred to as pattern recognition
methods (17, 20-22). Implementation of these
methods typically requires accumulation of signa-
tures for abnormal conditions in addition to those
for normal conditions. Such comprehensive data
requirements cannot normally be satisfied, partic-
ularly at the onset of surveillance activities.
In addition, since pattern recognition methods have
characteristically been developed for other appli-
cations, they rarely incorporate — and then only
indirectly — engineering knowledge pertinent to
specific surveillance tasks. Nonetheless, it would
appear that some of these methods do show promise
as diagnostic algorithms once the required data is
obtained.

THE ORNL SORVEIUJkNCE SYSTEM

Overview: This monitoring system is the
result of applying engineering judgment to the
specific task of automating machinery surveillance.

To maintain high sensitivity to anomalies, vibra—
tional signatures are catalogued as a function of
operational conditions, and detection decisions are
based on simple statistical tests. The determina-
tion of alarm criteria is accomplished automatically,
based upon normal data obtained during a learning
period. Judicious feature selection is Incorporated
to reduce storage requirements; however, data
logging adequate for diagnostic investigations is
provided. False alarms are reduced by Implementing
processing logic that compensates for normal data
variations.

Feature selection: A vibration signature is
obtained by selecting only a subset of the various
signal descriptors that might be derived from the
measured data. This selection process introduces
available engineering knowledge related to individ-
ual equipment, critical fault events, or the signal
character into the monitoring system. For example,
the power in the fifth order (five times the rota-
tional speed) would logically be included as a
feature describing a fan with five blades. Obvi-
ously, the specific set of parameters comprising
a signature will vary for dissimilar applications.
Discarding or combining redundant descriptors
should result in a reduced set of descriptors
which enhance the information content of the meas-
ured data. For our test purposes we chose 48
parameters per signal which define the phase, size,
and shape of the time-averaged waveform, the total
power of the signal, the harmonic and nonharmonic
power, the power and phase of the first three
orders of rotation, the spectrum-weighted order,
and the average harmonic and nonharmonic order. A
detailed explanation of these descriptors is given
In the appendix. Although these features are not
proposed as an optimum set for other monitoring
applications, many descriptors in widespread use
are included, and the ability to compare the per-
formance of descriptors with different levels of
detail is provided.

Reference catalogue of baseline data: Base-
line signatures are catalogued as a function of
operational conditions. This procedure necessi-
tates access to variables that define the opera-
tional state, for example, speed, load, or flow.
Discrete intervals are chosen to span the full
range available to controlling variables; once
specified, the interval structure determines the
maximum number of entries required in the referenre
catalogue. Since it has been demonstrated that
variations in speed and load can introduce changes
in vibration exceeding those associated with anom-
alies (10), compensation for such changes stimu-
lated by control variables is necessary for main-
taining sensitivity for anomaly detection and for
reducing false alarms. Although most investiga-
tions support this conclusion (7-10), few monitor-
Ing systems implement capabilities for handling
this complication. He chose the direct catalogu-
ing approach after reviewing various mathematical
alternatives and experimenting with techniques
based on principal components analysis and regres-
sion analysis.

Establishing limiting criteria: Baseline
signatures and their normal interval of variation



are established automatically by observing equipment
operation during an initial learning period. During
this period, 'Che equipment must be operated at or
near all conditions for which monitoring capability
will be needed. The learning period should be of
sufficient duration to include a representative
sample of normal variations. This period was 2-4
days in our investigations. The adequacy of learn-
ing appears to be more closely related to elapsed
clock time than to Che number of signatures meas-
ured, because of the biased sampling previously
cited (19). Several checks are available to ascer-
tain if the learning period has been adequate.
These include counters which conservatively estimate
the proportion of the learning signatures considered
normal and the number of learning signatures since
the last abnormal classification, as well as the
ability to switch to the monitoring mode for a
defined period during which a detailed monitoring
summary is automatically obtained. If necessary,
additional learning can be initiated at any time.
Since the system detects deviations from whatever
baselines are established, sensitivity to further
degradation is maintained whether or not equipment
was operating normally during the learning period.

Detection logic: During monitoring, each
vibration signature is measured under steady opera-
ting conditions and tested to determine if its
deviations from the baseline signatures are statis-
tically significant. While the application of
classical statistics is invalidated by biased
sampling and by lumping differing operations into
coarse intervals, the deviations calculated in
approximate standard deviation units do provide a
quantitative measure of problem severity. Approxi-
mate methods of calculating signature deviations,
although lacking in mathematical elegance, are
incorporated because they have proven to reduce the
incidence of false alarms.

