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ABSTRACT 
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Mathematical equations describing ground-water flow are used 

in a computer J;llOdel being developed to predict the space-time dis.,.. 

tribution of hydraulic head beneath a part of the Savannah River 

Plant site. These equations are solved by a three-dimensional 

finite-difference scheme. Preliminary calibration of the 

hydraulic head model has been completed and calculated results 

compare well with water-level changes observed in the field. 

INTRODUCTION 

The Savannah River Plant (Figure 1) is a Department of Energy 

facility operated by E. I. du Pont de Nemours and Co. primarily to 

produce nuclear materials for national defense. High-level radio-

active waste ge·neralt:!d during operation are stored in double-

walled steel tanks in concrete encasements. To assess storage 
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risks, it is desirable to be able to predict quantitatively the 

movement and concentration of potential contaminants in the 

ground. Contaminant transport in the ground is primarily due to 

ground-water flow; therefore, a mathematical model of ground-water 

flow in the waste storage area is being developed to predict the 

rate and direction of contaminant transport in the subsurface 

under the influence of ground-water movement, hydrodynamic 

dispersion, and ion exchange. 

Calculation of contaminant transport due to ground-water flow 

·requires knowledge of the distribution of hydraulic head in time 

and space. Development of a program to calculate the head dis-

tr1bution is briefly described in this paper. Inpqt to this 

hydraulic head model includes:. water levels for the hydrogeologic 

units, obtained from well measurements; values for hydraulic con-

ductivity and specific storage, obtained from pumping tests; and a 

conce~tual geologic framework, based on subsurface coring. 

DESCRIPTION OF STUDY AREA 

The 800-square-km plant site is located on the Coastal Plain 

of South Carolina about 20 miles southeast of the Fall Line. The 

site is bounded on the southwest by the Savannah River. The plant 

i~ underlain by unconsolidated and semiconsolidated Coastal Plain 

deposits -- sands, clays, sandy clays, and clayey sands (Figure 2). 

From the surface, the hydrologic units are (1) the Barnwell Forma-

tion; which consists of clays, sandy clays, and clayey sands, to a 



depth of about 30 meters; (2) a tan clay about 3 me~ers thick; (3) 

the McBean Formation, which consists of an upper layer of clayey 

sand and a lower layer of calcareous clay and clayey sand contain

ing small cavities, to a depth of about 55 meters; (4) a green 

clay about 2 meters thick; (5) the Congaree Formation, which con

sists of layers of sand interbedded with layers of clay, to a 

depth of about 90 meters; (6) th~ Ellenton Formation, which con

sists of lignitic micaceous clay and coarse sand, to a depth of 

about 110 ~eters; and (7) the Tuscaloosa Fotmation, which consists 

of interbedded sand, gravel, and clay down to crystalline rock at 

about 290 meters. · The Tuscaloosa Formation is the major water

supply aquifer for much of the Coastal Plain of South Carolina and 

Georgia. 

The study area is shown in Figure 3. The ground-water system 

of interest is bounded on two sides by Upper Three Runs Creek.and 

Four Mile Creek, on the third side by a piezometric high, on top 

by the water table, and on the bottom by a permeable flow bound

ary. The topography is generally flat to slightly rolling. Upper 

Three Runs Creek has a steep bluff on its southeast side with 

about 35 meters of relief. A few small intermittent streams also 

drain the area. The presence of low-conductivity clay layers 

causes vertical gradients of hydraulic head. Kecharge is distri

buted approximately uniformly uver the area and amounts to about· 

1.2 meters per year. 
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GEOHYDROLOGY 

The water table (Figure 4) conforms to a subdued expression 

of the topography, forming a ground-water ridge that discharges 

laterally toward the two bounding streams. The eastern hydrologic 

boundary for the water-table aquifer is the east-west potentio

metric high south of H Area. In the western part of the study 

area,. the two str.eam.s are close enough so that most ground water 

flows laterally to the streams. The gradient of the water table 

varies from fairly flat along the crest of the ground-water ridge 

to fairly steep as the water table approaches Upper Three Runs 

Creek and parts of Four Mile Creek. 

The clay layers in the subsurface retard the downward move

ment of water, thereby causing a vertical head gradient (Figure 5) 

across these clays. With increasing depth, therefore, the poten

tiometric surfaces tend to stand lower for deeper formations. 

