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ABSTRACT

A quasi-steady model has becn developed for predicting the tem-
perature profiles of aqueous foams circulating in geothermal wellbores.
The model assumes steady one-dimensional incompressible flow in the
wellbore; heat transfer by conduction from the geologic formation to
the foam is one-dimensional radially and time-dependent. The vertical
temperature distribution in the undisturbed gcologic formation is
assumed to be composed of two linear segments. For constant values of
the convective heat-transfer coefficient, a closed-form analytical
solution is obtained. It is dcmonstrated that the Prandtl number of
aqueous foams is large (1000 to 5000); hence, a fully developed tem-.
perature profile may not exist for representative drilling applications.
Existing convective heat-transfer-cocfficient solutions are adapted to
aqueous foams. The simplificd quasi-stcady model is successfully
compared with a more-sophisticated finite-difference computer code.
Sample temperature-profile calculations are presented for representa-
tive values of the primary parameters. For a 5000-ft wellbore with
a bottom hole temgerature of 375°F, the maximum foam temperature .can
be as high as 300°F. -
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Nomenclature

heat-transfer area, Ai = ﬂdiL -
constants in solution of energy equation, Eq.
(A-13)

Biot number for formation; see Eq. (B-4)

specific heat at constant pressure of foam

specific heat at constant pressure of gas and
liquid components of foam

pipe diameter; see Figure 1 for specific definition
of dy, i=1,2,---,5

integral heat loss function tabulated by Willhite
[23]; see discussion of Eq. (B-7).

Fourier number for formation; see Eq. (B-4)
acceleration of gravity, 32.174 ft/sz=980 7 cm/s
Newton constdnt, 32.174 rft-1bm/(1bf-s ) 1 m-kg/
(N-s?) '
dimensionless hecat loss function, see Eq. (B-6)
convective hcat-transfer cocfficient

2

'i=1,2,3 convective heat transfer coefficient for

surface i

i=1,2,3 convective heat-transfer coefficient
averaged over length Le-

constant defined by Eq. (A-14)

enthalpy of foam

integral heat loss function tabulated by Jessop
[28]; see discussion of Eq. (B-8),

mechanical equivalent of heat 777.66 ft-1bf/Btu = 1
N-m/J ,

thermal conductivity of foam, gas and liquid.
components of foam, respectively




wellbore length

length over which the convective heat-transfer
coefficient is averaged

depth at which the bilinear geothermal temperature

. profiles are joined; see Figure A-1

mass flow rate of foam
Nusselt number for various wellbore geometries, Nu
= hd/k or hé/k

number of transfer units, N

tuj = UiAi/(mcp)

-perimeter, P, = ndi; also, constant in Eq.

(A-14) |

Peclet number of foam, Pe = Vd/a

Prandtl number of foam, Pr = Cpu/k

heat flow per unit area AI’AS

Reynolds number of foam, Re = pdV/u

time '

temperature -
temperature of “cold" and "hot'" fluids, respectively
inlet temperature of foam at surface

formation temperatures, sce Figure A-1l

undisturbed geothermal temperature as a function of
depth

overall heat-transfer coefficient based on area

Ay or AS; see Eqs. (B-1) an@ (B-3)

value of U; at time zero, see Eq. (B-2) .
foam velocity, averaged over pipe cross section
mass fraction of liquid component in foam

dummy integration variable

depth below surface
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Apsh,

D.Pkap

thermal diffusivity of earth

gravitational parameter, B=gL/(gcJCpAT)

geothermal gradient of linear profile

i=1,2 geothermal gradient over Regions 1 or 2 of
bilinear profile

annulus gap spacing; see Eq. (16) ,
formation temperature difference between bottom of
hole and surface; see Eq. (A-7) and Figure A-1l

dimensionless depth, ¢ = z/L '
= L*/L

dimensionless temperature, 0 = (T-TC_)/AT

= [1,(2)-1, J/AT i

eigenvalues; see Lq. (5)

viscosity

density ol foam and liquid and gas components of
foam, respectively

dummy integration variable

foam liquid volume fraction
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A QUASI-STEADY MODEL FOR PREDICTING TEMPERATURE
OF AQUEOUS FOAMS CIRCULATING IN GEOTHERMAL WELLBORES

Introduction

| “Aqueous foams have many applications ranging from fire fighting
to petroléum drilling. References 1-13 discuss the hydrodynamic
characteriétics of thesc foams, primarily from the stdndpoint of use
as drilling fluids. Some of the reported adfantages of foams as
drilling fluids are: '

o Their low density means low pressures at the bottom of a hole.
° Sand and cuttings fall back very little when circulation stops.
° There is low loss of circulation. ‘

These reported advantages of foams for drilling in petroleum
formations are also advantages for drilling in geothermal applications.
However, it is not known if drilling foams can function in geothermal
environments with temperatures approaching 250°C (482°F). To investi-
gate the stability of aqueous foams at elevated temperatures, an
estimate of the maximum temperature the foam reaches in a given well-
bore configuration is important. In response to this need, we
developed a simple analytical model for estimating temperature of
aqueous foams circulating in a geothermal wellbore. This paper
describes our quasi-steady hecat-transfer model for drilling foams
and présents some results from parameter studies. Dectailed develop-
ment of the mathematical model is presentcd in Appendices A and B.
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Description of Quasi-Steady Temperature Model

