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ABSTRACT

A comprehensive analysis of the stability properties of the appropriate
kinetically generalized form of MHD ballooning modes together with the usgual
trapped~-particle drift modes is presented. The calculations are fully
electromagnetic and include the complete dynamics associated wit£
compresrional icn acoustic waves, Trapped-particle effects along with all
forms «of <collisionless digsipation are taken into accoun: without
approximations. The influence of collisicns is estimated with a model Krook
operator. Results from the application of this analysis to realistic tokamak
operoting conditions indicate that unstable short-wavelength modes with
significant growth rates can extend from 8 = 0 to values above the upper
ideal-MHD-critical-beta associated with the ~ so-called second stability
regime. Since the strength of the relevant modes appears to vary gradually
with B, these results support a "soft" beta limit picture involving a
continuous (rather than abrupt or "hard") modification of anomalous transport
already present in low-B-tokamaks. fowever, at higher beta the increasing
dominance cof the electromagnetic compenent of the perturbaticns indicated by
thege calculations could also imply significantly different transport scaling

proper ties,
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1. INTRODUC LiL

Estimates of bheta (ratio of plasima %= -« .. . pressure) limics in
toroidal systems have continued to be based in large part on the stability
properties of ideal magnetohydrodynamic (MHD) ballooning modes. It has been
established in previous work that kinetic modifications can be important for
these fine-scale (short-wavelength) instabilities [1-7], In particular, when
finite gyroradius effects associated with ion diamagnetic drifts are taken
into account together with radial modificatiors ("fini.e-n corrections"} to
the leading order local theory, it is found that significantly more cptimistic
critical beta (Bc) values can result for specific tokamak equilibria of
interest [7]. On the other hand, in the long mean-free-path limit,
collisionless dissipation in the form of magnetliec drift resonances can
generate residual shear~Alfv;n microinstabilities [3=5], In general, a
realistic assessment of the importance of this class of instabilities requires
a comprehensive kinetic treatment.

The analysis described in this paper is fully electromagnetic and
inciuvdes the dynamics associated witﬁ tLe compressional ion acoustic waves.,
In the long mean-free-path limit, trapped-particle effects together with all
forms of collisionless dissipation (bounce, transit, and magnetic drift
frequency resonances) are taken into account without approximations. For
shor ter mean-free-path regimes, the influence of collisional dissipation is
estimated by employing a model Xrook operator. A stability code, which
incorporates the numerous effects just described, was previously developed to
study electromagnetic modifications of electrostatic trapped-particle drift
modes [8]. In the present investigation this code is used to analyze the
kinetically generalized form of the MHD ballooning modes (associated with

shear-alfven wavesg) together with the usual trapped-particle modes {associated



with drift waves). By properly determining the relative strength of the
dominant instabilities (as indicated by their growth rates), the significance
of ideal MHD ballooning mode beta limits can be more meaningfully assessed.
The main qualitative features of the analysis are discussed in Sec. 2.
In particular, it is deronstrated that even in the ideal MHD limit, the
compressional coupling to acoustic waves can significantly modify the growth
rates. Results from the application of the comprehensive kinetic stability
code to both model and numerical MHD equilibria for parameters appropriate to
a number of exigting tokamaks are presented in Sec, 3. Also included in this
section are comparisons of these results with those from ideal MAD {wlthout
acoustic effects) and simplified kinetic model calculations. Typical trends
indicated by these studies are brlefly summarized and their implications

discussed in Sec. 4.

2, STARILITY ANALYSIS

Previous kinetic studies have indicated that the presence of short-
wavelength instabilities in tokamaks is very likely to be unavoidable [8].
Viewed in this context, the significance of critical beta wvaluas for
ballooning modes becomes tied to their strength relative to other
instabilities when Bc criteria are vioclated. Hence, instead of considering
threshold conditions, the more relevant problem involves the proper evaluation
of the growth rates for the dominant modes. By making use of the ballooning
repregsentation, the principal linear properties of these large toroidal mode
number (n >> 1) instabilities can be accurately determined with a one-
dimensional (along the magnetic field 1line) calculation which is radially

local on each magnetic flux surface.




2.1 TIdeal MHD With Compressional Acoustic Effects

As shown in Ref. 9, the ideal MHD ballooning mcdes are governed by two

coupled ordinary differential equationa of the fomm

IJEJ.|2 w? 2 $
B - ¥ B o+ [ ¢+ 2k [(VexBek)Es
B v B
A
2 . - =
+ hB(g « VE, - 2¢ ¢)] = 0 (
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= = B w o2 B
A

where A = YP/(BZ + YP), K, = (:; . V;\) x (B E_L/Bz), ;1. = (1/B)B, Y is the
ratio of gpecific heats, vy is the Alfvén speed, k, is the spatially dependent
perpendicular wave vector, ¢ 1s the stream function for the cross-field
displacement, and Ep is the displacement along the field line. In general,
Eqs. {1} and (2) can be combined to give a fourth order differential eigenmode
equation. However, if compressicnal acoustic effects are ignored, then By.
(2) and the last term in Eg. {1) can be dropped, and the familiar second-order
differential equation for ballooning modes is recovered {10,11].

