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MODELING OF COMPLEX MELTING AND SOLIDIFICATION BEHAVIOR
IN LASER-IRRADIATED MATERIALS
[A Description and Users Guide to the LASER8 Computer Program]

G. A, Geist
Engineering Physics and Mathematics Division, Oak Ridge Natjonal Laboratory
Oak Ridge, Tennessee 37831

and

- R. F. Wood
Solid State Division, Oak Ridoe National Laboratory
Oak Ridge, Tennessee 37831

ABSTRACT

The conceptuai foundation of a computational model and a computer
program based on it have been developed for treating various aspects of the
complex melting and solidification behavior observed in pulsed laser-irra-
diated materials. A particularly important feature of the modeling is the
capability of allowing melting and solidification to occur at temperatures
other than the thermodynamic phase change temperatures. As a result, inter-
facial undercooling and overheating can be introduced and various types of
nucleation events can be simulated. Calculations on silicon with the mocel
have shown a wide variety «i behavior, including the formation and propa-
gation of multiple phase fronts. Although originally developed as a tool
for studying certain problems arising in the field of laser annealing of
semiconductors, the program should be useful in treating many types of
systems in which phase changes and nucleation phenomena play important
roles.

This r2port describes the underlying physical and mathematical ideas
and the basic relations used in LASER8. It also provides enough specific
and detailed information on the program to serve as a guide for its use; a
1isting of one version of the program is given as an appendix.



1.0 Introduction

In the work described here we developed a mathematical model and a
computer program, called LASER8, for the study of heat conduction and phase
change problems arising in connection with the pulsed-laser irradiation of
semiconductors.! The need for a program like LASER8 arose because of the
inability of existing programs, such as HEATING5,2-* to treat phase-change
problems with sufficient generality. This difficulty is overcome in LASERS
through the innovation of the state array concept, through which the state
of the material in each small wlure element is continuously monitored and
controlled. We expect LASER8 to be particularly useful in the study of a
wide class of problems in which melting and solidification of any material
occur so rapidly that overheating and/or umuercooling of the parent phase
cannot be neglected. LASER8 also contains provisions for simulating bulk
and surface nucleation effects under certain conditions. As far as we
know, these are unique capabilities in a computer code and should be of .
widespread interest for a variety of problems. However, it should be
recognized that nucleation theory is still primac-ily phenomenological and
requires much further development to be put on a firm theoretical basis.

LASER8 {s presently restricted to treating problems that can be
approximated by a one-dimensional analysis, i.e., semi-infinite, slab, and
spherically symmetric geometries. It is anticipated that this restriction
will be removed after accumulating a body of experience with one-dimensional
applications.

The computer program §s not particularly long an4 it was deliberately

constructed in a modular programming style; there are no subroutines in the
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version given here as Appendix B. This method was chosen for several
reasons. First, LASER8 Lreaks new ground in the numerical treatment of
moving boundary problems and we expect the program to continue to evolve
as it is applied more extensively. Secondly, we anticipate that the
problems for which the program is used will fall as much into the area of
fundamental research as in the area of engineering applications. As a
consequence, the program was developed from the beginning in a different
spirit than that of a program 1ike HEATINGS, which can treat many different
geometries and combinations of materials but is based on overly restrictive
assumptions about phase changes and does not address the question of
nucleation. Finally, for problems involving complex state changes, very
small finite-difference cells, long laser pulses, or various combinations
of these factors, the running times can become quite 1ong. (For a great
variety of problems, however, LASER8 is simple enough and fast enough *o
program and run on a personal computer.) In order to reduce these timec,
certain segments of the program are “hardwired” for the material being
studied and analytical fits to functions, rather than table look-up proce-
dures, are used throughout. These restrictions can easily be removed if
jt appears desirable to do so.

In the next section we first describe two classes of erperimental
observations that illustrate the need for a program such as LASFKk8, ve then
review briefly classical solidification and nucleation theories, and lastly
give an overview of the mathematical approach we found most us:ful dn
developing the program. In Section 3, a detailed description of the foun-
dations of the modeling and our approach to its implementation are precented,

In Section 4, an explanation is given of the manner in which chanyes of
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phase and state, overheating and undercooling, and nucleation can be treated
jn the model. This explanation involves a detailed description of state
diagrams and state arrays and examples of how they are constructed and used
in the computer program. Section 5 contains discussions of several aspects
of the numerical methods used, and illustrati-e results from the extensive
testing of LASER8 are provided in Secticn 6. A few concluding remarks
about various aspecis of the work reported here are contained in Section 7.
Applications of the modeling to systems other than elemental semiconductors
are also briéfly censidered in this section. Appendix A is a guide to the
use of one version of LASER8 and Appendix B §s a program listing of that
version. These Appendices are reasonably self-contained and a reader may

find it useful to consult them frequently while reading Sections 3-5.
2.0 Experimental and Theoretical Background

2.1 Some Effects of High-Power Laser Pulses on Semiconductors

Pulsed laser processing of materials, especially semiconductors, is a
field of condensed matter physics and materjals science that has developed
rapidly over the last few years.! It has proved to be of considerable
interest for both applied and fundamental research for a variety of reasons
discussed extensively in the 1iterature.S We are most interested in it here
because it provides for the first time a tool for well-controlled studies
of physical processes occurring far from thermodynamic equilibrium; it was
the results of such studies that stimulated the development of LASERS8. To

be more specific, radiation of semiconductors with nanosecond (109 sec)
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and picocecond (10712 sec) pulses from high-powered lasers can result in
complex changes of the near-surface regions brought about by ultrarapid
melting and solidification. There are two well-documented classes of
observations in silicon that illustrate complementary aspects of the phase
change and nucleation phenomena to be modeled by LASERS.