Figure 1 is a schematic of a simplified wellbore., Drilling foam
generated at the surface is injected into the drill pipe; the foam
then flows down the drill pipe and back up the annulus. Heat is
transferréd from the hot formation to the annulus fluid, which in
turn loses some of its heat to the fluid flowing down the drill
pipe. All heat-transfer rates are assumed proportional to a
temperature-difference driving potential, with the proportionality
constant béing the overall hcat-transfer coefficient U. The

fluid flowing down the drill pipe is called the '"cold" fluid;

that in the annulus is called the "hot'" fluid. If steady one-
dimensional flow of an incompressible fluid is assumed, the energy

equation for the "cold" and "hot" fluids can be written as

VZ
d .. < S
gzl * g E- 9 - uppy-T) =0 (1)
P TP S ‘ :
dzlh v zgc gc 3‘) 1( h'lc) - USPSI'IOO(Z)’Th] = (2)

where P‘is'thc perimeter of the appropriatc pipe section through
which heat is being transferred and T_(z) is the temperature of the
undisturbed geoiogié formation at a radial distance far removed from
the wellbore. We will assume that kinetic energy is small in compari-
son to potential energy and enthalpy.

Contrary to the assumption stated above, drilling foam is
compressible; howcver, compressibility cffects will have a
relatively minor impact on the predicted temperature profile. In
the energy equations given above, compressibility influences the terms
of kinetic energy per unit mass (VZ/Z) and the detcrmination of the
overall heat-transfer coefficients (U;, U, ). It can be
demonstrated that terms for internal and potent1a1 energy are
somewhat larger than terms for kinetic energy; hence,
compressibility has little impact on the energy content of the
foam. As shown later, the overall heat-transfer coefficients U;




and U3 depend on‘individual convective heat-transfer coefficients
that in turn depend on p and V. Fortunately, the convective
heat-transfer coefficients generally depend on the "mass-velocity"
pV, which remains constant under steady flow conditions with
constant flow area. Since the assumption will be made that U, and

U; are independent of wellbore position, and that pV(=m/A) is also

independent of position by means of the continuity equation,
incompressible flow does not seem unreasonable. One of the primary
motivating factors for assuming U1 and 03 are independent of
position is that this assumption allows us to obtain closed-form

o analytical solutions, which in turn gives some insight into the

parameters governing the temperature'profile. 1f predicting

pressure variation along with temperature variation in the wellbore

is of interest, then comprecssibility effects become more significant.
For the case of a lincar vertical gecothermal profile and enthalpy

replaced by heat capacity times temperature, the solution to Egs.

(1) and (2) can be written as

Tete, orTe, AE At
Py iy S o e S b (3)
u
1
Th-Tci To-Tci | Ay | Y- Ay A,t
eh = ———A-—T—-—— = ——-—E-r——— + + (]_+ Ntu )Dle + (1+ -N—t—l-;—)ﬁle (4)
1 1 N
UA).
where gl ( 1
= : AT = yL = z/L, N = e
. EJC,AT YL, &= 2/L, tu; © WC)
Ntu3 : Ntul
' )\1 = =5 (1 +Y1+4 N ) X
tuS ‘ ‘ .
12"‘——2—-— (1 - §1+4 N ) , ‘ ) (5)
tus
A T -T :
1l © ©i 1 |
Ale AT + N (B'l) +B"l
tul
E =
1 x5 X
Aze - Ale




D, = -(E Pt 6-1)]
2 - + + -
! 1t T Ny

Additional details on the above solution are furnished in Appendix A

where the solution is developed for a bilinear geothermal profile,
From Eqs. (3)-(5), the dimensionless temperature profile depends on
the following four parameters:

vL, . .
B 2 JC_AT : gravitational

c p
T -T
o ¢,
AT formation to cold-fluid temperature
difference at surface
&
tu mGC
1 p
number of transfer units
U..A3
N = .g
tus 1 p

The specification of these four parameters completely determines
the dimensionless temperature profile. Typical results are shown in
Figure 2 for several values of (Ntu ’ NtU3) along with representa-
tive values for (To-Tci) and B. Be;ause the temperature is
normalized by the temperature difference between the bottom of the
hole and the surface of the undisturbed gecologic formation, the
maximum value of ¢ is unity. Several general conclusions can be
drawn from the results in Figure 2.

(1) The maximum temperature of the fluid always occurs in the
annulus, where both the magnitude of the maximum temperature and
the depth at which it occurs are strong functions of N, ‘and
Ntus - Increasing Ntul and/or Ntu3 increases both the maximum
temperature and its corresponding depth.

