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ABSTRACT 

The Rayleigh-Taylor instability response of an elastic-plastic tungsten plate is investigated 
by numerical experiments and an approximate modal analysis. The so-called “minimum ampli- 
tude” instability criteria derived from plasticity analyses is shown to be incomplete as a general 
indicator of instability or stability at very large driving pressures. Model equations are derived 
which are able to reproduce the basic qualitative features of the observed instability response 
given by the numerical calculations. 
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1. Introduction 

When a high density material is accelerated by a low density material in the direc- 
tion of the positive density gradient, a classical Rayleigh-Taylor instability may develop 
along the interface between the two materials. The problem has been studied for some 
time in the case of fluids and the literature is voluminous (Sharp, 1984). We wish to 
study aspects of this instability behavior when the high density material is an elastic- 
plastic solid pushed by a low density gas. We are interested principally in the regime 
where the driving pressure of the gas is much greater than the yield strength of the 
solid and wish to investigate how the properties of elasticity and plasticity for the solid 
plate may assist in delaying or suppressing the onset and growth of unstable modes. 

Miles (1966) provided analytical estimates of the effect of solid properties on the 
growth of Rayleigh-Taylor instabilities. Using energy integral arguments and the invis- 
cid fluid Rayleigh-Taylor eigenfunctions as basis functions for the velocity field, he de- 
termined two types of stability equations for two different regimes in the solid response 
of an incompressible elastic-plastic plate. The plate was assumed to be of thickness, h, 
have elastic shear modulus, G, and von-Mise yield stress in pure shear, 61, related to 
the yield stress in unaxial tension, Y, by Y = (see Figure 1). A simple pressure 
boundary condition, PO, was applied on the lower surface of the plate. He examined two 
limiting cases. The first case was for infinitesimal perturbations about an anisotropic 
state of stress in the plate. The steady state stress state for the solid was assumed to 
lie on the yield surface. For perturbation amplitudes much smaller than hsl/po, Miles 
obtained, using the Prandtl-Reuss constitutive law, a perturbation amplitude equation 
of the form 

13G 
ij - (gk - --k )q  = 0 

4 P  

where q measures the amplitude of the unstable motion, the dot is a time derivative, g is 
the body force acting on the plate, k is the wavenumber of the spanwise perturbation 
and p is the density. Since po = pgh, this implies that there exists a wavelength of 
maximum growth rate, A,, given by A,/h = 137rG/po. Thus, if the shear modulus is on 
the order of the driving pressure, the wavelength of maximum growth rate is roughly an 
order of magnitude larger than the thickness of the plate. A cutoff wavelength which is 
exactly half of the most unstable wavelength is also predicted. All wavelengths smaller 
than this cutoff wavelength would be predicted to be stable. For many metals this 
would imply that, unless the pressures driving the plate are on the order of 100 GPa 
or more, the Rayleigh-Taylor response can be neglected as far as plate integrity is 
concerned provided initial perturbations are small. In order to provide an estimate for 
larger amplitudes, Miles assumed the von-Mises constitutive equations for plastic flow 
and using the same modal technique determined an equation of the form 

G - gkq = -4(1+ e-kh)-l(ksl/p)sgnq . 
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Letting q = 6 h f ( ~ ) ,  where r = mt and 6 = 4 ( 1 +  e - k h ) - l s l / p o ,  one obtains 

j ( 7 )  - f(.) = -sgnf(.r) 
or, in integrated form, 

(3) 

The level curves of Equation 4 are shown in Figure 2 along with the trajectory direc- 
tions. For regions near the origin in the phase plane the motion is stable in the sense 
that the flow lines do not go to infinity for any values of the initial state. However, for 
large enough values of either f(7) or f ( ~ )  the motion may follow an unstable trajectory. 
In particular, if one assumes q = 0 at the beginning of the motion one concludes that 
any initial q > 6h will lead to an unstable motion while any g less than this cutoff value 
will be stable. Miles’ analysis is the first known discussion of a minimum amplitude 
criterion for instability given an assumption of rigid-plastic material behavior. White 
(1973), in an informal report, discussed a unified analytical technique which included 
both the elastic and plastic response behavior seen in Miles’ equations. Unfortunately, 
this work appears to have been largely unknown or ignored by subsequent authors. The 
relationship between White’s theory and the distinct theory presented here in Section 
3 will be discussed in a separate publication. 

Barnes, et d .  (1974) conducted an experimental study in which aluminum plates 
were accelerated by explosive gases expanding across a void. They found significant 
growth for perturbation wavelengths twice the thickness of the plate at a given initial 
amplitude. A single additional shot (Shot 2) at half the wavelength and half the 
amplitude resulted in significantly less growth. The result was ascribed to a wavelength 
effect with the growth of the shorter wavelength perturbation being damped much more 
by the yield strength of the solid just as in the case of viscosity in a fluid. Numerical 
calculations modeling these experiments indicated a significant dependence on yield 
strength. 

Dienes (1978), using a fully nonlinear modal technique, determined an equation 
of motion for a rigid-plastic fluid and found that there was a minimum acceleration 
required for instability. His equations in the small amplitude regime are exactly the 
equations of Miles in the limit h + 00. Qualitatively the response was found to be the 
same for both linear and nonlinear modeling. 

Drucker (1980) also obtained an equation similar to Equation 3 for j positive. His 
analysis results in a 6 which does not depend on the wavelength but does depend 
on the shape of the perturbation. The analysis does not reduce to the fluid limit 
as the yield strength goes to zero. Drucker (1980) also produced an additional paper 
detailing various non-dimensional parameters of interest in the study of Rayleigh-Taylor 
instability in solids. 