Although it is well kncwn that the compressional acoustic effects do not
modify Bc, it is nevertheless important to take them into account when
calculating ballooning mode grewth rates, This can be 1illustrated by
considering the simple local limit of Egs. (1) and (2). sSpecifically, taking
ki * kj and;a -7+ ikn, Egs. (1) and (2) are easily combined to give an

algebrzic eigenvalue equation of the form
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where @ = wfuy, wy E kyvy, D 3 ﬂ'/LpLickll' B = 2p/B°, 6§ = 4/kL,,

I‘P and L, represent the pressure gradient and magnetic curvature scale lengths

with {¥p/p| + /L, and fr.t * Gky/BY(1/L ). The solution is just
22l -p+Rs [0 -0+ B2 - ara-m]F (a)

with X I Al1 + 6). If acoustic effects are ignored, the usual estimate far

the ballooning mode eigenvalue is simply
1 =1 -0 (5}

with the marginal stability boundary at D = 1 or, eguivalently, at 8 = Bcrit =
Lp/qu for ky = t/qR and L, = R,

As is evident from BEg. (4), the instabillty threshold for ballooning
modes given by By. {5) is unchanged by acoustic modifications. On the other
hand, it is also clear that if the moles become unstable (i,e,, for D > 1),
the magnitude of the resultant growth rates can be significantly decreased by
such effects. For example, Llf D = 1 + 8, then Bg. (5) overestimates the
unstable eigenvalue (-r%) by a factor of (1 + §)1/2 compared to the
appropriate result (including acoustic effects) from Eg. (4).

The trend toward smaller growth rates indicated by the simple lecal
wstimates is confirmed by actual numerical soluticns to both the usuval second
order differential ballooning mode eguation and to the fourth order form which
includes the acoustic effects. These calculations have been applied to

realistic (numerical) MHD ecoullibria with typical results displayed in

and
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Fig. 1, Here the unstable elgenvalue (-92) is plotted as a function of the
radial coordinate (P/Ypmp) with ¢ being the poloidal flux function. Note that
the fourth order equation gives the same regult as the second order eguation
at the marginally stable surface (-92 = 0 at W/ Vpgr = 0.14) but yields

considerably smaller growth rates on the unstable surfaces.

2.2 Kinetic Effects on Ballooning Modes

The basi¢ Egp.ocedure required for a comprehensive analysis of the
influence of kinetic effects on ballooning modes has been presented 1n detail
in Refs. 1 and 8. Using the most general form of the perturbed distribution
function (derived from the gyrokinetic equation) together with the
quasineutrality condition and the parallel and perpendicular components of
Ampere's law leadgs to a complicated set of three coupled integro-differential
equations (8] which must be solved numerically. Complete trapped-particle
dynamics are included in these equations which are valid for arbitrary mode
frequency compared to the particle bounce or transit fraquency and also for
arbitrary perpendicular wavelength compared to the particle gyroradius or
panana width. I;ance, all forms of collisionless dissipation in the form of
bounce, transit, and magnetic drift frequency resonances as well as the
compressional acoustic effects noted in Sec. 2.1 are included here without

approximations.

In the shorter mean-free-path regimes where collisional dissipation is

important, an energy ard pitch-angle-dependent Krook operator 1s used to model

guch effects. When applied to electrostatic instabilities in the banana
regime, this model colligion operator can reproduce the results of a Lorentz
operator in the limits |w| << v ee and |o| >> voge with Vege being the

effective collision frequency and w being the mode frequency {12]1. FHowever,



for the more general electromagnetic cases considered in the present
investigation, the accuracy of the model operator remains to be egtablished,

A detalled degcription of the final system of three coupled linear,
homogeneous, non-Hermitian integro-differential eguations and the numerical
procedure used to solve them are dgiven in Ref. 8. The Ritz method employed
involves expanding the unknown elgenfunctions in terms of an appropriate set
of basis functions, This generates a single large matrix equution which is
solved by standard numerical techniques to give the elgenvalues and
eigenfunctions of the system. The code developed to carry out these
calculations has been interfacad with analytic model MHD equilibria as well as

with general numerical MHD equilibria.

2.3 Partial Kinetic Model Calculations

Before presenting the results from the application of the comprehensive
kinetic analysis to specific tokamak operating conditions, it should be
pointed out that useful information has also been gained from simplified
kinetic mode)l calculations. At the aimplest level, the kinetic eigenmode
equations in the ideal MHD limit just reduce to Egqs. (1) and (2) [1). If
compressional ccupling to the acoustic waves and trapped-particle effects are
ignored, important kinetic modifications associated with finite ion gyroradius
effects and magnetic drift frequency resonances can be studied with a second-
order differential eigenmode egquation [1, 3-5]. Trapped-electron effects,
which introduce an integral equation character to the problem, have been
modelled in this type of calculation by ignoring the orbit-averaged nature of
the trapped-particle response [5]. In general, the reduced kinetic model
approach can provide a much faster means of estimating the importance of

specific physics effects and their associated analytic trends. However,




comparisons with representative results from the comprehensive kinetic code
are of course necessary to determine the wvalidity of the approximations
invoked, To 1llustrate this point, both the full kinetic analyslg and the
reduced kinetic model of Ref. 5 have been applied to a relevant get of tokamak

cases in Sec. 3,

3. RESULTS

In this section the results from the application of the stability
analysis (described in Sec. 2) to operating conditions characteristic of a
number of existing tokamaks are presented. As noted earlier, the dominant
type of short~wavelength instabilities at low B is the trapped-electron drift
mode [8), armd the dominant type at high B is the kinetic=ballooning mode
(agsociated with s‘near-hlfve:n waves) [1-7]. ‘he calculations here deal with
both classes of instabilities and address the important ilssues concerning: {(a)
the relative strength of the dominant modes as a function of beta; (b) *the
accuracy of ideal.MHD and reduced kinetic model estimates of growth rates; (c)
the influence of collisional dissipation; and (a) characteristic
eigenfunctions and typical wave number spectra, ’