Thus, the potentiometric surface in the upper part of the McBean 

Formation (Figure 6) is lower than the water table. Although the 

potentiometric surface still retains some expression of the topo

graphy and inter-stream drainage, gradients are not as steep. 

The potentiometric surface in the Congaree Formation 

(Figure 7) stands still lower and lacks any significant topo

graphic expression, except where w~ter in the Congaree Formation 

discharges into Upper Three Runs Creek. The water levels in this 

formation are primarily influenced by the elevation of Upper Three 
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Runs Creek and the recharge area off-plant. Water-bearing forma

tions below the Congaree Formation exhibit a reversal in the down

ward head gradient of the shallow formations, and water levels of 

the deeper formations are higher than those of the Congaree. The 

discharge area for the Congaree Formation is Upper Three Runs 

Creek. 

Measured hydraulic conductivities are listed in Table 1. 

COMPUTER SIMULATION OF GROUND-WATER FLOW 

The ground-water flow system will be simulated by a three

dimensional, finite-difference solution of the ground-water flow 

equation. A computer program, developed at the Savannah River 

~aboratory, calculates the distribution of hydraulic head in time 

and space that will be required for this flow simulation. The 

hydraulic head program was verified by calculations for conditions 

for which exact analytic solutions are available, such as drawdow~ 

in an aquifer undergoing constant discharge from a well. Satis

factory simulations were demonstrated for a variety of confined 

and uncortf1ned situations. 

Developing the three-dimensional hydraulic head model in

volved superposing a rectilinear grid over the study area, adding 

the vertical cross-section, and then assigning values for hori

zontal and vertical hydraulic conductivity, specific storage, 

effective porosity, and hydraulic head to each grid block. 

Recharge is specified for blocks -in which the water table oc~urs. 

The model allows boundaries to be either impermeable or open to 

flow. Time increments must be so chosen as to minimize numerical 

errors. 



The hydraulic head model is being calibrated to actual condi

tions by adjusting various input parameters until measured water

level distributions are reproduced. To eliminate the specific 

storage variable from initial consideration, the model is first 

being calibrated to the steady-state head distribution existing in 

the study area by adjusting the hydraulic conductivities of each 

blo~k; despite seasonal fluctuations, the observed head distribu

tion is approximately constant. After the steady-state calibra-

. tion has been completed, the resulting distribution of hydraulic 

conductivities will be considereq as representative of the subsur

face material in the study area. Transient calibration will then 

be accomplished by varying the values of the specific storage of 

each block until the model satisfactorily reproduces the actual 

changes in hydraulic levels measured in wells over a period of 

time. The model will then be considered ready for use. 

STATUS 

Steady-state calibration based on hydraulic conductivities 

from·pumping tests and estimatco of recharge and porosity is still 

in progress. Some deviation persists between the calculated and 

observed steady-state head distribution. Figure 8 shows that the 

absolute weighted mean deviation of the water table is 3.2 meters, 

i.e., the water table over 50% of the area is deviating from the 



initial head distribution by 3.2 meters or more. Since this devi-

ation is unacceptably large, gore calibration calculations will be 

made. Figure 9 shows that the absolute weighted deviation of the 

upper McBean Formation potentiometric surface is 1.3 meters. This 

deviation, which is nearly acceptable, should be maintained or 

reduced by further calibration. Figure 10 shows that the mean 

deviation for the Congaree Formation is 0.076 meter, which is 

quite acceptable. 

FUTURE UTILIZATION 

Ground-water flow velocities anywhere in the study area will 

be calculated from the hydraulic conductivities of th~ model 

blocks, the effective porosities of the blocks, and the hydraulic 

head distribution. predicted by the calibrated model. Another 

computer program will use these ground-water velocities, together 

with information about ion exchange properties of the soil, hydro-

dynamic.dispersion, and radioactive decay of contaminants in the 

soil, to solve contaminant transport equations. 

TABLE 1 

Mean Hydraulic Conductivity of Formations Beneath 
the Separations Area. at the Savannah River Plant 

Formation 

Upper Barnwell sand lens 

Lower Barnwell Formation 

Upper I1cBean Formation 

Lower McBean Formation 

Congaree Formation 

Hydraulic Conductivity 
from Pumping T~sts, 
meters/day 

1.75 

0.49 

o.so 
0.49 

1.33 
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