The first class demonstrates that when liquid ().) silicon is caused
to solidify in a 100 direction with a phase-front velocity of 1520 m/sec
(by a proper choice of laser pulse), the solid regrows 1n_an amorphous (a)
rather than crystalline (c) state.®-8 There is good evidence that the
melting temperature T, of a-Si is ~200-300°C lower than T.,? the melting
point of c-Si. From a purely thermodynamic standpoint, the formation of
a-5§ from 2-Si would seem to jmply that an undercooling of at least Tc.-T,
has been achjeved without nucleation and growth of the c-phase. Hithdut
delving into the details of classical phenomenological crystal growth
theory, it should be apparant from this example that inclusion of liquid
phase undercooling is essential in mathematically modeling the ultrarapid
solidification involved in this example. In fact, interfacial undercooling
of the 1iquid is required for solidification at any rate (see Sec. 2.2),
but for most materials of interest here it is only at relatively high growth
rates that the effects of undercooling become important,

The observation complementary to the foregoing one involves the pulsed
laser meiting of an a-Si layer, formed on a substrate by a varjety of tech-
niques, and the <ubsequent solidification of the 2-$§,10-15 Since this is
the situation used in describing the model developed here, we will consider

the experimental results in somewhat more detail than for the preceding
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case. The upper schematic illustration in Fig. 2.1 represents the initial
condition of the sample; it consists of a c-Si substrate with an a-Si sur-
face layer formed directly in the c-Si by, for example, ion implantation.
When this a-Si layer is partially melted by a laser pulse, highly under-
cooled £-S§ is formed (T = Ta at the interface between the a- and 2-Si).
After such a pulse it is observed that two regions of polycrystalline
silicon (p-Si) have been formed and the extent of these regions varjes with
the pulse energy density Ey. For values of E, just above the threshold for
melting of the a-Si, only a fine-grained (FG) p-Si is formed. As Ep is
increased, a region of large-grained (iLG) p-Si begins to appear in the
region nearest the surface, followed in succession by the FG material, the
a-Si, and finally the c-Si substrate; this situation is indicated in the
Tower illustration of Fig. 2.1. As Ey is increased still further, the LG

region increases at the expense 7 the FG an’ amorphous regions until both

CRYSTALUINE
BEFORE SILICON
LASER >
AFTER CRYSTALLINE

Fig. 2.1. Illustration of the morohological changes induced by pulsed
Yaser jrradiation of an a-Si overlayer on a c-51 substrate.
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of these regions disappear altogether. At sufficiently high vaiues of E,,
the LG p-Si is no longer formed and only single crystal material is observed.
The lowest energy density at which this occurs is interpreted as the E,
required to melt through the a-c interface and produce liquid-phase epitaxy
from the c-Si substrate; the c-Si formed in this way is virtually defect
free. Further complicating this already complex behavior, is the recent
observatjonl6 that in some instances large-scale three dimensional features
may be superimposed on the essentially planar morphologies of Fig. 2.1.
We saw. in the above two examples that large undercoolings of 2-Si are
an important a.ect of the solidification behavior of pulsed laser melted
silicon. As already mentioned in the Introduction, one of the primary
motivations for the wurk described here was to develop a method for including
overheating and undercooling in the calculations. Also, as already noted,
to adequately treat the many cases arising in practice it would seem
necessary to include an approximate method for simulating nucleation events
and their effects on the heat flow problem., Consider, for example, the
case fllustrated in Fig. 2.1 in which FG and LG p-Si are formed from under-
cooled 2-Si that is separated from the c-S§ substrate by an a-Si layer. It
is generally thought that nucleation of some form, heterogeneous or homo-
geneous bulk nucleation or nucleation at an interface, is required to explain
the observation of a crystalline phase formed from a 1iquid phase completely
embedded in an amorphous or glassy matrix. Provisions for simulation of
nucleation phenomena have been incorporated into our modeling through the

introduction of nucleation temperatures and timers, as described below.
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2.2 Classical Crystal Growth Theory

The classical phenomenological theory of crystal growthl7-19 expresses
the velocity of a 1iquid-solid interface as the difference between forward

and reverse kinetic rate constants, i.e.,
v=Kf-K . (2.1)

K¢ is the rate (in velocity units) at which atoms leave the 1iquid and join
the solid, while K. is the rate for the reverse process. K¢ and K. are

generally considered to represent activated processes and are expressed as

K¢ = Agexp (-AWLS / kT) (2.2)

Kp = Apexp (-AHS: / KkT) . (2.3)
AHLS and AHSY are the activation energies, defined by reference to Fig. 2.2,
and T is the temperature. From Fig. 2.2 it can be seen that AHtS — pHSZ s
Lc, the latent heat of crystallization per atom. By simple algebraic

manipi:iation of Eqs. 2.12.3, an expression for the melt-front velocity can
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Fig. 2.2. Kinetic processes at the 1iquid-solid interface. is the

latent heat of crystallization., W is the width of the inter-
facial region.