Due to the suggestion by Drucker that the initial amplitude rather than the wave- 
length was the dominant factor in the no growth result for Shot 2, Barnes, et al. (1980) 
conducted two additional shots. The first shot essentially verified the previous result 
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of Shot 2 and the second shot had an initial perturbation wavelength 1.86 times that 
of Shot 2 but at the same small amplitude. In this case, little growth was observed. 
It was concluded that the minimum amplitude criterion emphasized by Drucker was 
apparently correct. 

In this report, we first describe the results of a set of numerical experiments con- 
ducted using a Lagrangian finite-difference wavecode to compute the time-dependent 
motion of a solid tungsten plate loaded by a given pressure history on an initially 
perturbed surface. It will be seen that the theories discussed above are incomplete in 
the sense that all of the qualitative features seen in the numerical experiments cannot 
be explained by these theories. Subsequently, we introduce an approximate analytical 
technique which yields a coupled set of equations combining both elastic and plastic 
effects. We include in the derivation the effect of a small but non-zero density driving 
fluid for the sake of additional generality. A comparison is made between the results 
of the analysis using the approximate technique and the more precise modeling of 
the wavecode. It will be seen that the approximate analysis is able to reproduce the 
qualitative features of the solid plate response although the quantitative details differ. 

2. Numerical Simulation of an Accelerated 
Tungsten Plate 

This section describes an extensive parametric study of the stability characteris- 
tics of an accelerated tungsten plate using the Lagrangian finite-difference wavecode 
TOODY (Swegle, 1978). The study included variations in driving pressure profile, 
initial perturbation wavelength and amplitude, as well as yield strength and shear 
modulus variations. The conclusions to be reached by the study can be summarized as 
follows: 

1. Increasing yield strength or decreasing driving pressure reduces instability growth 
rate and may stabilize the instability. 

2. At a given time, there is a wavelength of maximum instability growth which 
increases as yield strength increases. 

3. Stability curves dependent on yield strength separate stable and urntable regions 
in the perturbation amplitude-wavelength plane. Wavelengths larger than a cutoff 
wavelength, which increases as driving pressure decreases, are unstable at all 
amplitudes. 

4. Simple scaling, such as dividing yield strength by driving pressure, does not hold. 

5 .  Different behavior is seen depending on whether the driving pressure is constant 
or increasing. Thus, risetime of the driving pressure is a factor. 

6 .  Low driving pressures can produce stability at realistic values of yield strength 
and perturbation amplitude. 
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The study involves the calculated response of a section of the plate as shown in 
Figure 3. The driven surface of the plate has a sinusoidal perturbation of a given 
wavelength and amplitude imposed on it, while the opposite surface is flat. The plate 
has symmetry boundaries at  the edges, so that a plate of infinite lateral extent is 
represented. The symmetry boundaries must fall at either a maximum or a minimum 
of the perturbation, so the minimum lateral extent of the calculation is one-half the 
wavelength of the perturbation. The driving gas is represented by an applied pressure 
boundary at the perturbed surface of the plate. The driving pressure varies in time, 
but is constant across the plate. This represents the extreme case of a driving gas of 
zero density and infinite sound speed. However, comparisons made with calculations 
in which a gas of representative density and sound speed was used to drive the plate 
showed no differences in the results. An alternate procedure would be to assume a 
flat plate and introduce perturbations by varying the driving pressure as a function 
of position on the surface. Non-uniformities in both the plate surface and the driving 
pressure will be present in the actual configuration. 

The major part of the study consisted of a series of calculations in which the am- 
plitude of the driving pressure, the amplitude and wavelength of the perturbation, and 
the yield strength of the plate were varied. Perturbation amplitudes ranged from 0.2 
angstroms to 20 p, wavelengths varied from 1/16 of the plate thickness to 16 times the 
plate thickness, and the driving pressure varied from 80 to 1200 GPa (0.8 to 12 Mbar). 
In most cases the time variation of the pressure consisted of a linear ramp to the maxi- 
mum pressure over 2.5 microseconds, after which the pressure remained constant. The 
plate material used in the study was tungsten. The nonlinear material model assumed 
a Mie-Gruneisen equation of state with a constant PI' product combined with linear 
shock velocity-particle velocity Hugoniot relation and a constant Poisson's ratio. The 
material properties are shown in Table I. The ambient yield strength of tungsten is 2.2 
GPa, but material strength was treated as a parameter and varied from the ambient 
value to infinity. Since the aim of the present study was to elucidate the effect of the 
various parameters on the stability of the plate, a constant yield strength was assumed 
in each calculation, with the value varying between calculations. A more realistic yield 
model would be desirable for detailed calculations of an explicit configuration, but the 
elastic-perfectly plastic model is preferable for a parameter study, since the effect of 
the various parameters is most clearly seen if one parameter is varied while the oth- 
ers remain constant. A complex yield model results in difficulty in separating effects 
due to the time variation of the yield strength as opposed to variations in the other 
par ame t ers . 

Figure 4 shows mesh plots for a typical calculation. The parameter of interest is 
the overall variation in the flatness of the driven surface, which is initially equal to 
twice the amplitude of the applied sinusoidal perturbation. Results consist of compar- 
ing time histories of the surface variation for different values of the initial parameters. 
In unstable cases, a barely discernible initial perturbation eventually grows into a de- 
formation comparable in size to the plate thickness. At this point, mesh deformation 
causes the time step to go to zero, stopping the calculation. The calculations could be 
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continued for a short time if rezoning were employed, but this is not necessary since 
the exponential growth rate of the perturbation has been well established by this time. 
In reality, the perturbation would continue to grow and the plate would very shortly 
disintegrate. 