(2) The temperature of the "hot'" fluid can be either above or below
that of the local undisturbed geologic formation. It is
physically realistic for the "hot'" fluid temperature to exceed
the undisturbed geothermal temperature because, in the direction
of "hot" fluid flow, the geothermal temperature decreases at a
faster rate than that temperature of the drilling fluid.
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The return temperature of the '"hot'" fluid increases for
decreasing‘values of Ntul(NtU3) while keeping Ntu3(Ntu1)

- constant. The return temperature is not so sensitive to changes
in (Ntul, Ntu3) as was the maximum temperature. Measurement of
the "hot" fluid return temperature will thus yield little
information about the maximum temperature experienced by the
foam,

(4) Changing Ntu3 while keeping Ntul fixed has a greater effect on
the temperature profile of the "hot" fluid than on that of the
"cold" fluid.

(5) In the limit as (Ntul' Ntu3) approach infinity, the temperature
profile of the drilling fluid approaches that of the undisturbed
geothermal profile.

The results of Figure 2 were constructed by using arbitrary
values of (Ntul, Ntu3)' In reality, both Ntul and Ntu3 are
determined by the wellbore and heat-transfer characteristics of the
drilling fluid with N¢, also a function of time. Procedures for
calculating the ovcrall heat-transfcr coctticicnt are discussed in
Appendix B; calculation of the average heat-transfer coefficient for
drilling foams is discussed in the next section.
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Calculation of Average Heat-Transfer Coefficient for

Aqueous Forms

- Techniques for calculating the overall heat-transfer coefficient
for wellbore configurations are discussed in Appendix B. One of the
necessary parameters is the convective heat-transfer coefficient
between the flowing foam and the pipe walls. This section presents
a model for the convective heat-transfer coefficient of aqueous
foams flowing in pipe and annulus geometries,

An understanding of some of the characteristics of the convec-
tive heat-transfer behavior of aqucous forms is needed before this
behavior can be modeled. Aquecous foams are mixtures of a gas and
liquid (surfactant) in which the liquid phaée is the continuous
phase. Bikerman [14] describes foams as agglomerations of gas.
bubbles .separated from each other by thin liquid films, as opposed
to gas emulsions in which the thickness of the interstitial liquid
layers is of the same order as thc diameter of the bubble. The
relative consistency of an aqueous foam may be described by the size
distribution of the bubbles and the liquid volume fraction ¢ of the
foam.

- Liquid Volume
¢ Liquid Volume + Gas Volume

One of the desirable characteristics of aqueous foams is their
high apparent viscosity, which allows cuttings to be removed with
relatively low annulus velocities. It has been shown by Beyer [3]
that for a given velocity, the drag on a 3/16-in-dia sphere with
foam flow is a maximum at a liquid volume fraction of about 0.04,
decreasing to a relative minimum at about 0.3. This coincides
qualitatively with the expected variation of apparent viscosity
with ¢, and as a general rule the foam should be circulated within
these limits for efficient chip removal at nominal flow rates.
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The most comprehensive investigation of foam circulation in
wellbores is probably that of Beyer, Millhone, and Foote [3]. They
assumed ‘that foam could be treated as a Bingham plastic [15]). The
apparent viscosity was obtained from pilot-scale experiments and was
correlated as a function of liquid volume fraction., Although the
viscosity probably depends on liquid volumc fraction (¢) and other
parameters, thc results of [15] represcent the most complete data
available and are used for this study. Their results are as follows.

1
7200¢+267

S
B = 7533¢+733

[1bf-sec/ft%], 0.02 < ¢ < 0.10

=
I

(7)
[1bf-sec/ft?], 0.1 < ¢ < 0.25

Because all of their experiments were at room temperaturé, no
information is known about the depéndence of u on temperature,
Using ‘the empirical viscosity corrclation given by Eq. (7) and the
momentum eqdation, Beyer, Millhone, and Foote [3] compared pressure
predictions with field test data in two 3000-ft(1000-m) wells.

It is well established that the Prandtl number (Pr=uCp/k)
influences convective heat-transfer rates. Hence, let us calculate
Pr for aqueous foams. Eq. (7) is used for the viscosity u. If the
mass fraction (y) of the liquid and gas components is known, then
the heat capacity is a simple function of the component heat
capacities.

¢ = ygup

" (L-y)C, | (8)

2 8

Experiments by Drotning, Ortega and llavey [16] indicate that the
conductivity of the foam can be approximately related to the
component conductivities by the so-called "parallel ordered" model

k =¢k, + (1-¢)kg (9)

Using Eqs. (7)-(9), we estimated that the foam Prandtl number lay in
the range 1000<Pr<5000. From a heat-transfer point of view, a large
value of Pr indicates that the velocity profile in pipe flow




'dévelopé much faster than the tempcrature profile. For a laminar
Newtonian fluid, Kays and Crawford [17] indicate that the local
friction factor is within 2% of its fully developed value when

z | Re

< 20 or, % > (velocity profile ,(10)
z/d T d =20 development).

The calculations of Millhone, Haskin, and Beyer [4] for a petroleum-
drilling foam application were used to calculate a representative
Reynolds Number ; Re. secems to be less than about 1000 (based on
drill pipe ID). This implies that a laminar Newtonian fluid becomes
fully developed in about 50 tube diameters. Although aqueous foams
have been reported to have a definite yield strength, the laminar
Newtonian model should bc an approximate indicator of the distance
required for full development of the foam flow.