be‘obtained in the form _
v = Ke(Ti){1 - exp(- (Lc/kTe) (aT3/T75))} (2.8)

in which T, is the crystallization temperature, T; is the "interface tem-
perature®, and the interfacial undercooling ATj is given by ATj = T - Ty.
The ratio of the pre-exponential factors in Eqs. 2.2 and 2.3 is fixed from
the equilibrium condition that the phase interface (melt front) be sta-
tionary, i.e., v = 0. An expression such as Eq. 2.4 is important because
it demonstrates that ATj # 0 is necessary for any motjon of the interface
and illustrates how the velocity of the melt front may depend on atomic
processes in the interface region. In other words, this means that under-
cooling of the liquid is required for solidification and overheating of tne
solid for melting. Here we will be concerned primarily with undercooling,
but the requirement of overheating for melting should be kept in mind.
From conventional heat conduction equations,2? the velocity of aplanar
interface for crystallization can be obtained from the one-dimensional heat

flux boundary conditjon at the liquid-solid interface, i.e.,

-:}—3 = Polc %:- = Ke[grad T)j 5 - Ks[orad T)j ¢ . (2.5)
The product Adx is the volume of material changing phase in time dt, p is
the density, Ky and Kg are the thermal conductivities in the liquid and
solid respectively, and the notatjon indicates that the gradients of T in
the 1jquid and solid are to be evaluated at the interface. It is usually
assumed in calculating the gradients that the interface is at the thermo-
dynamic phase change temperature T.. This assumption together with Eq. 2.5
and the heat diffusion equation (see Sec. 3.2) are frequently referred to

as the Stefan problem.21-22 We note again that if the interface temperature
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were actually T., AT; in Eq. 2.4 would be zero and there would be no move-
ment of the phase front. For small values of ATj and large temperature
gradients, the errors made in calculating the gradients as though the inter-
face were at T. should be very small, and thé velocity of the interface
given quite accurately by Eq. 2.5. If ATj becomes large, this may no longer
be the case, particularly because of the activated rate constant appearing
in Eq. 2.4. It will then be necessary to explicitly introduce interfacial
undercooling effects into the calculations; this is precisely one of the
problems LASER8 was designed to address although a discussion of it will
be deferred to a later publication. If the motion of the melt front is
controlled by Eq. 2.5 it is said to be heat-flow limited and if it is con-
trolled by Eq. 2.4, it is said to be 1imited by the interfacial kinetics.

2.3 Phenomenological Nucleation Theory

Nucleation theoryl7s23,24 deals with the problem of how a new phase
begins to form in a materjal not initially containing that phase. We will
assume that some type of nucieation event must occur in order to initiate
growth of small nuclei, sometimes called esmbryos, of the new phase. The
nucleation events may occur at free surfaces or interfaces, at impurities
or impurity aggregates, or they may occur homogeneously in the bulk of the
pure material through statistical fluctuations. In the case of amorphous
materials formed by jon implantation, sputtering, or electron beam eva-
poration, it is possible that minute inclusjons of crystalline materjal

are embedded in the amorphous phase.
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Although most metallurgists apparently feel that true homogeneous bulk
nucleation is rare, a simplified theory of it will be sketched here to illu-
strate the general ideas invclved in phenomenological nucleation theories.

To be specific, let us assume that a molten material, totally devoid
of impurities, is enclosed in a container with which it has no interactions
that will themselves serve to nucleate a phase change. As the temperature
of the 1iquid is lowered below the thermodynamic phase change *tewperature,
the 1iquid phase becomes metastable relative to the solid phases. At any
given undercooling, clusters of atoms may begin to form into solid-l1jke
configurations. However, these clusters will generally be unstable because
the surface energy of the phase interface is greater than the energy gained
by formation of the more stable solid phase.' Stated another way, the
1iquid is constantly undergoing local fluctuations from the liquid to the
solid state, but the probability that the fluctuations will vresult in solid
nuclei large enough to be stable and to begin to grow is exceedingly small.
As the temperature is lowered still further the size of a critical nucleus
becomes small enough and the fluctuations large enough that stable nuclei
can form and grow. The nucleation rate then increases so rapidly over a
small temperature range that ic is a good approximation to speak of a
nucleation tempquture.

The foregoing can be stated more quantitatively for spherical nuclei
as follows. For a nucleus of radius r the change of free energy associated

with the formaticn of the nucleus is given by
AG = 4rr2g + 4xr34Gy/3 , (2.6)

in which o and 4Gy are the surface and volume free energies, respectively.
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Setting daG/dr = 0 gives

r* = -20/8Gy , n* = 4xr*IN/3 {2.73)
and

AG* = 16xa3/3(A6y)? . (2.7)

r* is radius of the critical nucleus in the undercooled liquid, n* is the
nusber of atoms in it, and N, is the number of atoms per unit volume. If
the difference in heat capacity between the liquid and crystalline solid
can be neglected, AGy can be expressed in terms of the interfacial under-

cooling as

AGy = -LcaT3/Te & (2.8)
The surface free energy is seldom known accurately, which makes it difficult
to estimate AG*. For our purposes, however, it is sufficient to recognize
that AG" is the free energy barrier that must be surmounted for a nuclei to
reach critical size and begin to grow. The temperature at which this occurs
can be referred to as the nucleation temperature} Tne