TABLE I 

Tungsten Material Parameters 

~ ~~ 

Bulk Sound Speed 
C, (km/sec) 

Slope of U, - Up Relation 
S 

/ /  risson’s  Ratio 

11 Griineisen Ratio 

Initial Yield Strength 
y o  @Pa) 

19.3 

4.03 

1.237 

.283 

1.54 

2.28 

Figure 5 shows the effect of varying the yield strength. In this and the next several 
figures, the driving pressure consists of a linear ramp over 2.5 p up to 1200 GPa with 
this pressure thereafter held constant. As c m  be seen from the figure, increasing the 
yield strength delays the growth of the instability. At shorter wavelengths, the higher 
yield strength calculations become stable, in the sense that the perturbation ceases to 
grow after the pressure becomes constant. However, at  longer wavelengths, even very 
large yield strengths are unstable, and the amount of time that the instability growth 
is delayed is not large. In fact, even the purely elastic case is unstable, with growth 
rates not too different from those at lower strengths. However, as Figure 6 shows, the 
deformation mode is different in this case, since no plastic flow can occur, and the 
plate thickness stays constant. If the pressure were removed, the plate would revert 
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to its original shape. This is, of course, unrealistic from a physical standpoint in an 
additional way since tensile stresses greatly exceeding the fracture strength of the plate 
are generated. 

As mentioned, most calculations assume a constant yield strength in the plate. In or- 
der to determine if any additional stabilizing mechanism might occur with a more com- 
plex yield model, comparisons were made between constant and varying yield strength 
models. Figure 7 shows representative results for X = 4 H  and A = 2 x 10-5cm. The 
figures compare calculations in which all other parameters are held constant except 
the yield model. A pressure-dependent model is compared with calculations in which 
the constant yield strength is equal to the upper and lower bounds of the varying 
yield strength. As can be seen from the figure, the pressure-dependent calculation is 
bounded by the others. No additional stabilizing or fundamentally different behavior 
results when this additional yield strength model complexity is introduced. Thus, the 
results of the present study provide bounds on the material response and show the 
trends in the instability behavior. 

Figure 8 demonstrates the effect of varying the wavelength of the perturbation. At 
low yield strengths the shortest wavelengths grow most rapidly, but as the yield strength 
increases, the situation reverses, and the short wavelengths are more stable. If yield 
strength becomes large enough, shorter wavelengths become stable. In general, yield 
strength is more effective at stabilizing short wavelengths than long wavelengths. Figure 
9 shows that, for a given yield strength and a fixed time, there exists a wavelength for 
which the surface variation is the largest. In Figure 9 at a yield strength of 10 GPa, the 
wavelength of largest growth is near the plate thickness, while for the elastic case the 
corresponding wavelength is about eight times the plate thickness. The growth rate, 
however, for the unstable modes appears to be asymptotically largest for the smallest 
wavelengths. 

A conclusion of the present numerical study of an elastic-plastic plate is that no 
single criterion based on either amplitude or wavelength alone is sufficient to determine 
stability. Instead, a map of the results in the amplitude-wavelength plane shows a region 
of stability and a region of instability, demarcated by a well-defined boundary. An 
example of such a map is shown in Figure 10, where various combinations of amplitude 
and wavelength are plotted for the case of a driving pressure ramping up to 1200 GPa 
over 2.5 microseconds, and a yield strength of 20 GPa. The stability boundary shows 
that the amplitude which remains stable decreases as the wavelength increases. As 
the wavelength increases beyond a cutoff wavelength which is about 2.25 times the 
plate thickness, all perturbations are unstable. Figure 11 shows the surface variation 
for the points at a wavelength 2.5 times the thickness. Even the smallest amplitude, 
0.2 angstroms, is unstable. However, Figure 12 shows that when the wavelength is 
decreased to 1.5 times the sample thickness, initial amplitudes less than 0.02 microns 
are stable, in the sense that the surface variation switches from an exponentially growing 
mode to an oscillatory mode when the driving pressure becomes constant. When the 
matrix of calculations is repeated for various yield strengths, a family of stability curves 
is determined, as shown in Figure 13. Increasing the yield strength raises the stability 
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curve at short wavelengths, but does not change the value of the cutoff wavelength. 
Note that Figure 13 only delineates the regions of stability and instability without 
providing information on growth rates. Combining the results of the figure with the 
previous conclusions about yield strength dependence of the most unstable wavelength, 
a picture can be obtained of the stability behavior as wavelength is varied while other 
parameters are held constant. Very long wavelengths are unstable, but the growth at 
a given time increases as wavelength decreases until the most unstable wavelength is 
reached, and then growth decreases as wavelength decreases. For non-zero values of 
the yield strength, continued decrease of the wavelength results in crossing the stability 
boundary, and the perturbation becomes stable. We emphasize that maximum growth 
at a given time is not the same as maximum growth rate. The growth rate appears to 
be largest for the smallest wavelengths given enough time for this rate to be achieved. 
(Study Figure 9 in particular). 