Previous studies have demonstrated that the linear properties of short-
wavelength toroidal instabilities are well represented by the leading order
(radialily local) solutions to the ballooning formalism hierarchy of equations
(13]). In the present analysis, the complete kinetic form of the one-
dimensional (along the magnetic field line) eigenmode equatinns are solved on
a representative magnetic gurface (where the much simpler jideal MHD and
reduced kinetf. calculations indicate the relevant mcdes to be the
stron'gest). The fastest growing instabilities tend to be those which are

localized around the magnetic fleld minimum at the outside of the torus and to



be characterized by perturbed potentials with the least number of nodes [8].
For such modes the appropriate choice for the local balleoning parameter eo
[13] is zero. When this parameter is varied, specific calculations of the
eigenvalue (w) confirm that Bo = 0 is an extremum in w for up~-down symmetric
equilibria, That this choice is in fact found to maximize the growth rate is
also an expected result, since the destabilizing effects asgociated with
trapped particles and unfavorable curvature are known to be the strongest at
the outaide of the torus, Addi tional modifications from the influence of
impurities (14l, energetic particles with non-Maxwelllan equilibrium
digtribution functions [i5], an@ equilibrium electric fields [16) will not be
treated here.

With regard to the gpecific tokamak experiments considered, input
parameters in the calculations were chosen to be representative of conditions
in: (a) 1sX-B (Impurity Study Experiment); (b) PDX (Poloidal Divertor
Experiment) during its normal mode of operation ("L-mode”) and during its
improved confinement mode of operation ("H-mode"); and (c) Doublet-III.
although realistic numerical egquilibria from MHD codes [17] can be employed in
this type of analysis (8], it is far more convenient to n3e an analytic model
equilibrium [10,11] when inveatigating general B-dependent trends. This
frequently used equilibrium [2-5] is characterized by circular magnetic
surfaces, large aspect ratio, and the shafranov shift modelled by a term
proportional to the leccal pressure gradient. When dealing with problems where
B remaing fixed, the more realistic equilibria [17] can be readily employed.
This procedure is in fact carried out in Sec, 3.2 where *he relative strength
of the instabilities in the "“L-mode" and "H-mode" of operation in the PDX

experiment are calculated.
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3.1 ISX-B

In congldering the 3ISX-B experiment [1B], input parameters in the
stability studies were chosen to be typical of neutral-heam-heated deuterium
plasmas vhere B, (beta at the magnetic axis) = 10% and <B> (voiume-averaged
beta}) = 3% [19], On a representative magnetic surtace {(r/a = 0,35 with a
being the plasma radius), the specific local parameters are: €5 = ©/Ry = 0410,
Te = 1.26 keV, Ty = 1.16 keV, @ = 1.20, r 4 in g/fdr = 0.862, n, = 6.57 x
1013cm'3, Ng 3 (d &n T/dr}/(d &n ng/dr) = 1.09 = n;, n (toroldal mode number)
= 5 avd corresponding KgP; = 0.15 with Ky = ng/r and p; being the ilon
gyroradius, v; z (veff/ab)e = 0,145 with V e and ab being the effective
collision and average bounce frequencies, (rp/rle = = (d in ne/dr)'1/r = 0.95,
and B = 3,.9%. Using a model equilibrium [10,11] wivh these values, the
calculations yield the results plotted on Figs, 2-8. All frequenciles are
normalized to the local electron diamagnetic drift frequency Ua gy in Flgs. 2-58,

Growth rates (Y) as a function of B are given on Fig, 2 and the
corresponding real frequencies (w. ) are digplayed on Fig. 3. For fixed
density and temperatura, the variation in B here simply corresponds to
different input values for the toroidal magnetic field, To 1illustrate their
relative magnitude, the value of the ave.rage lon transit freguency (Elti) along
with 'T’bi and v:ff are also indicated on Fig, 2. Curve {a) on this figure
representg the ideal MHD estimate of the elgenvalues obtained from the
familiar second order differential ballooning mode equation ignoring
compressional acoustic effects. The real frequency in this limit is just w =
0. The curve here displays the usual trend indicating stability below an
initial eritica2l beta value (Boy ® 1.1%) and also above an upper critical beta
(Boy = 6.3%) with iastability in the range B_; < B < 3,5 [20,11]. As shown on

curve (b) the introduction of both stabilizing and destabilizing kinetic
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effects in the partial kinetic analysis (described in sec, 2,3) leads to a
noderate reduction of ¥ and no appreciable shift in thn eritical beta values
[sl. However, as demonstrated in Sec, 2.1, the compregsional acoustic
dynamics ignored here can significantly further reduce the growth rates even
in the ideal MHD limit. These effects together wich the proper integral
equation nature of the basic prcblem are taken into account in the full
kinetie treatment described in Sec, 2.2. Results from these caleculations in
the collisionless limit are displayed asg curve (c) repregenting the kinetic
ballocning modes assoclated with shear Alfv:en waves and curve {d) representing
the trapped-electron modes associated with drift waves., Curxve (c) indicates
that the additional physical effects just discussed can indeed lead to a
substantial reduction in the strength of the ballooning modes and to a
moderate shift in the critical lbet-.a values. as -shown on curve (d}, the
trapped-electron modes are unstable in the electrostatic limit (B = 0) and
eventually become stabilized by electromagnetic modifications [21] at
sufficiently high values of beta {(e.g., a'; 8 = 2% for this case).