During learning, the maximum and minimum
values encountered for every feature are stored for
each operational interval. When a signature at a
given operational state is tested, the extreme
values normal to that operational interval and those
values from its nearest neighbors are combined to
obtain a smeared interval that encloses all extremes.
From this interval, a pseudo mean, m, and a pseudo
standard deviation, a, are calculated as follows:

Max + Minm - 5

vibration levels against established severity cri-
teria (1-4) is also recommended. This additional
detection capability would provide limited protec-
tion during learning when no other performance moni-
toring is in force and would inherently set an
upper limit on the statistically derived criteria.

Comprehensive data logging for diagnosis: No
automatic diagnostic logic is implemented in tl.ia
system. However, the detection of anomalous events
does automatically initiate procedures that log
data to assist in diagnosis. If a signature is
encountered that exceeds normal bounds, an anomaly
signature catalogue is begun for all signals from
the suspect machine. The anomaly catalogue allows
detailed comparisons betwean data accumulated fol-
lowing the suspect event with that in the baseline
reference catalogue obtained during learning.
Additionally, a detection summary which tallies
suspect events for each signature component and
computes the average deviation is collected and
available on request. Also upon demand, a variety
of visual displays from standard signal processing
algorithms (orbits and detailed power spectra) can
be obtained, although data from these analysis
capabilities are not automatically retained. It
is expected that the data collected for diagnostic
purposes will allow the development of algorithms
to diagnose the most probable faults.

RESULTS

Software implementation: The surveillance
software has been implemented on a Digital
Equipment Corp., FDP 11/34 minicomputer with 28K
words of memory. Mass storage capability is pro-
vided by two uisks, each with a 1.2M word capacity.
All programs are written in FORTRAN except for the
peripheral handler routines that require assembly
language.

A small portion of Che disk storage is
required for the software system; the remaining
portion, t£M words, is available for data storage.
The burden of the data storage is associated with
cataloguing baseline data. The total storage
requirement, R, for this reference catalogue is
given by

M S i •

R - 4 £ o, r^,,

Max - Min

The absolute deviations calculated using these
quantities are compared against a confidence limit
which decreases from C + 3 to C (on input param-
eter) as the number of measurements, M, upon which
m and o are based, increases from 0 to 500:

< c V 500

Statistical intuition and experience indicate that
a value of C=7 is most appropriate. For industrial
surveillance applications, testing the gross

where M is the number of machines to be monitored;
0^, the number of lumped operational states allowed
fcr the ith machine; S±, the number of sensors on
the ith machine; and Djj, the number of descriptors
used to describe the information from the jth
sensor on the ith machine.

The mass storage requirements for the monitor-
ing system are within reason for even large-scale
industrial applications. Assume, for example, that
one desired to monitor 100 machines, each equipped
with eight sensors. An analysis that assigns 20
lumped operational states to each machine and char-
acterizes each signal with 25 descriptors would
require 1.6M words of storage. This allows one to



describe each piece of equipment with 200 descrip-
tors and still reserve some storage area for
logging diagnostic data.

Evaluation of monitoring system; A laboratory
evaluation of the monitoring software has been
accomplished using a small rotor assembly driven by
a fractional horsepower motor.* Three displacement
probes and two accelerometers ace installed on the
rotor as shown in Fig. 1. One probe ("keyphasor")
provides a tach' signal and, through supplementary
electronics, generates a rotationally synchronized
sampling pulse to trigger the analog-to-digital
converter. Two other probes, placed at 90° to each
other, measure the radial vibration of the. shaft.
In addition, two accelerometers are installed on
the inboard bearing housing to measure the orthog-
onal components of radial vibration. In our tests,
two signatures describing rotor operation are actu-
ally calculated, one for the displacement probes
and the other for the accelerometers. Each signa-
ture is composed from descriptors for both the
horizontal and vertical directions.

The rotor can attain speeds from 0 to 200
revolutions per second (rps); this was the only
control variable altered during our tests. Lumped
operational states were defined in 1-rps intervals.
This speed resolution was a convenient choice which
offered reasonable detail.