The preceding results have all involved a 1200 GPa driving stress. While they 
provide previously undiscovered trends in stability behavior, they do not paint a very 
promising picture for the integrity of a real plate being accelerated by such a large 
pressure. The only situations which can be expected to be stable involve amplitude 
and yield strengths which are probably far removed from those attainable in reality. 
Although it can be expected that the yield strength of tungsten will increase beyond its 
ambient value as pressure increases, one would have to be very optimistic to hope that 
it will increase to the megabar range, or that driving configurations can be flat and 
homogeneous on a scale of hundredths of microns. However, the situation improves if 
variations in the driving pressure are considered. Figure 14 shows the stability curves 
for a 10 GPa yield strength for various maximum driving pressures. In all cases the 
pressure history is a linear ramp to the maximum pressure over 2.5 microseconds. As 
the driving pressure is reduced, the boundary curves not only lie at much higher initial 
amplitudes, but the cutoff wavelength also increases. These curves are approaching 
realistic values of amplitude and yield strength, and thus motivate the use of small 
driving pressures. Of course, other considerations may favor the use of as high a driving 
pressure as possible. Most important of these could be the desire to achieve a high plate 
velocity in a short acceleration distance. In fact, Figure 15 shows that higher pressures 
are better from the standpoint of instability growth versus plate velocity. Naturally, the 
higher the pressure, the more rapidly both the plate velocity and the surface variation 
increase. However, the increase in velocity is faster than the increase in instability 
growth, and higher velocities are obtained at a given level of surface variation. However, 
the plate is unstable, and the velocities which are obtained before the plate deformation 
becomes unacceptable are limited. In any event, a stable acceleration process in which 
any velocity can be obtained, although at the expense of acceleration length, seems 
preferable. 

Figure 16 shows that if the driving pressure is reduced to 2 Mb, stable acceleration 
is possible for micron plate flatnesses and inhomogeneities even if the yield strength 
does not increases beyond the ambient value. The figure also shows that the minimum 
amplitude instability criterion based on the parameter Y/P does not scale. The reason 
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can be seen in Figure 17, where the shear modulus is varied. Here various constant 
values of the shear modulus are compared, and it is found that shear modulus affects 
the stability in much the same manner as yield strength. The standard calculations use 
a nonlinear model in which the elastic moduli are pressure dependent. However, the 
moduli do not increase as rapidly as the pressure, so that shear modulus divided by 
pressure decreases as pressure increases. Thus, the results of Figure 16 are obtained, 
and the simple scaling law does not hold. 

It has been mentioned several times to this point that the classification of stability 
is made depending on the behavior of the plate after the pressure becomes constant. 
An observation which can be made of all the many calculations which comprise this 
study is that surface variation grows while pressure is increasing, regardless of the 
value of the parameters. Figure 18 shows the situation outside the stability boundary, 
where growth continues after the driving pressure is constant. Here the yield strength 
is small and the wavelengths are beyond the wavelength of maximum growth, so the 
longer wavelengths have grown less at a given time. Figure 19 shows the case inside 
the stability boundary where the amplitude of the surface variation oscillates after 
the driving pressure becomes constant. The feature to note is that the amplitude 
and period of the oscillation increases as the wavelength increases toward the stability 
boundary. Thus the shortest wavelengths convert more quickly to a stable pattern 
when the pressure becomes constant. The longer wavelengths continue to grow as 
the larger amplitude oscillation is established. Thus, it appears that as the stability 
boundary is reached from the inside, the amplitude of this oscillation increases without 
bound, resulting in the continued unstable growth of the perturbation. A very careful 
examination of the figure reveals that before the pressure becomes constant, the shortest 
wavelengths are growing most rapidly, even though these wavelengths are the most 
stable when the driving pressure is constant. This emphasizes the fact that the behavior 
is very different depending on whether the pressure is increasing or is constant. Thus, 
it might be expected that stability would be affected by the amount of time that the 
pressure increases before becoming constant. Figure 20 shows that this is in fact the 
case. Here the variation is in the driving pressure. In all cases there is a linear ramp up 
to the maximum pressure, but both the risetime and the maximum pressure are varied. 
It is found that regions of stability and instability exist, with instability occurring for 
risetimes both longer and shorter than the optimum value. 

The study to this point has revealed that although the general stability problem is 
more complicated than has been previously reported, the procedure used has uncovered 
general trends which are useful in design considerations for acceleration of metallic 
plates. Furthermore, although no data exist for the configurations considered here, the 
general agreement of the code and modeling technique with the results of Barnes, et 
al. (1974) on aluminum plates accelerated at pressure up to 100 kbar suggest that the 
numerical modeling will predict the correct general trends in expected plate response 
for a given configuration and acceleration profile. The following section outlines an 
analytical model for the Rayleigh-Taylor response of accelerated plates which confirms 
the trends for plate response as described above. 
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3. Analytical Modeling 
None of the approximate analyses discussed in the introduction are able to reproduce 

all of the qualitative behavior seen in the numerical experiments. However, there seem 
to be qualitative similarities between the small amplitude analysis of Miles and the 
cutoff wavenumber behavior observed at very small amplitudes. The damping effect of 
the yield strength is also observed in the growth of the unstable modes and is suggestive 
of the damping indicated by the modal equations derived from a rigid-plastic analysis. 
This analysis also predicts certain amplitude criteria which are similar to the amplitude 
results given by the numerics for certain regions of the parameter space. However, the 
shape of the wavelength-amplitude stability boundary and its dependence upon yield 
strength and maximum pressure are not at all indicated by any of the analyses. The 
results of Miles, taken as a whole, however, are indicative of the type of model equations 
which we wish to have. One concludes that elasticity and plasticity should be combined 
in some consistent manner to produce the qualitative features observed numerically. 
In a sense we wish to modify the phase diagram in Figure 2 to include amplitude- 
wavelength effects due to the presence of elasticity in the constitutive response. The 
notation of Section 3 is basically the same as in Section 2 with the following changes: 
A, and H and P of Section 2 are q ( O ) ,  h, and p, respectively of Section 3. 