A similar analysis for thec distance required to approach a fully
developed temperature profile for a laminar Newtonian fluid is
available in Kays and Crawford [17]:

> Pe _ RelPr

0 = 39 (temperature profile (11)

development)

where Pe is the Pcclet number (Vd/a). For a Re of 1000 and Pr of
1000, about 50,000 tube diameters are needed to achieve a fully
developed temperature profile. 1If d1=2.5 in.(6.35 cm), the
development length would be 4167 £t(1283 m). This length indicates
that foam applications may exist in which the temperature profile
never becomes fully developed. Because of their low thermal diffu-
sivity (high Pr), aqueous foams should be classified as relatively
poor heat-transfer mediums.

Problems of thermal entry length for large Pr (or Pe) fluids are
often analyzed by assuming that the velocity profile is fully -
developed while the temperature profile is developing. This assump-
tion allows much simplification in the analysis. For example, Bird,
Armstrong, and Hassager [18] present results for the thermally
developing Nussult number of an incompressible laminar Newtonian
fluid with large Pe and a constant wall-temperature boundary
condition.
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Some investigators have reported slip at the wall plus a definite
yield strength for foams, calling into question the validity of
using Eq. (12) for foams. The extreme case of slip would be a
velocity profile that is uniform and equal to the slip velocity, a
condition known as plug flow. The plug-flow solution for the case
corresponding to Eq. (12) is also given in Bird, Armstrong, and
Hassager [18].
Nu = L ok
= v
Results of the parabolic and plug flow velocity profile heat
transfer are compared in Figure 3. Plug-flow results are always
greater than those of laminar Newtonian flow; they represent a
reasonable upper limit for the behavior of the heat-transfer coeffi-
cient. Similar equations are also presentcd in Bird, Armstrong, and
Hassager [18] for constant heat-flux boundary conditions; only the
numerical constant changes for the two different boundary condi-
tions. A model for how the heat-transfer coefficient varies with °’
the flow parameters allows calculation of both the temperature
gradient (dTw/dz) of the pipe wall and the heat flux gradient
(dq/dz). Estimates indicate that the gradient of the wall
temperature is generally smaller than that of the heat flux. Hence,
constant wall temperature seems the more appropriate choice over
constant heat-flux boundary conditions for geothermal wellbores.
» In the solution of the energy equation given by Eqs. (1)-(2), we
assumed that all convective heat-transfer coefficients are indepen-
dent of position. However, because of the large value of Pe, the
- convective heat-transfer cocfficient certainly is a function of
. depth. Therefore, Eqs. (12) and (13) need to be averaged over an
appropriate length before the quasi-steady model can be applied. If

= 1.0768(Pe 9) ' (12)

(Pe 9 = 0.5642(Pe O (13)




the average length is denoted by Le, the average Nusselt No.
relationships become

Nu = E% = 1.1652 (Pe $—)*
c

Nu = E% = 1.1284 (Pe %—)1/2
e

/3

Laminar Newtonian (14)*
Plug Flow (15)*

At first glance, it would appear that the effective length Lg should
be chosen equal to the wellbore depth L. The presence of tool joints
on a nominal spacing of 30 ft suggests consideration of L, = 30

ft. There are many different types of tool joints (internal upset,
external upset, internal-external upset, see Ref [19] for details),
but they all have in common a reduction of flow area. This reduc-
tion gives rise to a favorable pressure gradient (pressure
decreasing in flow direction) and a corresponding flow accelera-
tion. When the flow area is increased back to its original value,
the fluid is subjected to an adversce pressure gradient (pressure
increasing in flow direction) and can lead to flow separation from
the downstream edge of the tool joints. It is well established that
laminaf flows are much more susceptible to separation than are tur-
bulent flows. The moderately low Reynolds number (Re<1000) for
representative foam flows means that separation is very likely to
occur from the downstream edge of the tool joint. This separation
should cause considerable mixing and possible increases in both
‘pressure drop and the local rate of heat transfer. Heat-transfer
rates in developing flows are generally inversely proportional to
the thickness of the thermal boundary layer. 1If a new boundary
layer originates after each tool joint, then the local (and average)
heat-transfer increasecs. Calculations are presented for both Le=30
ft and Le=Lr

%Note that h depends on mass velocity pV (which is constant) instead
of p and V individually.




'The hydrodynamic and heat-transfer behavior in the annulus is
much more complicated than that in the drill pipe because of pipe/
casing eccentricity, the presence of cuttings, drilling in an open
hole, and other factors. For the hecat-transfer problem, boundary
conditions are different for the inner and outer surfaces of the
annulus. Since the hcat transfer problem for the annulus is

not as tractable as that for the pipe, some additional

simplifying assumptions are made. The annulus with diameters d2
and d3 is replaced by a two-dimensional channel of height equal to

1
§ = 7(d3'd2) (16)
Bird, Armstrong, and Hassager [18] present solutions for laminar

Newtonian and plug flow in this geomectry for constant wall-
temperature boundary conditions

h,8 5 1/3 5 V. 5 1/3
Nu2 = 5 - (Z) 173 5 -) Laminar Newtonian (17)
9 rqa/3)
h,6 V.s . 1/2
Nu, = —2 = l~(~§— Q) Plug Flow (18)
2 k Ja @ z

The plug-flow result for the annulus is identical to that for the
pipe if d is replaced by ¢; the laminar Newtonian result for the
annulus picks up an additional factor of (3/4)1/3. Integrating

Eqs. (17) and (18) over an effective length L_, we obtain

h,s V. s 1/3 .
- 2 = a 6 7" Laminar
NEZ k 1.4675( o Le) Newtonian (19)
. HZG Vaa 5 1/2 '
Nu2 = - 1.1284(—;— f—) Plug Flow (20)

(3]




It is also assumed that the average convective heat-transfer

coefficient on the exterior of the annulus (ﬁs),equals that on the
interior of the annulus (EZ).. This assumption should be
re-evaluated when foam flows are better understood.