The basic trend indicated by curves (¢) ac (d) of Fig. 2 is that short
wavelength torcidal instabilicies are likely to be present over a wide range
in 8 with the drift branch dominant at low 8 and the Alfv;n branch dominant at
high B {i.e., for B > Bc'l)' However, at moderate values of 8, both classes of
ingtabiiities can be significant. For example, at B = 1.3%, Filg. 2 indicates
that the trapped-electron mode and the ballooning mode can be simul tanecusly
pregent with comparable growth rates., Note that curves (¢} and (d)} of Fig. 3
verify that tie corregponding real frequencies are, as expected, distinctively
different, Also shown on this figure as curve (b) are the values of u,
obtained from +he partial kinetic code. Here w, *~ "’*pi/z in the unstable

range of B with Bari 2 0u;(1 + M3}, Although this is in reasonable agreement
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with rough analytic estimatea of the real frequency for unstable kinetic
ballocning modes [1-4], the additignal effects, which are included in the £ull
kinetic analysis generating curve (c), tend to decrease substantially |mr|
below |wyyi/2].

As discussed in Sec. 2.2, a model Krook operator is used to introduce
collisional dissipation into the comprehenaive calculations which produced
curves {¢) and (d). fThe resultant elgenvalues arve displayed as curve {e) on
Figs, 2 and 3, Here a single curve is used to represent the combined
collisionally meodified contributions from the two dJdistinct types of moedes
repregsented by curves (c) and (d). This is done because colliaions are found
to damp out quickly the subdominant class of instabilities, thereby leaving
only one significant branch for a given value of beta. To illustrate this
trend, growth rates were calculated as a function of the collisionaliiy
parameter v; for the case with B = 1,3%, As shown o2 Fig. 4, the results
indicate that deapite the fact that the growth rates are roughly of comparable
magnitude in the collisionless limit, the ballooning branch is very rapidly
damped by ccllisicns while the drift branch remains unstable. At higher
values of beta, the ballooning modes become dominant while the drift branch
bevomes damped. For the case displayed in Fig., 5 with B = 3.9% even the
collisionless theory indicates only the ballooning branch to be relevant.
Although the instabilities in this instance are too strong to be damped by
collisions, their growth rates can nevertheless be significantly reduced. For
example, at v: = 0,145 (the collisionality noted earlier as being
representative of ISX-B conditions of interest) both Fig. 5 and Fig. 2 {curves
{c) and (e)) show the collisionally modified estimate to be roughly a factor
of 3 below the collisionless growth rate. In general, this trend appears to

he particularly pronounced in the ballooning-mode~dominated regimes and leads



13

to the qualitative plecture {illustrated by curve (e} of Fig, 2] where the
growth rate of the relevant instability changes in a continuous and quite
gradual manner as a function of beta.

Comparison of the “hybrid" drift-ballooning curve (e) with the
collisionless growth rates in Fig, 2 indicates that collisions tend to reduce
uniformly the strength of the dominant modes over the usual accessible range
of beta (0 ¢ B <B_,). However, at the high value; of beta agssociated with the
"gecond stability" regime (8 2 8 ;), residual dissipative instabilities
appear to persist up to Jlarger beta values. With regard to the real
frequency, Figs. 4 and 5 demonstrate that the collisional effects produce a
shift of . toward the electron diamagnaetic direction. Recordingly, the
colligsional modifications of curves (c) a.nd (d} in Fig. 3 lead effectively to
the *"hybrid" curve (e}. As in the case of the growth rate curve, the curve
for w,. here also exhibits a relatively continuous and gradual dependence c
beta.

The preceding analysis of sigenvalues indicates _hat neither making the
ideal MHD approximation nor assuming the electrostatic limit can in general be
justified when dealing with short-wavelength toroidal instabilities. This
fact is further supported by results from the comprehensive kinetic studies of
the elgenfunctions for these modes. As noted earlier, the ballooning
representation is used in the calculations with the perturbed electrostatic

potential expressed in the form

(y,0,5,t) = exp [=iwt + inZ - inq(y)6)

x 3 4t0 - 2mp', ) expling(¥) 2mp'l. (63
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Note that ¥ is periodic in the toroidal and poloidal angles, £ and 8, while
3}(0) is defined in the infinite domajn from == to = in ¢ and is not periecdic
[10]. Similar forms apply for the perturbed parallel and perpendicular
conponents of the magnetic vector potential, Ay and R), with A; taken here to

be the radial component, i.e.,

Py ~ -

R=RApn+A e, where ey = v/ (Vo] .