3.1 Model Equations 

The thrust of the following analysis is to derive model equation which will capture 
the essence of the observed phenomena seen in the numerical experiments. In particular 
we will develop a coupled set of equations which, depending upon the location in phase 
space of the solution, have characteristics similar to both the small amplitude elastic 
response equations of Miles and the plasticity-based equations of Miles or Drucker. For 
completeness we shall include in the analysis the effect of a small density of the driving 
fluid. 

Figure 1 illustrates our notation. We assume a plate of thickness h and density p1 
resting on an infinitely deep fluid of density p2. A uniform acceleration field g acting 
in the direction from the plate to the fluid produces a body force b = - p i .  This 
corresponds to the situation where the plate is accelerated by a pressure po = p l g h .  
At the free surface of the plate the pressure is zero. We assume both the fluid and the 
plate to be incompressible so that the velocity field of the motion must be solenoidal. 
Mass conservation implies 

div v = 0 ( 5 )  

The momentum equation is 

pv = div T + b (6) 

where T is the Cauchy stress tensor, b is the body force and v is the acceleration. The 
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motion is assumed to be periodic in z of wavelength X and wavenumber k = 27r/X with 
an imposed zero stress boundary condition on the upper surface and a zero velocity 
boundary condition as y + -00. We assume the Cauchy stress tensor to be of the form 

T = - p I + S  (7) 
where S is the deviatoric part of the stress, i.e. S - I = 0. For an incompressible 
Newtonian fluid we have 

S = 2pD (8) 

where D is the symmetric part of the rate of strain tensor and p is the viscosity. A 
von-Mises plastic or rigid-plastic constitutive law has the form 

where s1 is the yield strength in pure shear and SI = Y / f i  where Y is the yield strength 
in uniaxial tension. For an elastic-plastic incompressible material we shall assume a 
Prandtl-Reuss constitutive law of the form 

where G is the elastic shear modulus and 

provided J2 = 2s; and Vk > 0 
GW p = -  

= 0 provided 52 < 2s; or Vk < 0 (12) 

where = S - D and JZ = S - S .  Of course, for an inviscid fluid we take S identically 
equal to zero. 

We shall derive our basic equations from a weak form of Equation 6 and use a 
Galerkin formulation to obtain simple equations of motion. Let w be an arbitrary 
vector field. A weak form of the momentum equation is 

hyt s (n) w dA + kt (b - pir)  . w dV = T - gradw dV k: (13) 

for all test functions w. The superscript t indicates that the volume depends on time. 
The quantity s(n) is the imposed boundary stress on the volume V'. If, in particular, 
we take w = v then Equation 13 represents a power expended theorem. The Galerkin 
technique, as used in standard finite-element numerical analysis algorithms, employs 
numerous very simple basis or shape functions with time-dependent amplitudes for the 
velocity v and computes the equations for the amplitudes by requiring Equation 13 to 
be satisfied when w is replaced by a specific set of test functions which may be equal 
to the set of basis functions. In this analysis, we use only one fairly complicated basis 
function for the velocity field which one assumes is close to the expected motion. The 
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equation of motion is then obtained by evaluating Equation 13 when w is set equal 
to the basis function. The basis function which we shall employ is the eigenfunction 
from the Rayleigh-Taylor linear stability problem for the inviscid fluid case. This 
eigenfunction is known in closed form and allows the Galerkin integrals to be evaluated 
explicitly to within certain approximations. Using this form of the basis function in 
Equation 13 with S = 0 will give an ordinary differential equation for the amplitude 
q which has the same characteristic values as the eigenvalues corresponding to the 
inviscid fluid Rayleigh-Taylor eigenfunction. In the case of a non-perfect fluid we have 
an extra set of boundary condition to be satisfied. Since the inviscid fluid eigenfunction 
does not satisfy these boundary conditions this leads to an inaccurate approximation 
for those modes for which the shear stress contribution is important. However, the 
qualitative features of the response may still be preserved using the modal technique. 
This will be illustrated in the cases of an incompressible Newtonian viscous fluid and 
incompressible elastic solid where the linear stability problems can be completed in 
closed form. 

3.2 Basis Functions 
The eigenfunctions corresponding to Rayleigh-Taylor instability for the case of a 

finite layer fluid of density p1 resting on an infinite depth fluid of density p2 can be cal- 
culated using standard linear stability analysis. We define these as the basis functions 
for the finite layer and the infinite depth fluid (subscripts 1 and 2, respectively) as 

sin kx 
cos kx 

e-ky + ae-khcoshky  
sinh kh 

e-ky - a e - k h s i n h h y  
P1 sinh kh 

-eky sin kx 
eky  cos kx m2 = { 

The velocity in each region is then given by 

(14) 

v2 = qm2 (17) 
The symmetric part of the velocity gradient tensor is given by 

Di = (gradvl + gradviT)/2 = gradvl = qkM1 (18) 
where 

(19) 
1 
k M1 = -grad ml 

Examination of Equations 8, 9, and 10 suggests that the deviatoric stress in the 
plate be represented in the form 
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Thus the base or non-perturbed state of stress in the plate is assumed to be isotropic. 
We note that this is not an optimal choice for the expected base stress state of a 
solid plate. It is, however, an allowable stress state and is required for consistency in 
subsequent analysis. Also 

Sa = o  (21) 
since we assume that the driving fluid can produce no shear stresses. 