Although there is room for improvement in the proposed convective
heat transfer coefficient model, we fecl that the plug-flow model
is an upper limit and it is unlikely that the heat-transfer rates
will be much below those of the laminar Newtonian model. Results
from parameter studies comparing plug flow and laminar Newtonian
flow are presented in a subsequent section.




Comparison. of Quasi-Steady Model With
Finite-Difference Model of Wooley [20-22]

Several simplifying assumptions have been made in the
development of the quasi-steady model (see Appendix A for details).
One of the more significant assumptions was the simple way in which
heat is transferred by conduction from the formation to the
wellbore. The quasi-steady model decouples the transfer of heat
from the formation and from the wellbore; the model of Wooley
{20-22] uses a finite-differcnce procedure to simultaneously solve
the energy equations for the formation and wellbore. The Wooley
{20-22] model gains accuracy and generality at the expense of
computational complexity.

To verify the quasi-stcady model, we solved the same problem
with both the quasi-steady model and the GEOTEMP* code of Wooley
[20-22]. As Figure 4 shows, the comparison is quite good.
Circulation time for the comparison is 24 hr. For times earlier
than 24 hr, the agreement is not as good because the GEOTEMP code
uses the initial temperature profile for both the formation and the
wellbore. The quasi-steady model has no way of considering the
initial temperature profile of the wellbore fluid. For times
greater than 24 hr, the agreement improves. For engineering
purposes, the quasi-stcady model is adequate for many problems, but
it should not be used for problems in which the initial temperature
profile of the wellbore is important. ‘

*The incompressible flow version of GEOTEMP was used for all the
calculations reported hercin.
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Sample Calculations for Aqueous Foams

| Calculations have been made for a representative geothermal
wellbore. The fixed parameters'used for the calculations are
presented in Table 1. Figure 5 compares various lengths over which
the heat-transfer coefficient is averaged, all for the plug-flow
heat-transfer model. Curve I is representative of the expected
behavior if the tool joints do not enhance heat transfer; for this
case, maximum temperature is about 168°F. Curve III is
representative of the expected behavior if the tool joints enhance
the heat transfer on the surfaces of the inner pipe as well as both
sides of the annulus; for this case, maximum temperature is about
306°F. Curve II is an intermediate case where heat transfer for
the pipe flow is not enhanced by the tool joints, but thc heat
transfer of the annulus flow is cnhanced. The maximum temperature
of the foam is very sensitive to the length over which the heat-
transfer coefficient is averaged; thc rcturn temperature is much
less sensitive. All calculations shown in Figurc 5 arc for a
circulation time of 24 hr. While Ntu is independent of time, Ntu3
is a maximum at time zero and decreases with increasing time,
Decreasing Ni . while kecping all other parameters fixed reduces the
maximum foam temperature.

“Table }: Parameters for Figs. 5 and 6

Q.
L}

2.441 in., d2 = 2.875 in., d3 = 6.276 in., d4 = 7.000 in.,

d¢ = 9,625 in
k. = 26.0 Btu/hr-ft-°r, k., = 0.51 Btu/hr- ft-°F, k, = 1.4 Btu/hr-£t-°F,
@ = 0.04 f£t?/hr, kg = 0.0206 Btu/hr-ft-°F, k, = 0.395 Btu/hr-ft-°F,

o = 2.537 1bm/ft3, p, = 62.4 1bm/ft>, c, = 0.24 Btu/1bm-°F,

g 2
| g
Cpy = 1.0 Btu/1bm-°F, ¢ = 0.152, y = 0.06 OF/ft, @ = 1.055x10% 1bm/hr,
' = = 5 1 = = O.
Re, = 037.3, Poy = 7.521x10° , Ty = T = 75°F.

Circulation time = 24 hr

IS e ;.ﬁw,m'm«
J 1 At
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_ Figure 6 compares the plug flow and laminar Newtonian flow
models for two different averaging lengths. The plug-flow model
always gives a larger value for the maximum foam temperature than
does the laminar Newtonian flow model because the average heat-
transfer coefficient is greater. Curves A and B are representative
of the expected behavior if the tool joints do not enhance the
heat-transfer coefficient. For large values of averaging length,
both the plug and laminar Newtonian flow heaéﬁtransfer models yield
similar values of average heat-transfer coefficient, as evidenced by
the closeness of Curves A and B in Figure 6. Curves C and D are
representative of the expected behavior if the tool joints
appreciably enhance the local heat-transfer rate; for this
condition, the plug and laminar Newtonian flow models are much
different. We believe that the plug-flow model is reasonably close
to an upper limit on the average heat-transfer coefficient.
Unfortunately, the laminar Newtonian flow model does not necessarily

¢

represent a lower limit on the average heat transfer but the lower
limit will probably not differ greatly from results of the laminar
Newtonian flow.