In our previous work (19), tie monitoring
system was unable to maintain a low false alarm
rate over extended periods of testing U3ing the
limiting criteria which were automatically estab-
lished. This difficulty was overcome by modifying
the detection logic and by extending the learning
period. We have, in fact, demonstrated chat a
learning file composed in a few days can be used
to monitor normal operation for periods of several
months without false alarms becoming a difficulty.

The detection capability of the monitoring
system was investigated by purposely introducing
fault conditions into the test setup. The four
fault types chosen were shaft rub, imbalance,
mechanical looseness, and misalignments. Each
anomaly type could be introduced in varying degrees
of severity. Some faults introduced no discernible
perturbation to the vibration signals; however,
detection was always possible as the severity level
was increased. After the anomalous conditions
associated with fault testing were removed, the
return to normal operation was verified by the
monitoring system. Examples of the type of diag-
nostic data available from the system are presented
as the individual tests are described.

Imbalance test; The balance of the rotor was
altered by the addition of a 1.52-g mass 3.32 cm
from the shaft centerline (translating to an imbal-
ance force of 0.238 Nt m at 60 rps). The change ii>
the vibration was readily detected by both hori-
zontal and vertical displacement probes, as illus-
trated by the detection summary shown in Table 1.
Any signature for which some descriptor was out of

normal bounds is considered suspect. This was the
case for all 1000 comparison signatures of each type
comprising this summary. An interesting detail in
this test is -.hat the weight added actually improved
the balance of the rotor. This can be seen in both
Fig. 2, which shows the time-averaged orbit for both
baseline and imbalance conditions, and in the detec-
tion sunmary, which shows a reduction (negative
deviation) in the signal descriptors associated with
the amplitude of the vibration. A change in vibra-
tional amplitude at the first order is well estab-
lished as the primary indication of changes in
balance. However, as noted in Table 1, this
descriptor was affected less dramatically than
others. This results from the asymmetric domain
(always positive) of power descriptors which reduces
their statistical sensitivity to reductions In their
magnitude. This can be corrected by using the log
of their magnitudes. The phase of the first order
does show bignlficant variations throughout the
entile speed range, i-c demonstrated in Fig. 3. The
peak displacement was iilso significantly altered by
the imbalance; Fig. 4 contrasts normal and anomalous
variations for the pgak displacement descriptor as
a function of speed.

Misalignment test: The alignment of the rotor
can be altered by placing shims under the bearing
pedestals. The data shown resulted from raising one
side of the inboard bearing pedestal by 1.32 mm,
f'lus offsetting the centerlines of the motor and
rotoi: shafts. This misalignment was readily
detected, as indicated by most of the descriptors
shown in Table 2. Unexpectedly, all descriptors
except nonharmonic power showed a decrease in their
magnitudes. Figure S shows this effect in detail
for the power at the second order and is in con-
trast, to Fig. 6 which shows the increase in the
nonharmonic power.

The decrease in overall and harmonic vibration
levels was not, however, an indication that the
damage potential had been reduced, since the cou-
pling to the motor destructively failed within 12
hours., The prominent peak in the plot of nonhar-
monic power, Fig. 6, resulted from data taken just
prior to the destruction of the coupling. A reduc-
tion in vibration levels was not common to all
misalignment tests; nonetheless, this case shouli
serve to caution system designers that would ignore
the importance of such effects.

Mi'.chaflica], looseness test: This test was
accomplished by loosening the screws that fasten
the inboard bearing pedestal to the base plate.
In this caie, the accelerometers had a greater
sensitivit.y to the abnormality than did the prox-
imity probes. The rather pronounced effect on the
accelercraeter signatures, tabulated in the detec-
tion suirmary given ia Table 3, most likely resulted
from altering the mechanical impedance at the
bearing pedestal (23). All descriptors influenced
by the harmonic content of the signal were strongly
affected. A plot of the extreme values experienced
under both normal and loose conditions for the
power at the second order as a function of speed
is shown In Fig. 7.

*flently Nevada Corp., Minden, Nevada,
Model RK-3.
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Partial shaft rub test: In our tests, the
presence of shift rubs was indicated most strongly
by the accelero.neter signals. The data shown in
Table 4 are from a partial shaft rub, where the rub
screw (see Fig. 1) was allowed to lightly bounce
against the shaft. This anomaly emphasizes again
the importance of choosing descriptors which measure
nonharmonic signal power (11). As seen from the
detection summary (Table 4), the nonharmonic power
is the only parameter which dependably Indicates
the presence of the rub. Detailed power spectra
for the accelerometer under normal and rub condi-
tions are showa in Fig3. 8 and 9, respectively.
The noise floor of the rub spectrum is raised over
a rather broad order interval; this trait has been
characteristic of rub anomalies we tested.