We use as our test functions w = ml in region 1 and w = m2 in region 2. The 
volume Vt includes a single period in z with 72 < y < h + r]l in region 1 and -00 < 
y < 112 in region 2. Substitution into Equation 13 yields 

These integrals are to be evaluated explicitly neglecting all terms of second order 
in the amplitude, i .e.  terms O(q2) ,0 (qs ) ,0 (qr ] )  etc. If j is the unit vector in the y 
direction, the first order kinematic boundary conditions for the interface r]2 is % = v - j  
on y= 0. Thus the boundary is given by r ] 2  = qml - j evaluated on y = 0. Similarly 
rjl = qml - j evaluated on y = h. Some algebra leads to the following equation, 

P1 - P2 ' - g k p ~  + pzcothkh' = p1 + p2cothkh (23) 

where Q = with E = pz/(p12sinhkh). We shall in Section 3.4 assume E << 1. As 
expected, when s = 0 this equation yields the exact dispersion relation for inviscid fluid 
wave motion along the interface between an infinite fluid of density p2 and a covering 
fluid layer of thickness h and density p1. 

3.3 Application to a Newtonian Fluid and an Elastic Solid 
Layer 

We can compare the above approximation technique to the exact solution when the 
plate is an incompressible Newtonian fluid or elastic solid layer of infinite extent. In 
the Newtonian fluid case, Equation 8 holds, and we have s = 2pIlcq and kh + 00. The 
resulting equation is 

-4p1k2q 
P1+ P2 

' - gkP1 - P2 
P1 + P Z P  = 

Assuming a solution proportional to en' we obtain the characteristic equation 

Pi - p2 - - -4plk2n n2 - gk - P1 +P2 
This may be compared with the characteristic 
limit p2 + 0 in the dispersion relation from 
Chandrasekar (1961). This yields 

(24) 

. ,  
P1+ P2 

equation for n derived by taking the 
the linear stability analysis given by 
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PI - ~2 -4p1k2n 4k4plu,2 (4- + 1 + n/k2ul - 1) - - n2 - gk 
P 1 +  P2 p 1 +  P2 p1 + p 2  

where u1 = p1/p1. The last term on the right hand side of Equation 26 can be considered 
the contribution to the characteristic equation due to the need to satisfy a velocity and 
stress continuity boundary conditions at the interface. One expects our approximate 
solution to be correct in the long wavelength limit, but wrong in the short wavelength 
limit since in the latter case viscosity effects should be more important. Taking leading 
order terms in a small k expansion in Equation 26 results in Equation 25, the same 
equation obtained by the modal technique. For completeness we also give the short 
wavelength (large k )  limit of Equation 26 which can be computed by taking two terms 
in the expansion of the square root in inverse powers of k2.  This yields 

PI  - PZ - - -2p1u1k2n n2 - gk 
2 P 1 +  P2 P1 + P2 P 1 +  P2 

( 2 7 )  

The inviscid fluid eigenfunction modal technique for the Newtonian fluid problem 
was used by Miles and Dienes (1966) to obtain Equation 25 for p2 = 0. They deter- 
mined the maximum growth rate to be 0.40(g2/~)1’s for the approximate analysis and 
O.46(g2/u)’” for the exact analysis. Figure 21 illustrates the growth rate curves as 
a function of wavenumber for the exact solution and for each of the approximations 
discussed above in the case p2 = 0. Both the magnitude of the growth rate and the 
wavenumber of maximum growth rate are displaced from the exact values for each of 
the approximations. The example indicates that the inviscid fluid eigenfunction ap- 
proximation technique can perform quantitatively well in the long wavelength limit, 
but may provide qualitatively correct response for shorter wavelengths. 

A similar analysis can be easily obtained for the case of an elastic upper layer. The 
dispersion relation in this case will be obtained by replacing p in the Newtonian fluid 
analysis by G/n .  This follows directly from Equation 10 with /3 = 0. One obtains the 
exact relation 

PI - PZ - -4Gk2 4k4(G/n)2/pl (4- - 1) 
P 1 +  P2 P1 + P2 P1 + P2 

+ 1 + n2pl/k2G - n2 - gk 

The long wavelength limit of this equation and the modal technique both yield 

- P 1 -  P2 

P1 + P2 
n2 = gk 

The short wavelength limit equation is given by 

4Gk2 

P 1 +  P2 

- 2 P1 - P2 

2 P 1 +  P2 P 1 +  P2 
n = g k  

2 ~ 1  Gk2 

P 1 +  P2 

The growth rate curves for each of these approximations are shown in Figure 22 for 
the case p2 = 0. The scaling on this plot emphasizes the weaknesses of the long 
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wavelength approximation due to the fact that the cutoff wavelength is not correctly 
predicted. However the comparison does indicate that replacing the constant G in the 
long wavelength analysis by one half its nominal value may provide the best agreement 
with a more accurate analysis in so far as the cutoff wavelength and wavelength of 
maximum growth rate are concerned. This would also increase the maximum growth 
rate by a factor of two. 

3.4 Elastic-Plastic Analysis 
In the case of the elastic-plastic constitutive equation one cannot solve for s explic- 

itly as in the previous section. However, in order to derive an equation for s, we can 
still proceed with the basic Galerkin approach by multiplying Equation 10 by M1 and 
integrating over the volume, V: to obtain 

The second integral on the left hand side need not be taken over the full volume, but 
only over those regions in which ,O is non-zero. Due to the simple form of our basis 
function we must change the Prandtl-Reuss law to read 

provided J2 _> 2s: and W > 0 
GW p = -  
4 

= 0 provided J2 < 2s; or ~ < 0 (33) 

Therefore the region of integration in the second integral is bounded by the solution to 
the equation 

52 = s2Mq = 2s; 

That is, if c(z) is the solution to 
(34) 