’




Summary and Conclusions

A quaéi-steady model has been developed for the temperature
profile of aqueous foams circulating in geothermal wellbores. The
foam is assumed to be incompressible allowing an analytical solution
of the energy equation after the energy equation has been decoupled
from the momentum equation. The term '"quasi-steady'" comes from
,assumiﬁg that in the energy equation, flow in the wellbore is
steady, while conduction heat transfer within the formation is time-
dependent, The rate of conduction hecat transfer from the formation
into the wellbore was computed from an analytical solution for the
response of an infinite region bounded internally by a hole and
subjected to a convective boundary condition. This approach has
been used by many other investigators.

Solutions were prescented for linear and bilinear geothermal
temperature profiles. The appropriate dimensionless parameters
governing the solution have been identifiecd. The most important
parameters arc the Number of Transfer Units (Ntui)’a term derived
from the heat exchanger literature. An increasc in either Nt

ui
or N

tu while keeping the other fixed increases the maximum
temperature of the foam. The quasi-steady model was compared to the
more sophisticated finite-diffcrence computer code GEOTEMP, with
good agreement obtained for times longer than 24 hr.

Aqueous foams have a very high Prandtl (Pr) number (1000 to
5000). Large Pr fluids require great distances for full development
of the temperature profile. Entry length heat-transfer solutions
available in the literature were adapted for use with aqueous foams.
Both plug-flow and laminar Newtoniun flow models were considered.
Sample calculations werc performed for both plug and laminar flow
models with various lengths over which the heat-transfer coefficient
was éveraged. It was demonstratcd analytically that tool joints
have the potential for appreciably enhancing the local convective
heat-transfer rate. However, the separating flow from the trailing
edge of the tool joints is complicated enough that experiments
should be run to better quantify the degree of enhancement on the
local rate of heat transfer. These experiments are under way at

Sandia National Laboratories.
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APPENDIX A
Detailed Development of Temperature Profile Model

‘The analysis that follows relies on carlier developments of
Willhite (23], Holmes and Swift [24], Raymond [25], and Cline [26]).
The primary difference between this development and that of Cline
[26]) is the inclusion of gravitational potential energy in the
energy equation. Although some portions of this development can be
found in some of the earlier works cited above, the details are
répeated here for the sake of clarity and completeness.

Figure 1 presents a schematic of a simplified wellbore. Drill
pipe of inside diameter d, is surrounded by casing of inside
diameter d3 and a cement liner of inside diameter d4. This
wellbore is obviously a simplification since it shows all diameters
to be independent of depth. Vlor the purpose of analysis, the fluid
flowing down the drill pipe is designated the "cold" fluid while
that flowing up the annulus is designated the "hot" fluid. The
"cold" and "not" fluids have the samc tempecrature at the bottom of
the wellbore provided one ignores the encrgy input into the drill-.
ing fluid by the drill bit. Heat is transferred from the formation
to the hot fluid according to the following rclation:

a3tz,t) = U ()T, (z)-T (z,¢t)] (A-1)

where T_(z) is the undisturbed formation temperature far removed
from the wellbore and is independent of time. Uz(t) is the
overall heat transfer coefficient between the undisturbed formation
and the hot fluids; the procedures for calculating U;(t) are
discussed in Appendix B.

‘Heat is assumed to be transferred from the '"hot'" fluid to-the
"cold" fluid by the following relationship:

ql(Z)t) = UI[Th(Z)t)'TC(Z)t)] (A-2)

The overall heat transfer coefficient U1 is assumed to be
independent of time and depth.
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An energy balance on the "cold" and "hot" fluids produces a pair
of coupled first order ordinary differential equations:

. d . g z o
in g7 (ic- . F) - UyPy(T-T) = 0 (A-3)
a4 (g, - B2 T Y- ST = .
-h (3, 5 FIHU P (T -T ) -ULPLIT (2)-T,] = 0 - (A-8)

Eqs. (A-3) and (A-4) are valid for steady one-dimensional flow of an
incompressible fluid in which the kinetic energy is small in
comparison to the enthalpy (i) and potential energy (%; %).’ The
term quasi-steady will be wusecd to describe this model because the
steady state form of the wellbore energy equation is used in
conjunction with the transient heat transfer from the formation to
the "hot" fluid. Although drilling foams are certainly
compressible, the incompressible assumption allows the energy
equation to be solved indepcndent of thc momentum equation, and
should be valid for estimating the maximum foam temperature. The
boundary conditions for Eqs (A-3) and (A-4) are

T. = TC. at z=0
T,o= T ' oat z=l (A-5)
h c
Replacing the enthalpy by heat capacity times temperature, the two
energy balance cquations can be combined to yield the following
dimensionless equations:
de_ do_
- + N - + N_ N ©. =N, N © (g) + N B . (A-6)
dcz tu, dg tu; tuzc tu; tug e tug
where , Tc-Tc
= 1 = - = L
O = —ar AT =TT, 8 §;§E;KT
| (A-7)
Too(z)'Tci (UA)i_ .
0,(z) = AT 0 5T 2l Ny = e