S'JMMARY AND RECOMMENDATIONS

The monitoring system automatically estab-
lished limiting criteria during an initial learning
period ut a few days; subsequently, while monitor-
ing the test rotor during several months of normal
operation, the system experienced a false alarm

rate of M).5%. At the same time, the monitoring
system successfully detected all fault types intro-
duced into the test setup. Tests on "real-world"
equipment are needed to provide final verification
of the monitoring techniques. The incremental
expense required Co implement hardware for this
purpose would be small in an industrial plant where
sensors, electronics, and cabling already exist
for vibration monitoring. Furthermore, the data
required to make this monitoring approach effective
would not hinder normal industrial operations.

There are areas that could benefit from addi-
tional investigation in the laboratory environment.
A comparison of the relative values of alternative
descriptors under given rault conditions would be
worthwhile. This should be pursued in conjunction
with extending the set of fault types available,
e.g., bearing problems. Other tests should examine
the effects of using fewer (more coarse) intervals
to define the lumped operational states. Finally,
techniques to diagnose the most probable fault
should be developed by drawing upon the extensive
data automatically logged by the monitoring system.

Table 1. Detection summary (1000 signatures tested) for imbalance test
over the speed range of 60 to 85 rps.

Signature Descriptor

Lag values
Shape factor
Size factor

Peak values

Total power

Harmonic power

Nonharmonic power

Average order

Average harmonic order

Average nonharmonic order

PSD order 1
PSD order 2
PSD order 3

Phase order 1
Phase order 2
Phase order 3

Displacement Signature

X Sensor
Ho. Out (Dev.a)

997
0

416 (-12.2)

416 (-10.4)

81 (-10.6)

81 (-10.6)

0 (0.0)

350 (8.7)

38 (8.9)

0 (0.0)

71 (-10.9)
0 (0.0)
0 (0.0)

1000
726
11

Y Sensor
No. Out (Dev.a)

802
8
1 (-18.9)

1 (-26.3)

1 (-18.6)

1 (-18.6)

0 (0.0)

18 (12.5)

12 (11.8)

0 (0.0)

1 (-18.6)
1 (-8.5)

• 0 (0.0)

416
914
10

No. of suspect signatures - 1000

Acceleration Signature

X Sensor
No. Out (Dev.a

994
0
0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

95 (8.0)

1 (7.5)

0 (0.0)

0 (0.0)
0 (0.0)
0 (0.0)

1000
445
409

No. uf suspect

Y Sensor
) No. Out (Dev.a)

0
0
0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)
0 (0.0)
0 (0.0)

0
0
0

signatures • 1000

^Deviations from baseline data in approximate standard deviation units.



Table 2. Detection summary (500

Signature Descriptor

Lag values
Shape factor
Size factor
Peak values
Total power
Harmonic power
Nonharmonic power
Average order
Average harmonic order
Average aonhsnaonic order
FSD order 1
P5D order 2
PSD order 3
Phase order 1
Phase order 2
Phase order 3.

over Che speed ;
signatures tested)
range of 55 to 100

Displacement Signature

X Sensor
No. Out (Dev.a)

426
0

463 (-18.1)
310 (-13.7)
313 (-13.1)
J15 (-13.7)
459 (333.9)
23 (3.5)
11 (9.6)
0 (0.0)

315 (-13.7)
101 (-9.1)
10 (27.0)
493
1
28

1 Sensor
Ho. Out (Dev.a)

336
13
51 (-18.0)
47 (-11.0)
47 (-16.4)
47 (-18.7)
461 (514.3)
6 (-10.7)
7 (18.7)
0 (0.0)

47 (-18.7)
47 (-8.3)
11 (18.0)
327
189
305

No. of suspect signatures • 500

for misalignment
rps.

: test

Acceleration Signature

X Sensor
No. Out (Dev.a)

487
0
2 (-8.8)
0 (0.0)
0 (0.0)
0 (0.0)
38 (10.0)

179 (10.4)
101 (14.4)
408 (-14.2)
5 (20.5)
0 (0.0)
14 (35.0)
496
22
336

No. of suspect

T Sensor
Ko. Out (Dev.a)

0
0
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
14 (-8.3)
0 (0.0)
0 (0.0)
0 (0.0)
3
0
1

signatures = 530

deviations from baseline data in approximate standard deviation units.