(35) 
( s l / s ) 2  = (1 + a) 2 e -2ky  + a2e2kg + 2(1+  a)acos2kx 

and as before we neglect quadratic terms in the amplitude, then we must integrate over 
the region 0 5 y 5 min(max(0, e), h) = 9. The equation for the evolution of s is thus 

where H is the Heaviside function. It should be recognized that the second term in 
Equation 36 is formally O(qs2). However, since ss appears in the denominator as 
well and we consider motions for which s/sl is bounded, we may include this term 
without loss of consistency. (We shall see that when x = 0, s/s1 - 1.55 for initial 
conditions of interest). This second term represents the only nonlinear aspect of the 
analysis and leads to the amplitude effects to be discussed in Section 3.5. In order 

< 
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to obtain a simpler formulation of Equation 36 we make the further assumption that 
E = p2/(2p1 sinhkh) << 1 and derive the explicit formula 

1 
2k l + L Y  

fj = -- log (o)2 + O(C) COS 2 k ~  + O(c2) (37) 

= 5 + O(C) COS Zka: + 0 ( c 2 )  (38) 

Neglecting terms of order c2 (but not O(Eq)) in Equations 23 and 36 yields the coupled 
set of equations 

-2sk 
(1 - ALY) 2Wl 

P1 + P 2 l q  = P 1 +  P2 
- gkA(1- (39) 

where A = (p1 - p2)/(p1 + p 2 )  is the Atwood number. One might expect more O(E) 
terms to appear in Equation 40. However, it turns out that the O(E) terms in M: 
and Mi have a cos(2kz) dependence and thus integrate to zero. If we ignore a precise 
application of the min-max function when 6 is close to zero, the O(E) term arising 
from Equation 38 also integrates out since the zeroeth order terms in the integrand 
are independent of z. This approximation leads to a consistency error in Equation '40 
only during a small time interval as 5 passes from zero to a finite value. If p2 = 0 ( 
E = 0 ) the formula for 6 is fully consistent. In any case one expects the overall errors 
of the approximate modal technique to dominant any error introduced by this slight 
derivational inconsistency. The (1 + a)2 term is left in unreduced form in order to 
simplify the solution of the limit stress as explained below. 

It is clear that B will equal zero when the second term on the left hand side and 
the term on the right hand side of Equation 40 balance. The value of s at which this 
balance is achieved will be termed the limit stress, s*, and can be computed by solving 

for s. One obtains 

s* (7 + 
(1 + a)2 = 

where 7 = 1 - e-2kh. Another computation shows that the corresponding &* is less than 
h. Thus the variable 5 will approach 5' as s approaches s*. 

We may now look at various limits of the above equations in the case p2 = 0 in 
order to compare with the equations derived by Miles. Equations 39 and 40 may be 
written in matrix form as 
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d 
dt 
- 

(43) 

where the function f(s/sl ,y,sq) = 1 for I s 15 s1 or sq < 0 and f(s/sl,7) = 1 - 
( ( S / S ~ ) ~  - ( s / ~ 1 ) - ~ ) / 2 7  for s1 51 s 15 s* = s 1 d F m  with sq > 0. For Is1 < s1 
the nonlinear term in the stress rate equation is absent (f = 1) and we obtain a coupled 
set of linear equations which can be solved explicitly for any set of initial conditions. 
The general solution of Equations 43 for f = 1 and g constant is 

9 

9 i S 

= c1 

where n = dgk - 4Gk2/pl and the ci are constants. For initial conditions, q(0) = 0, 
s(0) = 0, the solution is 

gk cosh(nt) - 4Gk2/p [ J = 9 [ gknsinh(nt) 

2Ggk2(cosh(nt) - 1) 

It is clear that the dominant exponentially growing mode satisfies the equation 

4Gk2 
P1 

4 - (gk - -)g = 0 

(45) 

which is exactly Equation 1 derived by Miles except for the coefficient 4 in the place of 
13/4. For s = s*, we have f = B = 0 and we obtain 

which may be compared with Equation 3 derived by Miles. The values of s* /q  for 
Miles' solution and for the current analysis are shown in Figure 23. Respectively, 
the asymptotic limits as kh + 00 are 2 and d r f i  N 1.55. The model equations 
derived in this section clearly retain essential characteristics of the response predicted 
by both of the analyses given by Miles and have thus achieved, at least partially, the 
desired goals set forth in the introduction to Section 3. The following section delineates 
various characteristics of the solutions of the model equations obtained by numerical 
integration. 
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3.5 Solutions to the Elastic-Plastic Model Equations 

Equations 43 derived in the previous section may be solved by numerical integration 
for a given set of initial conditions. The results presented in the following sections will 
be restricted to the particular initial conditions in which q(0) is given, g(0) = 0 and 
s(0) = 0. We shall describe solutions which correspond roughly to some of the results 
discussed in Section 2. 