Typical selutions for the eigenfunctions (:1;. 5", ;.l) obtained from the
full kinetic collisionless analysis are illustrated on Figs, 6 and 7. The
calculations, which have been applied here to the model equilibrium using ISX-
B parameters with local B = 1.,3%, yield the eigenvalues, w/wgy = ~1.878 +
0.4131 for the ballconing mode displayed on Flg. 6 and Ww/Wwx, = -0.218 + 0.5271
for the trapped-electron drift mode ghewn on Fig, 7. Also included in these

figures is the eigenfunction for the effective parallel electric field,

s 1 B; iw °
By, = ;ﬁ;ﬁ*rﬂu (7

which is generally assumed to be zero in ldeal MHD calculatlcens. Validity of

m

this approximation requires |1‘i'| = |;] > lqRo%ﬂi with ];;‘;] |qu°;xu/c|. A
comparison of the relative magnitudes of |$l and |qR°£:ﬂ| in Flg. 6 indicates
that this condition is clearly not well satisfied at local positions in #
(e.g., near 6 = 1 m) for the ballooning mocde studied. 1In order for the
electrostatic limit +to be appropriate, the requirement is  that
|$| = quo;HI >> |$|. As shown on Fig. 7, the trapped-electron drift mode of

interest obviously violates +this criterion. Hence, these eigenfunction

calculations serve to further emphasize that neither the familiar ideal MHD
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assumption, 1'=:‘| = 0, nor the electrostatic approximation, éa = -(1/qRo) (d:{:/de)
can be properly inveked in the analysis of short-wavelength instabilities in
toroidal plasmas with moderate to high values of beta.

In previous studies [8) of trapped-electron drift instabilities it was
reported that under relevant tokamak operating conditions a broad spectrum of
unstable eigenvalues was usually found to occur, Results from the present
analysis of ballooning modes alse displays this characteristic. A typical
spectrun of ktallooning wmode eigenvalies obtained from the full kinetic
collisionless calculations applied to the model equilibrium ISX-R case with
local 8 = 3,9% is shown on Fig. 8. The mode frequencies in units of 105 sec™!
are plotted here as a function of the toroidal mode number and the
corresponding valuwes of kspi. Note that the growth rate varies rather slowly
over a substantial range in n with the maximum occurring near n = 10 or kgpy

= 0.3,

3.2 PDX and DOUBLET-III

Recent experimental resuilts [22,23) have indicated that in neutral-beam-
heated tokamaks with divertor geometry 1t is possible to produce so-called "H-
mode" discharges characterized by confinement properties which are
significantly improved over those of conventionral ("L-mocde®) cases. In order
to determine the short-wavelength stability properties assoc’ated with these
conditiong, the detailed analysls desgcribed in the preceding section has been
applied to the PDX device Quring both its normal and improved confinement
modes of operation [23]. The input parameters are chosen to be characteristic
of a typi;al discharge at two different times; one before and one after the L-

mode to He-mode tr - usition (2471, This choice obviocusly allows for a more

natural comparison of the results from the two caseg,
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For the PDX L=mode case, the specific 1local parameters at a
representative magnetl surface (r/a = 0.66) are: £, = 0.15, T, = 0,542 kevV,
T; = 0.875 keV, q = 1.41, r d &n q/dr = 0,91, ng = 2,0 x 10'3> ™3, n, -+ 2.1,
Ny = 2.56, n = 20, kgPy = 0.30, Vi = 0,22, {r,/T) = 1.0, and B = 0.41%, The
analytic model eguilibrium [10,11]1 is again employed, and the same basic
gsaquence of calculations described in Sec. 3.1 has been carried out.

As shown on Figs. 9=12, the results, aside from some differences in the
detailed shapes of the curves, are gqualitatively the same as those obtained
for the ISX-B studies. Some quantitative differences in the eigenvalues are
also observed., This is expected to occur because a number of the physical
parameters for PDX (e.q., plasma size, local temperature gradients, etc,) can
be azignificantly different from ISX-B values, In particular, note that the
growth rate spectn;u in Fig. 11 tends to peak at higher wvalues of n than the
ISX-B case shawn on Fig. 8. Thig can be attributed in large part to the
simple fact that the PDX plasma size 1s greater. Another example of expected
quanti tative variations is illustrated by the results for o, shown on Flg. 10
for the PDX case wlth ny = 2.6 as compared to those shown on Fig. 3 for the
ISX-B case with n; = 1.1, The known tendency for the real frequency of
kinetic toroidal instabilities to be shifted more strongly in the ijon
diamagnetic direction when n; is larger [14] is clearly evident here,

In the PDX discharge considered, the plasma was experimentally observed
to pass from the L-mode phase just analyzed into an improved confinement
state. Parameters characteristic of this H-mode phase at the magnetic surface
of interest (r/a = 0.66) are: €_ = 0.1%, T, = 0.78 keV, T; = 1.05 keV, q =

o

1.27, r d #n g/@r = 0.7, n, = 4,9 x 10'3 a3, n, = 3.3, n; = 3,7, n = 20,

1.3%, These values together

*
kgP; = 0.30, v, = 0.24, (rp,/rl, = 1.9, and B

with the analytic model equilibrium [10,11] have been used in the same series
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of stability calculations as the L-mode studies. ‘fThe results depicted on

Figs, 13-16 appear for the most part to be qualitatively similar to those from

the ISX-~B and PDX L-mode cases and again suggest thet the basic trends

described in Sec. 3.1 ave guite general in character. A curious exception isg

that at high beta valuyes the collisionless curve (g) of Flg. 13 indicates

regdual instability while the colligional curve (e} shows stability. With

ragard to quantitative differences, the most interesting one comes from a
comparison of the maximum growth rate (in units of 10% sec™V) for the H~mode
spectrum shown in Fig, 15 versus the corresponding result from Fig. 11 for the

L~mode case, The indication here is that the relevant instabilites tend to be

weaker under H-mode conditions.