The nucleation rate is given in terms of AG* by
I = Iyexp(-a6*/kTy) , (2.9)

in which I, has the units of cm=3 s~1, The nucleation rate may be a dif-
ficult quantity to determine experimentally {if it s high because of lack
of time resolution in the experiments. Again, however, from the standpoint
" of our present 9oal of roughly simulating nucleation processes, it is
enmugh to recognize that a nucleation temperature and rate, or a time if we

deal with the reciprocal of I in Eq., 2.9, can be used in the simulations,
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It is apparent from the foregoing discussion that nucleation events

'are 1ikely to be two and three dimensjonal processes and we must be con-

cerned about how they can be simuiated in a one-dimensional calculation.
Frequently it may be that this can only be done in some quite approximate
way. We will discuss this later after the finite-difference equations have
been 1ntroducéd.

2.4 Mathematical Approach

A variety of methods for treating moving boundary problems was investi-
gated during the course of the development of LASER8.25 We sought a method
that would enable us to study the physical problems discussed above and
that would serve as a basis for a flexible and efficient finjte-difference,
or finite-element,26 computer program. A method apparently first developed
by Rose?27,28 was finally chosen. As discussed in the next section, this
method emphasizes the fundamental role of enthalpy in a phase change process
and uses the temperature simply to determine the heat fluxes. This has the
advantage that the determination of a phase or a state of 2 small volume
of materiai is based on its enthalpy content rather than its temperature.
Thus, a phase change can occur, in principle, at any temperature, with the
result that overheating and undercooling can be included in the formalism,
A relationship between the extent of overheating or undercooling and the
velocity of the phase interface mus- be specified as a boundary condition
(see the discussion in Sec. 2.2), bu: this condition need not be restricted
to the coomonly used requirement th.it the phase change occur at the equi-

1ibrium thermodynamic melting temperature. For the same reason, nucleatfion
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effects can be treated because a material can be overheated or undercooled
to & prescribed nucleation temperature and held there for a prescribed time
before the latent heat of the nucleating phase comes into play. To realize
the full flexibility of this method, the various changes of phase and
state, and the conditions under which they can occur, can be specified by
a state array. The only fundamental restriction on the state array is that
all of “ne processes involved must conserve energy. This will be 1ilustrated

in detajl in Sec. 4. .
3.0 Model for Heat Transfer and State Change

3.1 General Assumption:

The laser-irradiated sample is modeled as either a slab or a semi-
infinite solid extending in the positive x-direction and composed of up to
nine layers, each of arbitrary but uniform thickness. The laser pulse is
assumed 1) to have a cross section large compared to the depth into the
sauble for which significant temperature rises occur and 2) to be homoge-
neous in energy across any y-z plane. In practice, condition 1) is easily
realized and, with care, 2) can probably be approximated adequately although
complete homogeneity is basically unattainable. As a result of these ron-
ditions, the laser annealing process can be treated as a one-dimensional
problem, provided that any nucleation effects to be included can be simu-
lated within the framework of a one-dimensional approximation. As already

mentioned, this will be discussed in more detajl below.

[ <
. Lty ¥
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The optical and thermal properties of the individual layers of the
sample may be functions of temperature, phase, and stete. Foi example, with
reference to the case illustrated in Fig. 1.1, it is well known that the
materials properties of a-, c-, and 2-Si are quite different (see Fig. 5.1
for the thermal conductivity of a-, c-, and 2-Si), but it is also likely

that a property such as the thermal conductivity of polycrystalline silicon

depends on the grain size and orientation. Provisions for handling these

differing properties are incorporated into the computer program, but it is
often difficult to know reljable values of the input data for a complex
state.

The left boundary, i.e. the surface at x = 0, is assumed to be insu-
lated. Calculations have shown that this is a good approximation for laser
pulses of nanosecond and picoseccnd duration because the times involved are
too short for convection or radiation losses" to be important. Should
convection and radiation losses become important for long duration pulses,
they can easily be incorporated into the model. If the sample is semi-
infinite, the temperature of the right boundary is assumed to remain constant
at its initial value throughout a calculation. Calculations for a finjte
slab may require other boundary conditions. The way in which the rignt
boundary 1is actually treated {in the finite-difference calculations is

described in Sec. 5.1.

3.2 Enthalpy Form of the Heat Flow Problem

It has been customary in the past in tne vast majority of treatments

of heat flow problems to maintain the temperature distributfon T(x,t) in

e i e Ak g it
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the sample at the focus of attention. In the laser irradiation case, thi,
leads to the usual partial differential equation for T(x,t) with the
expression for the energy in the laser pulse providing a source, or heat
generation, term."* We have not found this a convenient method for dealing
with problems in which phase changés can occur at temperatures that may
vary during the problem, e.g., when undercooling must be taken into account.
Instead, we have employed the above-mentioned method developed by Rose,
uhicﬁ is based or an enthalpy formulation of heat flow.2? Although it is
straightforward to convert the differential equation for T(x,t) into an

equation for the enthalpy, for completeness and to remind the reader of

some of the approximations involved, we will derive the enthalpy equation
directly from the usual energy balance condition. In integral form this

condition §s given by

3% {pedv = {de + {KvT . nda = 0, (3.1)

in which p is the density, e the internal energy, and K the thermal conduc-
tivity in a given differential volume element dv. S {s the heat generatfon
function describing the effects of the laser pulse and ; is an outwardly
directed unit vector normal to the element of area da, The left hand side
of Eq. 3.1 is the rate of change of the energy stored in the volume V, the
first term on the right hand side is the rate at which energy is generated
by the laser pulse and the second term is the rate of change of stored
energy due to conductfon into and out of A, the surface bounding V. The

heat balance equation at any time is fllustrated schematically in Fig. 3.1.