7 with boundary conditions of the form

Bc = 0 at =0

e : (A-8)
¢ = =
- d B at ¢=1

Utilizing Laplace transforms, the solution to Eq. (A-6) can be
written as

ALz A,z '
6.(0) 25T e 1 2
2 1 c c 1
8.(2) = 35— (¢ " -c ) + BN [m —— ( - ) + ]
c Al AZ tu, (Al AZ) Al AZ AIAZ
Ntuthu3 ¢ Alr AZT
v vl (N GRS IR GO (A-9)
1 72 0 _ |
where Ntu3 Ntul
A, = » (1 + Y1+4 ),
1 2 N
tu3
(A-10)
Ntu.‘ , Ntul
Ay = =57 (1 - Vivd o)
tu3

~The effects of gravity arc contained in the term multiplied by B.
The physical significance of B can be understood by grouping the
term into two parts. The grouping gL/(gCJ) represents the potential
energy change of a unit mass ot tluid in moving from the top to
bottom of the wellbore; the grouping CpAT represents the enthalpy
increase in changing a unit mass of drilling fluid from T, to T2
(=T°+AT),the undisturbed bottom hole formation temperature.
Gravitational effects will certainly be negligible when B8<<1.

Cline [26] has evaluated a term similar to the integral term in
Eq. (A-9) for a geothe}mal temperature profile composed of two
linear segments (bi-linear). Due to the complexity of the algebra
of the Cline [26] result, an alternate approach was adopted. For
the case of a bi-linear geothermal profile as shown in Figure A-1,
the solution will be divided into two domains; within each domain

‘the goethermal profile is as ftollows:




T (z) = To + Y2,
T,(z) = T, + YqL* +‘Y2(z-L*), L* <z < L

The corresponding dimensionless geothermal profile is

T, (8)-T, lo-Tci Y, L . o .
= i, + g 0 <zc=<e¢

em(C) —T;:T;——— ] AI AT‘ ’ (A-12)
' o Ci (yl'Yz) YZL

Y R ¥ Bl Y LTI S

Eq. (A-6) can be applied over each of the two ranges, with 8_(t)
given by Eq. (A-12). ‘The appropriatc boundary conditions are given
by Eq. (A-8) along with the requirement that 6(z*) and

d8 (z *)/dg are continuous across the interface hctween the two
regions. After some lengthy, but straight forward algebra, the
solution for the temperature profile can be written as

~T o 3 %
Tc lc_ Blc + Ll + Dle T+ L1° , 0 ¢ <¢
] R (A‘IS)
AsC )N 4
e 27, I e 2

Byg + Gy + D,

where the above constants are defined as follows:

T _-T
o C

_ 7L _ i, 1 YL
By =37 C =73 * N, (8- —x)
uy
T -1
Y,L o c;  (vy-vy) | 1 Y,L
By =7+ C2 = 37t —ar L Ney (8- —37) y
| ‘ .
(A-14)
' A ll(C*"l) Az(c*“l) A A
H = (1- _3) e e (A, e 2.2 e 1)
3 TLEED A, A EED e 1
€ e € :
1
A (g*-1) A, (g*-1)
Az(e -e )
P = LEFD X, 5D
e - X— e

1




Lo Aot | - e o MEL
Gie T (A -P)+(B,-B ) (1-Pg*)-P(C,-C )+ (B-B,)e (- 52
= Tl

P A L ST S Y . (B-B,) A;(z*-1)

E;(e & )-Lle -(BZ‘BI)C -(Cz-Cl)- “~TI—— e

E, = WD WY €. N WA W (2.2
2, 22 2 M
e (e - y- e )
1
2
. B-BZ-AZEZe
Dy = ~(Cy*Ey) Dy X
Ale

Once the 'cold"

fluid tempcrature profile is known, the '"hot" fluid

temperature profile can be computed from the "cold'" fluid energy

balance.

1 dec
eh = GC + Nt (JE~ - B) (A-15)
uy «
s A ) W 4 A ) N 4
B (g+ «i)+C,- B +(1+ 2 )D.e a1+ 2 )E.e 4, 0<g<gt
1 N 1 N N 1 N 1 - —
, tu, tug tu, tuy
o _ | (A-16)
h A AT A ) O 4
B,(z+ 1 )+C,- B +(1+ ——l—)n e 2 +(1+ —~a—)E e 2 , t¥*<g<l
2 Nt 2 N N 2 N 2 —
: ul tul tul tul

From the solution presented above, one can identify six
dimensionless parameters that ure necessary to determine the »
dimensionless temperature protile (0 vs g):

L

= .__g___. 3 3
B gcJC AT gravitational
P
To-Tc} formation to cold fluid temperature difference
R ) at surface
AT
* ‘
gk = %— fractional depth at which two linear geothermal
. profiles are joined '
% %
YlL Y48

AT = Y1C*+Y2(1'

~— : fractional formation temperature increase
&*) over first linear segment



Ntul = ﬁﬁ;- : number of transfer units
N = ¢ number of transfer units
tu3 vap

The gravitational parameter B always appears either as (B°Bl) or
(B-BZ). The effects of gravity can be safely ignored when

or,
) g:j%;71?; << 1 (gravity negligible) (A-17)

Note that Eq. (A-17) is independent of thc wellbore depth L; this
condition can be satisfied by drilling fluids with large values of

and/or YI;Z' Eq. (A-17) is conservative because even if it is
violated, gravitational effects are not necessarily significant.