Table 3. Detection summary (1000 signatures tested) for mechanical looseness test
over the speed range of 75 to 95 rps.

Signature Descriptor

Lag values
Shape factor
Size factor
Peak values
Total power
haOnonlc power
Nonharmonic power
Average order
Average harmonic order
Average nonharmonic order
PSD order 1
FSD order 2
FSD order 3
Phase order 1
Phase order ?.
Phase order 3

Displacement Signature

X Sensor
No. Out (Dev.a)

0
0
7 (-8.6)
8 (-9.0)
7 (-8.4)
7 (-8,5)

47 (24.9)
0 (0.0)
0 (0.0)
0 (0.0)
7 (-8.5)
0 (0.0)
0 (0.0)
0
0
0

No. of suspect

Y Sensor
Ko. Out (Dev.a)

5
0
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
6 (9.9)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
3 (0.0)
29
32
0

signatures - 87

j

X !

Acceleration Signature

Sensor
No. Out (Dev.a)

194
0
0

151
13?
U4
123.
13
7

341
0

957
901
353
419
266

(0.0)
(9.8)
(9.7)

(10.1)
(15.8)
(9.1)
(9.1)

(-11.3)
(0.0)

(154.0)
(126.8)

No. of suspect

Y Sensor
Bo. Out (Dev.a)

0
0

26 (9.9)
309 (17.1)
210 (17.3)
313 (17.0)
96 (16.1)
0 (0.0)
0 (0.0)

15 (7.9)
112 (13.2)
216 (21.5)
131 (16.3)
0
0
0

signatures «• 1000

^Deviations from baseline data in approximate standard deviation units.



Table 4., Detection siunary (20 signatures tested) for partial shaft rub
test over the speed range of 60 to 65 rps.

Signature Descriptor

Lag values
Shape factor
Size factor

Peak values
Total power
Harmonic power
Nonharnonic power

Average order
Average harmonic order
Average nonharmonic order
PSD order 1 f
PSD order 2
PSD order 3
Phase order 1
Phase order 2
Phase order 3

Displacement

X Sensor
Ho. Out (Dev.a)

0
0
0 (0.0)

0 (0.0)
0 (0.0)
0 (0.0)
4 (26,4)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0
0
0

Signature

y Sensor
Ho. Out (Dev.a)

0
0
0 (0.0)

0 (0.0)
0 (0.0)
0 (0.0)
17 (85.7)

0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)

0
0
1

No. of suspect signatures » 17

Acceleration Signature

X Sensor
Ho. Out (Dev,a)

0
0
0 (0.0)

0 (0.0)
0 (0.0)
0 (0.0)
19 (19.4)

0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0
0
0

Ho. of suspect

7 Sensor
Ho. Out (Dev.a)

0
0
0 (0.C)

20 (27.1)
15 (17.9)
0 (0.0)
20 (30.8)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0>
0 (0.0)

0
0
0

signatures - 20

^Deviations from baseline data in approximate standard deviation units.

Fig. 1. The rotor assembly used in testing the monitoring system.



Fig. 2. The time-averaged orbits for normal and imbalance conditions.

Fig. 3. The range of phase values (displacement probe) at the first
order for normal and imbalance conditions vs speed.



Fig. 4. The range of peak displacements for normal and imbalance conditions vs speed.

Fig. 5. The range of power estimates (displacement probe) at the second
order for normal and misaligned conditions vs speed.
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Fig. 6. The range of nonharmonic power estimates (displacement probe) for normal
and misaligned conditions vs speed.

Fig. 7. Hie range of power estimates (accelerometer) at the second order for
normal and mechanically loose conditions vs speed.



Fig. 8. Power spectrum of horizontal accelerometer during normal
rotor operation at 59 rps.

Fig. 9. Power spectrum of horizontal accelerometer during partial
shaft rub tent at 59 rps.
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Fig. 1. The rotor assembly used in testing the monitoring system.
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Fig. 8. Power spectrum of horizontal accelerometer during normal
rotor operation at 59 rps.
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APPENDIX

In Table A-l is a list of the descriptors
which we chose to include in our vibration signa-
tures. Many of these descriptors are commonly used
and require no additional explanation. However,
the following discussion and equations should serve
to clarify the descriptors we used.