The parameters entering into the analysis were chosen as follows: p1 = 19.2 gm/cc, 
G = 77.5 GPa (approximately 1/2 the nominal value), h = 0.2 cm and Y = 10 GPa. 
The initial amplitude, wavelength and yield strength of the perturbation were varied 
as described below. The imposed pressure profile in all cases is a 2.5 ps linear ramp 
to a maximum pressure, pm. Figure 24 shows, for an 800 GPa maximum pressure, the 
numerically computed solution for the amplitude, q, velocity, q and stress variable, s 
for a calculation sequence with a varying set of initial amplitudes for a perturbation 
wavelength of X/h = 2.0. One notes that for the largest amplitudes the perturbation 
grows in an unbounded way indicating strongly unstable behavior. For smaller ampli- 
tudes the perturbation grows slowly during the initial increasing phase of the pressure, 
but when the pressure stops increasing the perturbation amplitude oscillates. It is 
interesting to note that as long as s stays somewhat below the limit value s*, shown 
by the horizontal dotted line, the perturbation growth is inhibited. However once this 
saturation value of s is obtained, exponential growth appears to quickly dominate. The 
dotted curves represent negative values of q. Figure 25 shows for an initial amplitude 
of 1 pm the results when the wavelength is varied from 0.5h to  3h in steps of 0.5h. 
The smaller wavelengths appear to be more stable. We see that for the oscillatory 
configurations the amplitude oscillates with a larger amplitude and longer period as 
the wavelength increases. The numerical simulations also exhibit this property as seen 
in Figure 19. Figure 26 shows the results as the wavelength is increased even further to 
X/h = 3, 6, 12, 24 and 48. The case X/h = 3 is denoted by a square. Decreased growth 
corresponds to increasing X for the remaining curves. There is a slight dependence 
on wavelength of the limit stress at the longer wavelengths. Note, also, the existence 
at a given time of a wavelength of maximum growth. For the exponentially growing 
modes, the shortest wavelength unstable mode has, asymptotically, the largest growth 
rate just as discussed in Section 2. (Compare Figures 9 and 18.) 

Figure 27 shows values of the growth rate, q / q ,  in the amplitude-wavelength plane 
for those modes determined to be unstable at the time of 6 ps or at the integration 
step achieving q / h  > 1, whichever came first. Instability or stability was determined 
according to  whether the value s = s* was achieved or not, respectively. The four 
figures correspond to maximum pressures of 1200, 800, 500 and 200 GPa. There is 
a striking qualitative similarity between these figures and Figure 14. However, note 
the significant quantitative difference in the minimum amplitude curves at the higher 
pressures and smaller wavelengths. 

Figures 28 shows for the same configurations and times the plate velocity, w ,  ob- 
tained as the integral of the acceleration, g.  Figure 29 shows a measure of the relative 
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axial velocity spread in the plate, 6 v / v ,  assumed to be equal to 2q /v .  For plates which 
are unstable it seems clear that very large axial velocity spreads in the plate fragments 
are possible. 

3.6 Rigid-Plastic Model with Linear Pressure Hardening 
As an extended case of the rigid-plastic model equations represented by Equation 2, 

it is instructive to determine the modal stability equation for the case of a yield strength 
which depends upon pressure. We assume that the yield strength Y varies linearly 
across the plate with the pressure. Thus for constant d Y / d p  we obtain 

where Y h  is the nominal yield strength of the unloaded material on the back surface 
of the plate. The analysis follows in a straightforward way from Equations 9 and 13 
using the same approximations as in Section 3.2. The important detail is that s is now 
dependent upon y and the corresponding integration over the product of the stress 
term and the test function must take this into account. One obtains 

This is exactly Equation 2 except for an additional dependence of the right hand side 
on kh. It is easy to show that the following inequalities hold for all (dY/dp)po 2 0 and 
k h  2 0: 

The term in braces takes on a value of .5 at kh = 0 and approaches 1.0 monotonically 
as kh increases. Thus one finds, as expected, that the stabilizing effect of the linearly 
varying yield strength is bounded by that seen if the whole plate were composed of 
a material characterized by the least and the maximum yield strength of the linearly 
varying plate. This is consistent with the numerical calculations as discussed in Section 
2. (See Figure 7). 
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4. Summary 

The numerical experiments and the analytical approximation discussed in Section 
2 and 3 above are in substantial qualitative agreement. The basic point of agreement 
is that both elasticity and plasticity may play an important role in determining the 
location of the stability-instability boundary in an initial amplitude-wavelength stabil- 
ity diagram. The major discrepancy is that the approximate modal technique tends 
to greatly overestimate the critical amplitude relative to the numerical simulation. We 
suspect that this significant quantitative error is due to the assumption of an isotropic 
state of stress as a base state in the model equations and the greatly oversimplified 
constitutive equation for elastic-plastic flow as given by Equation 32. One way to 
empirically correct for this discrepancy in the simple modeling may be to choose an 
initial condition s(0) = 6s* with 0 < 6 < 1. However, this possibility has yet to be 
investigated. 

In many practical cases G/po is a large number and thus imposed perturbations 
which have a length scale on the order of the plate thickness will not grow unless 
a certain amplitude criterion is satisfied. Thus in this case an initial perturbation 
amplitude stability criterion can be a useful indicator of stability. However, if the 
pressure is large enough, the stabilizing influence of the elastic shear strength will be 
lost for wavelengths on the order of the plate thickness. The only effect of the yield 
strength will then be to  retard the growth of perturbations, and thus in this sense, one 
would not expect to be able to drive a coherent plateno matter how small the initial 
perturbation. 
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Figure 1: Notation used in modal analysis of Rayleigh-Taylor stability of solid plates. 
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Figure 2: Phase plane diagram for rigid-plastic stability equations. Contour lines are 
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Figure 3: Notation and parameter space used in wavecode analysis. 
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Figure 4: Sample wavecode output for an initial perturbation amplitude of 10 pm. 
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Figure 5: Effect of varying the yield strength. 
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T = 4.33 psec 

Figure 6: Instability mode for an elastic plate. 
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Figure 7: The effect of a pressure-dependent yield stress. 
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Figure 10: Amplitudewavelength effect on stability. 
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Figure 11: Response curves in unstable regime. 
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Figure 13: Yield strength effect on stability boundary. 
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Figure 14: Driving pressure effect on stability boundary. 
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Figure 16: Amplitude-wavelength effect on stability. 
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