The grouping N, = UA/me is given the name Number of
Transfer Units. This name comes from the heat exchanger literature;
drilling fluid circulating through a wellbore is similar to a
counter flow heat ecxchanger with both fluids being the same.

Physically, N represents the bulk fluid temperature rise normal-

ized by the h;gt transfer driving potential. High drilling fluid

temperatures will result from large vglues of Ntu' Large values

of N, occur when the overall heat transfer rates (Ul and US)

are large, heat tran§fer areas (A1 and»As) are large, and the

capacity rate mC_ is small. - .
Note that the bi-linear solution given above reduces to the

linear case when ¢*=1., For this conditibn, P in Eq. (A-14) becomes

identically zero. Only the constants (Bl’cl’Dl’El) are

necessary for the linear case and the cquations defining them become

simpler than Eq. (A-14). This result was presented in the text as

Eqs. (3"5).

*The notation Y12 means either Yy O Y,- o
9




APPENDIX B
Determination of Overall Heat Transfer Coefficients

Following the procedures outlined in introductory heat transfer
texts (e.g. Kreith and Black [27]) or the more specific results of
Willhite [23] for wellbores, one can write the overall heat transfer
coefficient U; as

ndlL
UAy = A / A— (B-1)
s In(d,/d;)+ = —
R, 7k 291" 4, R,

where Ei and Eé are the average convective heat transfer
coefficients on the inside and outside surfaces of the drill pipe
respectively and kp is the thermal conductivity of the pipe. The
wellbore geometry is defined in Figure 1. For many applications, .
the thermal resistance of the pipe wall can be ignored; it is
included here for the sake ol completeness.

The transient heat transfer by conduction within the formation
is assumed to be one dimensional radial heat transfer in an infinite
medium. Following procedures similar to those of Jessop [28] and
Willhite [23], the overall heat transfer coefficient Usg for heat
transfer from the formation to the hot fluid can be written as

UsAy = U3A.G(Fo,Bi) (B-2)
where Ug is the value of U, at time zero when Ty = T (z); Ug
can be calculutced trom
nd L :
0, _ 5 )
Ushs = o, T (B-3)
r: e = 1n(d4/d3)+ T 1n(d5/d4)
3 hs p - c

with kc being the thermal conductivity of the cement. The Fourier
‘and Biot modulii for the wellbore are given by




4aet U
5 ¢

with e, and k being the thermal diffusivity ‘and thermal con-
Aduct1v1ty of the formation (earth) respectively. The function
- G(Fo,Bi) can be computed from an anlytical solution in Carslaw and
Jaeger [29] for the response of an infinite rcgion bounded intern-
| ally by a hole of radius reg = dS/Z and subjected to a convective
boundary condition of the form

aT I P
Jr=rg
The result for G(Bi,Fo) is
. 1.2 2 d B exp(-Foxz) dx
G(FO,Bl) = ﬁ?\.‘('_n'—) 2 ——x-' (B‘6)

)
0 [B] J (x)*’n(x)] [Bl Y, (x)+Y, (x)]

where Jo » Jl’ YO and Yl'arc Bessel functions of the 1lst and

2nd kind respectively of order 0 and 1. The gencral computer
routine developed by Amos [30] for evaluating Eq. (B-6) was used for
all of the numerical results of this study. Table B-1 presents a
summary of some of the results from Eq. (B-6). Note that G(0,Bi) is
unity for all values of Bi, and for a given value of Bi, G(Bi,Fo) is
a monatonically decreasing function of Fo. Additional values of
integrals related to G(Fo,Bi) are tabulated in Willhite [23] and
Jessop [28]. For example, the function f given by Willhite [23] is
related to G(Bi,Fo) by

G = 1778y / - (B-7)

G = (%) 1 (B-8)




The definition of G(Bi, Fo) used in this study was chosen primarily
because it is bounded by the range 0 < G < 1.

- The above approach to calculating the heat loss from the
formation assumes that heat transfer through the cement and casing
is steady state while that in the formation is transient

Table B-1: Tabulation of the function G(Bi,Fo) using
the method of Amos [30]

G(Bi,Fo)

Fo\Bi 0.01 0.1 1.0 10.0 100.0

0.0 1.0 1.0 1.0 1.0 1.0
0.1 0.99687 0.96936 0.75132 0.20098 0.02230
1.0 0.99203  0.92496 0.53429 0.09226 0.00978
10.0 0.98374 0.85662 0.36055 0.05109 0.00532
100.0 0.97346 0.78411 0.26032 0.03348 0.00344
1000.0 0.96279 0.71988  0.20177 0.02450 0.00250
10000.0 0.95225 0.66495 0.16430 0.01922 0.00196
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