Fig. 3.1. Schematic illustration of heat balance in a small volume of
materiai.

The enthalpy h is related to the internal energy and the pressure p
by the equation

e=h-p/p, (3.2)

which when substituted in Eq. 1 gives
* flon - plav = fsav + fxvr . nda . (3.3)
v v A

The pressure is generally assumed to be independent of time during a phase

change3? (isobaric process) and Eq. 3.3 then becomes

a:- fphdv = dev + vaT . nda. (3.4)
v v A

Application of the divergence t.ieorem to the second term on the right hana

side and interchange of the order of integration and differentjation yields

] sg(ph)dv = Ide +]v . (KVT)dv (3.5)
v v v
Since Eq. 3.5 is true for any volume element, we finally obtain the enthalpy
equation
3%@h) =9 « (KVT) + S, (3.6)

In one dimension thjs becomes

sloh) = 22 (K%) +S, (3.7)
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which is the starting point for the LASER8 discretization. One further
simplification is often possible because p s very nearly independent of
temperature and phase for many materijals, e.g. silicon, and hence does not

change with time.

3.3 Source Term

The absorption of energy from the laser pulse and the coanversion of
this energy into heat provide the source term, represented by S in Eq. 3.7,
in the problem. This term can become very complicated and a detailed treat-
ment of it here would be inappropriate. Instead, we will provide a simple
j1lustrative treatment that is valid for many cases and then briefly indi-
cate some of the complexities that may arise.

Because th: penetratjon depth of the laser radiation may be comparable
to the region over which significant temperature changes occur, it is not
accurate to assume that fhe laser pulse can be represented simply by a flux
term at the surface of the slab. In order to model the absorption of the
laser pulse accurately, the source term must be made a function of depth
as well as time. For a constant absorption coefficient a (1inear regime),
the absorption of light by a solid or 1iquid follows an exponential law.
In such a case, the amount of energy penetrating to a particular depth at

time t can be approximated by
S(x,t) = (1 - R(x,t)) P(t)ae~oX, (3.8)

where R(x,t) is the reflectivity of the sample and P(t) gives the variatjon

in intensity of the laser pulse with time. Reflection of 1ight from a
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material is not a purely surface phenomena and can therefore depend on both
x and t, primarily because of the change in temperature and phase with x
and t. For simplicity, we assume that R is a function only of the temper-
ature and phase of the surface finite-difference cell. The separatica of
the absorption function into a product of time-dependent and x-dependent
factors will also not be discussed. P(t) is often very nearly a gaussian
for solid state lasers, but can have complex forms for gas lasers. A typ-
ical excimer laser pulse shape is shown in Fig. 3.2. Although the sharp
structure on this pulse need not be duplicated, the overall shape should be
reproduced resonably well. In order to determine the amount of energy that
js deposited in a finite region of the slab, the factor « exp(-ax) in Eq. 3.3

can be integrated to obtain
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Fig. 3.2. The time dependence of a typical excimer laser pulse.
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This expression when substituted back into Eq. 3.8 leads to a very simple
analytical relation for determining the internal heat generation rate in
any finite-difference cell of the sample.

Itﬁ may happen that the absorption coefficient « is mot constant and
then the simple treatment given here no longer holds. It is not difficult
to include temperature- and intensity-dependent (nonlinear) absorption in
the modeling but this has not bean implemented in the present version of
LASER8 because the values of a for the laser radiation used in the experi-
"ments modeled to date are so high (> 106 cm~l) that these effects are
unimportant. For long-wavelength radiation, such as that from a CO, laser,
a« for a semiconductor can be expected to be a complex function of doping
concentration, temperature, radiation-induced free carriers, carrier dif-
fusfon, etc. In such cases, separate routines for the calculation of «

and R(x,t) may be usefully introduced.

3.4 Discretization

Equation 3.7 was discretized using the classical forward time dif-
ference scheme. This gives an explicit method for updating the enthalpies
from time step n to n + 1, For the i-th cell in the bulk of the material

the finite difference equation becomes

l)' N+l - hi 1 K1+1+K1 ?

P Tz T

Ki#+Ks L, -+ ).

(3.10)
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It should be noted that the effective thermal conductivity for heat con-
duction between cells i and i+l is given as an average of the conductivity
in the two cells. The question of how to treat the conductivity of a cell
that is partially solid and partially liquid is discussed in Sec. 5.3.