In order to determine more accurately the relative strength of the

instabilites 4in the L-mode and H-mode cases, the comprehensive kinetic

stability analysis has also been applied to realistic numerical equilibria.
These equilibria were generated from standard MHD equilibrium codes {17] using

experimentally determined radial profiles for the pregsure and the safety

factor g (24]. As nated earlier, the actual value of beta at the reference

maghetic surface of interest is B8 = 0,41% for the L-mode case and 8 = 1,3% for

the H-mode case. The corresponding representative elgenvalues obtained from

the calculations are “/""*e = -0.473 + 0.816 for the L-mode and @/, = - 0.667

+ D,6461 for the H-mode. However, since the equilibriwm density gradients

tend to be considerably weaker during the H-mode phase of such experiments

[22,23], the conventicnal normalization of w in terms of Wsgo can be scmewhat

misleading when comparing eigenvaluves. The appropriate choice is to express

thege results in actual physical units, i.e., ©{105 sac™! ) = -0.,703 + 1,212 1

for the L-mode and w{10° sec™!) = -D.680 + 0.659i for the H-mode. As in the

case of the model euilibrium, the instabilities under UL-mode conditions
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appear to be significantly stronger. This again is an expected quantitative
trend because the basic destabilizing forces (asagcciated with the pressure
gradient in general and the density gradient in particular) are typically
weaker for the H-mode., For the particular example cited here, the growth rate
under realistic conditions is about 50% smaller for the H-mode case. This
result 1g at least congistent with the experimentally observed improvement in
the anomalous energy confinement time in that the strength of the relevant
instabilities is found to be reduced significantly.

A3 already noted, short-wavelength toroidal instabilities under various
realistic operating conditiong ¢tend to exhibit qualitatively similar
properties, ‘This is further gsupported by results from the application of
comprehensive stability calculations to a case of interest [25) for the
Doublet-III device [26]. At a representative magnetic surfzce (r/a = 0.71),
the specific input parameters (28] are: £, = 0.16, Tg = 0.36 keV, T; = 0.37
keV, ¢ = 1.74, r d £n @/dr = 0.40, 1, = 3.4 x 10'3 an™3, n = 0,93, n; = 0.87,
n o= 20, kgpy = 0.28, v; = 0,63, (rn/zJe = 0,43, and B = 2,54%, The
corresponding results for the eigenvaluwes are shown on Figs. 17-19 and display

the same general trends ag the ISX-B and FDX cases.

4, CONCLUSIONS

In this paper a comprehensive kinetic analysis of the stability
properties of short-wavelength modes wunder realistic tokamak operating
conditions has been presented, These fully electromagnetic toroidal
calculations deal with the kinetically generalized fom of MHD balloening
modes together with the finite-P generaliced form of the {irapped-particle
drift modes. Although the detailed results with comments about their
implications have been given in Sec. 3, it is useful here to summarize briefly

gome of the principal conclusions.
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With regard to properly calculating eigenvalues for unstable ballooning
modes, it is demonstrated that even in the ideal MHED limit it is necessary to
retain the terms associated with compressional .ion acoustic waves. When the
appropriate kinetic effects are also taken into account in the analysis, the
regultant growth rates are found to be significantly smaller than those
obtained from the wusual ideal MHD [10,11] and simplified kinetic model [5)
estimates. Collisicnal disslpation leads to 2 further reduction in these
values over a wide range of beta , but in many cases 1t can also generate
regidual dissipative instabilities in the high~beta second stability regime.
However, the accuracy of the Krook operator used to model ceollisions in these
electromagnetic calculations remainsg to be established.,

In general, the results from these studies indicate that for relevant
experimental situations in tokamaks, short-wavelength instabilities with
substantial growth rates should be excited over a broad spectrum of toroidal
mode numbers. The trapped-electron drift modes are the most significanAt class
of such instabiliies at low 8 (U < B < B_;)} while the kinetic ballooning
modes appear to be the strongest type at higher B (8 > Bc1J. Although the
strength of the dominant instability increases as beta increases from zero to
values above Bc1 and then decreases as Bcz is approached, the transitions in
magnitude are relatively gradual. If one adopts the commonly accepted
proposition that short-wavelength instabilites are primarily responsible for
the observed anomalous transport in tokamaks, then the results here would
support a "soft" beta limit picture for the impact of balloening mode.s on
confinement. As indicated by the relative strength of the dominant modesg, it
appears likely that as beta is increased, a continuous rather than an abrupt
or "hard" modification of the anomalous transport already present at low beta

would be observed. On the other hand, it should also be emphagized that the
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increagsing dominance of the electromagnetic component of the perturbations at
higher beta could alse lead to significantly different transport scaling
properties from those associated with low beta (predominantly electrogtatic)

cases.,
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FIGURE CAPTIONS

Ideal MHD ballooning mode growth rates {-92) plotted as a function of
radial position with ¥ being the usual poloidal flux, Results from
gsolutions to the second order and Eourth orxder forms of the governing

algenmode equation are illustrated.