Table A-l. Descriptors in vibration signature

1. Time-averaged waveform ("NPTS" values)
2. Lag value of time-average waveform
3. Shape factor for time-average waveform
4. Size factor for time-average waveform
5. Peak signal value
6. Total signal power
7. Harmonic power in signal
6. Nonharmonic power in signal
9. Average order of signal

10. Average harmonic order of signal
11. Average nonharmonic order of signal
12. Power at first order of signal
13. Power at second order of signal
14. Power at third order of signal
15. Phase of first order of signal
16. Phase of second order of signal
17. Phase of third order of signal



The waveform fvom a vibration sensor attached
to a rotating machiue bas a vepatitive component.
Regardless of magnitude of this component, its
presence can -be enhanced by time-averaging the
waveform. This r/rocess requires that the raw
signal be aanplf-i at some integer multiple of the
frequency of rotation, fo. These sampled values,
X(iic), are t'tan averaged using the following
formula

• , KREV

(1)

(2)

(i - 0, 1, 2, ... NPIS-1)

where T is the period of rotation

HPTS • At - j-
o

This tine-averaging technique is equivalent to
applying a comb filter to the original signal which
passes oiu.y the fundamental frequency and its har-
monics. The time averaged waveforms from two
sensors at 90* to each other can be used to obtain
average orbital plots which describe the motion
of the shaft centerline at the monitored position.
The "HPTS" values (usually 30) that describe the
averaged waveform, X±, are correlated with the
averaged waveform obtained initially as a baseline,
XBi, to derive three additional quantities. The
shape factor is the maximum value obtained for the
normalized correlation function, H(J), which is
defined by

HO). -

NPTS

i+J XB.,

[NPTS - HPTS ,11/2Z K Z *l\
i-i ei i-i M

(J - 0, 1, 2, NPTS-1) (3)

Values for X^+j beyond %j>jg are obtained by
repeating the original waveform. The point J - L
where H(J) is a maximum also defines the lag value,
LAG, and the size factor, SZF, according to the
following expressions:

SZF

NPTS

ZZ
i-l

i+L XB.

NPTS
(5)

E =;
When analyzing the vibratlonal signals from

rotating machinery, order-domain analysis (instead
of the more familiar frequency-domain) simplifies
interpretation of results, especially when variable
speed operation exists. The basic relationship
that allows conversion between the two domains is

Q - r (6)

where f0 1- the fundamental rotational frequency.

Integral crders (Q * 1, 2, 3, etc.) occur at
harmonics of the running speed. If the vibrational
signal is analyzed for NSEV revolutions, the mini-
mum order resolution achievable is

The power at any order, Qj» will be denoted by
G(QJL), where Qi - 1AQ, i " 1, NOC (number of
orders calculated).

Thus the total power in the vibrational signal
up to some desired order, QD, is obtained by summing

where

TPOW - £ G(Q ) ,
i-l X

(8)

(9)

The harmonic power in the signal can be obtained
by sunning the power spectrum estimates at integral
orders:

N
HPOW » T G(m) , (10)

where N is the largest integer for which Q^ < QQ.

The nonharmonic power is the difference of
these two quantities

NHPOtf - TPOtf - HPOtf (11)

When combining power estimates over an order
interval, another parameter of interest is the
power-weighted average order. This parameter pro-
vides an indication of the order at which the power
in the interval is concentrated. This is given by

ATO - kz

1/2

(12)

Similarly the average harmonic order is given by

11/2

AHO -
m-1

G(m)

(13)



and the average nonharnonlc order Is given by

-.1/2

The total harmonic power can be obtained by inte-
grating the tine averaged waveform

ANHO "itQ*
k

G(Q1

G(Q

L) -

N

m?i

m G(m)

G(m)

HPIS

5HPOW *

. (14)

G(m)

All of the parameters defined above can be calcu-
lated from the time domain signal directly without
the need for order domain transformations. The
total power can be obtained by Integrating the
squared time signal:

The sums of the squared orders, weighted by their
power in Eqs. (12)-(14), are equal to integrating
the square of the derivative of the time signal,
and the time-averaged signals, respectively:

\ /fx'(t)J2dt (18)

TPOW •*r X («) it ;

.-i-T,2
NDAT -4< "i

05)

(16)

NDAT

(20)