The boundary cells must be handled differently from bulk cells. The
cell at the surface will be discussed here and the one at the back boundary
in Seﬁt'!on 5. Since the surface is assumed to be insulated in the present
version of LASER8, the appropriate toundary conditions on the temperature
and energy profiles can be obtained by reflection of these prof'lles in the
plane of the surface. The second order discretization scheme can then be
preserved if the surface cell j§s assumed to be half as wide as a bulk cell

and the method of images s used. Thus, the equation for the surface node

becomes,
hM1 hn Ky#K
- At_l = 2-—-2—1“ 2 (13 - 1) + o] (3.11)

There were two main reasons why a more complex discretization scheme
(for example Crank-Nicholson) was not used. First, the intensity of the
source term is often so large and changing so rapidly that small time steps
are generally required to describe it. The intensity of the laser pulse
may also cause the melt front to move at very high velocities (as high as
100 m/s). The advantage of using higher order schemes is that they typi-
cally allow much larger time steps at the cost of computational effort.
Since in most of the cases of interest here the time step must be small to

track the front accurately and model the laser pulse satisfactorily this
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advantage is lost. Second, state arrays are set up on the assumption that
only one change of phase can occur in a time step. This is a reasonable
assumption only if the time step is small. If a large time step were used,
more than one path through the state array might yield an energy balance,
thus leading to a lack 6f uniqueness in the solution. Again since a small
time step is needed to model the problem with sufficient accuracy, the
explicit finite-difference scheme proved computationally more efficien;

than more complex schemes.

3.5 Simulation of Nucleation

We now turn to a brief discussion of the extent to which two- and
three-dimensional nucleation events can be simulated in a one-dimensional
calculation. We assume that a nucleation event releases latent heat and
rapidly raises the temperature of the just-formed embryo to some temperature
greater than that of the surrounding undercooled 1iquid; for convenience
let us assume that this temperature is T, the melting temperature of the
crystalline material. If the undercooling is lurge, very large temperature
gradients will be set up and the flow of heat from the growing nuclei may
be very rapid, depending on the thermal conductivity of the liquid. If
many nucleation events occur in close proximity to one another and more or
less simultaneousiy, the temperature of an extended region will be raised
nearly uniformly. The composition of the material in this region will be
a mixture of solid and 1iquid (referred to as "slush” in the next section).
As the heat is conducted away from this region, the nuclei will continue

to grow until the material completely solidifies.
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Now assume that a planar phase interface, separating an undercooled
1iquid such as 2-Si and a solid such as a-Si, is present. The thermal
conductivity of 2-Si is an order of magnitude or more greater than that of
a-Si. Suppose that a nucleation event occurs at or near this interface.
The heat 1jberated will flow rapidly into the 1iquid and much less rapidly
jnto the solid. Again, if the density of nucleation events occurring nearly
simultaneously is high, the temperature of the 2-Si will be raised more or
less uniformly and the planar interface approximately preservec. Rapid
1iquid phase epitaxial regrowth can be thought of as a 1imiting case of this
type of situation. Every lattice site is a potential mucleation site and,
at least for a rapidly moving interface where step growth is relatively
unimportant, the nucleation events over the interface occur virtually simul-
taneously; in this case a one-dimensjonal calculation would seem to be
justified.

In view of the above discussjon, we conclude that the density and
frequency of nucleation events, the volume to which they are confined, and
the relative magnitude of the 1iquid and solid thermal conductivities will
be important in determining the adequacy of a one-dimensional calculation.
Unfortunately, it is unlikely that reliable jnfornation about nucleation
processes in a given situation will be avajlable. We must then reiy on the
experimental results and the agreement between these and results of model
calculations to establisn the adequacy of a one-dimensional calculation,

ex post facto.
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4.0 State Diagrams and Arrays

We have discussed above the general assumptions of our wodel, the
boundary conditions, and the discretization scheme. WNe now turn to the
two most important innovations of our approach. In order to cope with the
complexeties of the problems we wish to address, it is necessary to have a
scheme in which the material in each finite-differrence cell can change its
phase or its state in aécordance with a set of prescribed conditions and
subject only to the requirement of energy conversation. In order to accom-
plish this, we have introduced the state diagram and the state array which
are discussed in this section, together with the interpretation of the mixed

two-phase state referred to as “"slush®.

4.1 The State Diagram

Figure 4,1 gives a form of the entire state diagram for the case of
silicon, while Fig. 4.2 shows a schematic of the region in the neighborhood
of the 1iquid-solid transitions on an expanded scale. The state diagram is
drawn in a manner that reflects our emphasis on enthalpy as the most useful
thermodynamic quantity. We note here that a horjzontal line on the state
diagram corresponds to the evolution of latent heat at constant temperature,
and therefore to a first order phase change. There is good evidence that
a-S4, unlike true glasses, undergoes a first order phase change on melting
and solidifying. Let us consider several examples of a succession of
changes and transformations that may occur in a small volume element of

materjal subjected to heating and cooling.
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Fig. 4.1. State diagram for silicon. The zero of enthalpy is taken as
that of the crystalline material at the melting point of c-Si.
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Fig. 4.2, State diagram for silicon in the neighborhood of the solid-1iquid
phase transition or an expanded scale.
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In the first example, 'we assume the materjal to be initially c-Si and
to be subjected to slow heating and cooling. As the sample is heated, the
temperature and enthalpy ircrease alog the 1ine labeled “crystal or large-
grain poly" on Fig. 4.1 until E. and T. on Fig. 4.2 are reached. The
material undergoes melting along the line marked “slush,” with the tem-
peratube remaininy constant at T., while the enthalpy changes until enough
latent heat is absorbed to completely melt th~ volume of material under
consideration. At Eqc on Fig. 4.2 the temperature of the liquid begins to
increase again with increasing enthalpy and continues to do so until the
vaporization line is reached., If at some time after melting but before
vaporization the material is allowed to cool, the temperature falls until
Egqc and T are reached. When, as we have assumed, the cooling rate is small,
so that there is 1ittle undercooling, and there is crystalline material
contiguous to the material under consideration, the system will very nearly
reverse its heating path. This would correspond to near-equilibrivm epi-
taxial growth either from a crystalline substrate or from already formed
crystallites in polycrystaﬁine material.