Growth rates {Y} plotted as a Ffunction of B on a representative flux
surface for a model equilibrium with ISX~B parameters. The curves
represent: (a) the uspal jdeal MHD estimate for ballooning medes
without coupling to compressional ion acocustic waves; {b}
colliaionless reduced kinetic model calculation in the same limit;
(c} and (d) collisionless full kinetic results for the ballconing
modes including acoustic coupling and the trapped-electron drift
modes, respectively; and ({e) a “hybrid" of (¢} and {4} when
collisional dissipation 1s modelled with a Xraok operator. all
frequencies are normalized to; the =electron diamaghetic drift

Erequency g =

Real frequencies (mr) in units of Weg =orrespording ta the growth
rate curves of Fig. 2. The real freguency for the jdeal MHD curve

{a} is just w_ = 0,

Typical eigenvalues for trapped-electron drift modes and ballooning

modes in units of w,, as a function of the collisionality

W

parameter v,

] (vefflmh’e for the full kinetic analysis applied to a
model equilibrium using 3ISX-~8 parameters with local 8 = 1,33,
Collisional effects are modelled in the full kinetic calculation here

with a Xrook operator.
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FIG. 5. Typical ballooning mode eigenvalues plotted versus collisicnality as

in Fig. 4 but for the higher beta case where local 8 = 3.9%,

FIG., 6. Typical eigenfunction caleculated for the bhallooning mode with the
full kinetic collisionless analysis applied to a model equilibrium
using ISX-B parameters with local 8 = t1.3%. The poloidal angle, 9,
here is the usual nonperiodlc coordinate along the magnetic field

line introduced by the ballooning representation.

FIG., 7. Typical eigenfunction calculated for the trapped-ele=ctron drift mode
with Lae full Kinetic collisionless analysis applied to the same case

as Fig. 6.

FIG. B. Typical spectrum of elgenvalues for ballooning modes with the full
kinetic collisionless analysis applied‘ to a model equilibrium using
IS¥~B parameters with lecal 8 = 3.9%. Mode frequencies in units of
10% sec™! are plotted as a function »f the toroidal mode number (r)

and the correspronding values of kepi.
FIG. 9. Growth rates plotted as in Fig. 2 but for PDX L-mode parameters.
FIG. 10. Real frequencies corresponding to the growth rate curves of Fig. 9.

FIG. 11. Typlcal spectrum of eigenvalues plotted as in Fig. & but for PDX L-

\ mode parameters with local B = 2% and v = 0.22.
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Typical ballooning mode eigenvalues plotted versus collisionality as

in Fig. 4 but for PDX L-mode parameters with local B = 2%,
Growth rates plotted as in Fig. 2 but for PDX H=mode parameters.
Real frequencies corresponding to the growth rate curves of Pig. 13,

Typical spectrum of eigenvalues plotted as in Fig. 8 but for FDX H~-

mode parameters with local £ = 3% and \!; = 0.24.

Typical ballooning mode eigenvalues plotted versus collisionality as

in Fig. 4 but for PDX H-mode parameaters with local 8 = 3%,
Growth rates plotted as in Fig., 2 but for Doublet~III parameters.
Real frequencies corresgponding to the growth rate curves of Fig. 17,

Typical ballcooning mode eigenvalues plotted versus collisionality as

in Figq. 4 but for Doublet-III parameters with local B = 2.64%,




#8410158

0.016

0.012F

0.008

0.004

Fig. 1

0.24



#83T0213

27

B (%)

Fig. 2



. N It e L L L

28

#83T10212

Wepi

-2+

e

B{%)

Fig. 3



29

#83T0215

0.5:‘—)’(T.E."
Drift)

¥ {Ballooning)

w, (T.E.-Drift)

- | l
O'50 0.0% 0.10 0.15

Fig. 4




30

#4370214

- I
0.50 0.0% 0.10 0.15

Fig. 5




31

9 °btg

£000°0-

{0}

{000

<000

€000

02201cB#



o
™

L "b1a

2000°0-

2000°0

.FN!

T gm_.o-

0o~

(4) 450
!

-5

e

—=4100°0

(o)




33

#83T0218

0.5

T T T
oL |
- |
| .4.
| =]
|
|
|
|
ol >~ 1 = A
|
|
1 o
| S
|
wn |
i i
| -
! gl
|
1 1 ]
OO Te] o

(995,01}

kPi

Fig. 8



34

R R e

#8370219

Fig. 9



35

#8310218
O T —T — T T
\\-mbi e ____‘.—-,
NN yd
-I_ -
By N~
[ Wy
_2... -]

et w.x.pi

-

B (%)

Fig. 10



36

#8310217

O._.._._

o Fa e L%

20 30 40

Fig. 11



#83T0216

3 i I j ]

0 0.05 0.10 0.15 0.20

@3k

Fig. 12



3B

F#83T0230
R i
™ Vett

Fig., 13



39

FFa3To228
T 1
S - ]
L e
1N\
Wi
(——(-I-J“ —

1

B(%)

Fig. 14

8 10




40

ST "bra |

ot | 0¢ 02 o] 0

|
2
4
(,.7998.,01)™

I | : =3|v
06'0 |, 620 0

62201c84#

e et e e el g e



41

F 8370231

4 i T I 1




#83T037|

1.5 |
a
1.0 b -
@
0.5 1.4 —
-(—wbl k \ \
0 l
4

(@]
[y -

%)

Fig. 17



43

#B4T01586

0.5

-05

<_—‘T'*pi/2

*

e

8%

Fig. 18

ERCTINL YU EREE



B e L L e s e MH e e e e e

44

# 8310369

04 06

Fig. 19



EXTERHAL DISTRIBUTION IN ADDITION TO TIC UC-20

Plasme Res Lmb, Austra Nat'y Usle, AUSTRALIA
Dr. Fronk J. Paclonl, Univ of Wollongong, AUSTRALIA
Prof, 1,R. Jones, Flinders Unlv,, AUSTRALSA
Prof, W H, Breanan, Unlv Syoney, AUSTRALIA
Prot, F. Cap, inst Theo Fhys, AUSTRIA
Prof, Frank Verhaast, inst Thecratische, BELGILM
Br, O, Paiumpo, Dg XI) Fusion Prog, BELGILM
Ecoln Royale Mititalrs, Lad de Phys Plagmas, BELGIM
Dr. P.H, Sakanaks, liniv Estadval, BRAZIL
Dr. C.R. Jomes, Unlv of Afberta, CANADA
frot. J, Teichmann, Univ of Montresi, CANADA
Dr, KM, Skarsgars, Unlv of Saskatcnewan, TANADA
Prot, 5,R, Sreenlvasan, University of Celasry, CARADA
Praof, Tudor W, Johnston, INRS=Enerqgle, CANADA
Dr, Haares Barnard, Univ Britisn Calumbie, GCANADA
Dr. WP, Bachynski, MPE Techrologies, 1nc,, CANADA
Thengwu L1, SW inst Physics, CNINA
Library, Taing Hua University, CHINA
Libraclen, Instltute of Physics, CHINA
tnst Plagms Phys, Acagemis Sinlca, CHINA
Dr, Peter Lukee, Komensksho bniyv, CZECHOSLOVAKIA
Tne Librerian, Culham Laborstory, ENGLAND
Prot. Schetzman, Dbservotofre de Nice, FRANCE
J. Redst, CEN-8P6, FRANCE
AW Dupas Library, AM Dupas Library, FRANCE
Dr. Tom Mual, Academy Bibliographic, HONG XONG
Preprint Llbrary, Cent Res Inst Phys, HUNGARY
Or. S.K. Trehon, Panjob University, INDIA
Dr. indrs, Mchan La! Das, Benoraes Hingu Unlv, INDIA
Pr. L.X. Chavds, South Gujarey Unjv, INDIA
Dr. R.K, Chhajloni, Var Ruchl Marg, INDIA
P, Kmw, Physicol Ressarch lmb, INOIA
Dr, Phl)))p Rossnau, Israei Inst Tecn, ISAAFL
Prat, 5, Cuperman, Tel Aviv University, ISRAEL
Prof. G, Rostagnl, Unlv Di Padove, ITALY
titrerien, Int’{ Ctr Theo Phys, VTALY
Miss Clella De Fofo, Assoc EURATOM=CNEN, ITALY
Ribliotets, del CHR EURATOM, {TALY
Dr, H, Yameto, Toshlba Res & Dav, JAPAN
Prof. M, Yashikewa, JAER), Tokai Res EsT, JAPAN
Prot. T, Uchigs, Univarstty of Tokpo, JAPAR
Resenrch Info Center. Nagoye University, JAPAN
Frot, Kyoj! Nisnlkewa, Univ of Hiroshims, JAPAN
Pref. Sigeru Horl, JAERI, MPAN
Library, Kyoto University, JAPAN
Prof, Ilchiro Kewakami, Nihon Unlv, JAPAN
Prof, SeTosni ltoh, Xyushu Untversity, JAPAN
Tech Info Division, Korss Momlc Ensrgy, KOREA
Dr, R, Englond, Civose Unlwersitar)a, MEXICO
Blbllotheek, Fom=inst Voor Flasma, NETHERLANDS
Prof, B,S, Liley, Unlverslty ot wolkato, HEW ZEALAND
Dr, Suresn C, Snarmd, Univ of Cotlabar, NIGERIA

Prof. JuAL. Cabrel, 1nst Superior Tech, PORTUGAL
Dr, Octevien Petrus, AL} CIZA University, ROMANIA
Prot, M,A, Weliberg, University of Nata), SO AFRICA
Dr, Johsp ge Vililers, Atomic Energy Be, SO AFRICA
Fuston Div, LIbrary, JEN, SPAIN
Prot, Hans Wilneimson, Chalmers Unlv Tech, SWEDEN
Dr, Lsnnact Stentlo, University of UMEA, SWEDEN
Library, Royp) Inst Tech, SwEDEN
or, Ertk 7. Kar)son, UppsBia Lhiversitet, SWEDEN
Cantre ge Recherchessn, Ecoie Folytecn Fed, SwiTZERLAND
Dr, Wi, Weise, Het!{ Bur Stena, USA
Dr, MM, Stacey, Georg inst Tech, USA
pr, 5.7, Wu, Urjlv Alpbams, USA
Prof, Norman L, Ofeson, Univ 5 Floridp, USA
Dr, Benjemin Ma, (owa Stata Univ, UYSA
Prof, Megne Kristiansen, Taxas Tech Bniy, LSA
Or. Raymond Askew, Auburn Unlv, USA
Or. V.7, Talek, Kharkov Phys Taech Ins, USSR
pr, D.D, Ryutov, Siberipn Acag Scf, USSR
bDr, B.A, Ellaswv, Kurchatov Instityte, USSR
Or, V.A, Glukhtkh, InsT ElecrroPnysical, USSR
institete Gen, Physics, USSR
Prof, T,3. Boyd, Univ College H Wois:, WALES
Deo K, Seninvier, Ruhr Universitat, W, GERBANY
Wuclear Reg Estab, Julich L1g, W, GERMANY
Librerian, May=Plaanck insTitut, W, GERMANY
Dr, H,J. Reappier, University Stuttgart, W, GERMANY
Glzliorhek, lost Piasmatorschung, w, GERMANY