Suppose, however, that the 1iquid is completely isolated from any solid
material that could serve as a template for epitaxial crystal growth. Then
the 1iquid may sustain large undercoolings until some nucleation event
occurs to initiate crystalline growtn or until the system reacnes Epy and
amorphous material forms at T. In fact, it may be possible that such a
system could be further undercooled to some other state resembling a true
glassy material, We will not consider this possibility here, although it

could be incorporated into the modeling without difficulty. If no nucleation

ot
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event occurs, Fig. 4.2 suggests that the system will return as a-Si. To
our knowledge, a-Si has never been formed by slow cooling from the liquid
state but the possibility cannot be ruied out. The more common observation
is that polycrystalline Si is formed, triggered presumably by some nucleation
event. The nucleation may occur in the bulk or at an interface, as discussed
in Sec. 2.3.

Returning now to our state diagram, we must consider what happens when

a nucleation event occurs. A precise answer to this is very difficult,

and prdbabiywﬁdtﬁknd;ﬁ_;arubgf cases of interest. In the present modeling
we have assumed that when nucleation occurs, the temperature of the solid
embryo is suddenly raised to T. because of the release of latent heat.
Although this may seem 1ike a reasonable assumption, it is probably in fact
an oversimplification since the kinetics of the nucleation process and the
thermal conductivity will govern the release of latent heat and its rate
of diffusion into the surrounding liquid. In other words, the growth of an
embryo will probably be interface 1imited. Moreover, the difficulty in
treating nucleation is compounded by the fact that it is essentially a three
dimensional process and we are trying to simulate its effects in a one-
dimensional, finite-difference calculation., If the density of nucleation
events is sufficiently high that three-dimensional effects occur only over
spatial regions small compared to the cell size of the finite-difference
calculations, a one-dimensional treatment can probably be justified, as
discussed in Sec. 4.2, In any case, it is assumed here that when a nucle-
ation event occurs in a given cell the temperature of the entire cell fis

raised to Tc by a vertical transition from the Ega~Eyn 1ine to the Ec-Ey.
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line. Such a transition is guaranteed to conserve energy. The quantities
Eyn and T, appearing on Fig. 4.2 are nucleation enthalpies and temperatures.
They are utilized in the modeling as follows. If the system (i.e., in
practice a finite-difference cell) is undercooled to temperatures in the
range from T, to T, and remains there for a time t,;, a nucleation event can
occur, provided certain other conditions specified by the state array are
satisfied. o

o bu; setvzoncrl' Virlri;nrstrat'lon of the use of the state diagram deals with the
situation shown in Fig. 1.1, j.e., melting of an a-Si layer and resolidifi-
catjon on a c-S§ substrate. In this case the enthalpy and temperature
increase along the "amorphous® line of Fig. 4.1 until E3 and T, in Fig. 4.2
are reached. The a-Si then begins to melt along the 1ine E;-Ey, with the
temperature remaining constant. At E,, the material is fully molten but
highly undercooled. If the temperature remains between T and T, long
enough for nucleatjon to occur, transitions to the E.—£,. 1ine will be made
as described in the preceding example. If the 1ine segment Eq,-Eqp is
traversed rapidly enough, .nucleat'lon will be suppressed although the 1iquid
may still be undercooled. For high enough energy input from the laser, the
14quid will be heated o T > T.. On cooling a variety of events can occur,
depending on the conditions specified in the state array discussed in
Sec. 4.3.

Our final example deals with the case mentioned in subsection 2.1 in
which solidification is so rapid that material that vias crystalline before
melting is found to be amorphous on solidifying. For simplicity, we assume
that the melting part of the process follows the same path as that for the
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first case considered. On cooling, however, we assume that when the velocity
of the melt front reaches some critical value v,, the 1iquid does not have
tive to form a crystalline solid and instead makes a transition to the
amorphous phase. Since such high velocities imply large undercoolings, it
is again necessary to treat the undercooling in some detail. However, it
is apparent that both the magnitude and the rate of undercooling are impor-
tant. For example, adhering strictly to the diagram on Fig. 4.2, it would
appear that the material must traverse the line Egp-Eq; in a time less that

ty so that nucleatjon can be suppressed if a-Si is to be formed.

4,2 Transition States, Mushy Zones, and Slush

As mentioned above, tne s ite diagram of Fig. 4.1 shows a segment
labeled "slush". In this subsection we elaborate on this terminology and
its meaning.

From the standpoint of a finite difference calculation, any particular
cell s sajd to be undergoing a transition when the material in the cell
js changing from one state to another; the most common transition will be
between the solid and liquid states. The liquid (or solid) fraction in a
given cell will be determined by the amount of latent heat given up at any
time relative to the total amount of latent heat involved in the phase
change. More specifically, the transition ratio can be defined as the
ratio of heat which has been absorbed or liberated after the transition
temperature .1as been reached to the total heat needed to complete the phase
change for a material in a given cell., The transition ratio says nothing

about the location of the phase front in the cell, and to locate such a
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front within a cell additional assumptions have to be made, as discussed
in the next section. If several contiguous cells are undergoing transitions
at the same time, the position of a phase front cannot be defined on the
spatial scale of the finite-difference calculation. The material in these
cells can then be envisioned as in a "mushy® state frequently referred to
as "slush®. Although this terminology is not elegant, it is descriptive

and it is often encounte.-ed in the literature3! in various contexts related

to the one discussed here (e.g., the growth of dendrites into undercooled
1iquids).

The discussion above seems to suggest that we should think of the
slush state on Fig. 4.1 more as an artifact of the finite-difference for-
mulation than as a true physical state. In those cases where there is a
well-defined phase front with an interfacial region mich smaller than the
width of the finite difference cell in which it js located, it is ciear
that reference to the whole cell as being in a mushy state is an outgrowth
of the finite-diffeence formulation. In those cases in which many cells
are undergoing transitions more or less simultaneously, it seems likely
that these cells constitute an extended zone in which a two-phase mixed
state resembling ice-water slush actually exists. An unlikely alternative
to this interpretation would be to assume that the entire extended region
constitutes an interfacial region in which the properties of the materijal
are changing from those of one phase to those of another uniformly. In any
case, we beljeve it is appropriate to classify slush or mush as a distinct

state on the state diagram.
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We should point out in connection with this discussion, that homoge-
neous or heterogeneous bulk nucleation over regions of only a few finite
difference ceils should also lead to the formation of extended slush zones
consisting of the nucleated solid material embedded in c he undercooled
liquid. These effects are easily identifiable in some of the modeling that
has been done with LASERS.

4.3 State Arrays

LASER8 has the capability of treating many different phases and states
simultaneously. In fact, the only fundamental requirement for a given
finite-difference cell s that at any instant its state must be specified
by the equation of state, or in other words, its temperature and enthalpy
must correspond to a point on the curves of the state diagram. The time
evolution of the state of a cell is determined by transitions between points
on the curves of the state diagram. We have found it convenient to sum-
marize the conditions under which a transition can be made from one state
to another in the form of a state array. This array is used only for book-
keeping and is not involved in any algebraic manipulations; its implemen-
tation in the computer program is by way of a computed branching statement.

Figure 4.3 gives the simplest non-trivial form of a state array. It
would be appropriate for the case in which only melting and crystalljzation
of a single material, e.g., c-Si, is considered and overheating and under-
cooling effects can be neglected. This is the Stefan problem treated so

often in the literature and already referred to above (see Refs. 21 and 22).
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Fig. 4.3. State array for simple case of melting and crystallization.
¢ - crystalline; mc - mushy crystal’ine; 2 - liquid

Let us consider the elements of this array and how a given cell is trans-
formed from one state to another. The diagonal elements of the array are
blank because they represent no change of state. The (c, &) and (&, c)
elements are blank because all transitions between solid and 1iquid states
must go through an intermediate mushy state as the melt front moves through
a cell, The melting and subsequent crystallization process is given by the
sequence ¢ » mc + & » m > c. Because of the simplicity of this probliem
the conditions making up the array elements depend only on the enthalpy and
it 1s not necessary to specify the state of neighboring cells, values of
nucleation timers, etc.

Figure 4.4 shows a version of the very complicated state array used
in setting up LASERS for studies of the situation depicted in Fig. 2.1.
This version §s used here only for §llustrative purposes and is not neces-

sarily the one most appropriate for reproducing the experimental results
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1 2 3 4 5 6 7 8 9
1 E>Ec crystal
2 B> large grain
3 E>Ec i fine grain
4 B>ty amorphous
5 E<E, E>Eg4d m. amorphous
E<E.
6 |16x | E<Ec E>Eyq m. crystal
x61
7 E<Ec E>Eyq m. fine grain
E<teq
8 s8X E<Eqd 1iquid
x8s
E<E1 tl. >td E<E1n E>E.‘.C
9 L | £t supercooled
Fig. 4.4. One version of the state array for the melting and resolidifi-

cation of an a-Sf layer on a c-S§ substrate. The labels on the
right-hand side provide the correspondence with the numbering
scheme of the array elements; m. stands for "mushy.” t; and t,
represent timers contained in the computer program. See the
text for further details of the notation.
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that have been obtained for melting of a-Si overlayers. Determination of
the proper form of the state arrar for a complex problem can itself become
a research undertaking. It should be noted that the state array contains
a state labeled "m. fine grain®. We found it seful to explicitly introduce
such a state even though its latent heat and transition temperatures were
assumed to be the same as those for mushy c-Si. In the same way, a mushy
LG p-Si state could have been introduced but we did not find this useful.
The physical significance of mushy zones has already been discussed in
Section 4.2 and will not be considered further here. From a strictly
programming standpoint they always appear as precursors to their solid state
counterparts because the material in a finite-difference cell cannot change
from a liquid to a solid state instantaneously (or more precisely in one
time step). We will also consider a few of the elements of this state array
and examples of how a cell can be transformed from one state to another.
The first example is a very simple one involving melting of the c-
state. When the enthalpy of a given cell is increased to > E; the material
makes a transition to a mushy crystalline state, as indicated by the (1,6)
element in the state array. If the enthalpy continues to increase until
E > Eyc, the cell makes a transition to the normal liquid state with T > T;
this transition is given by the (6,8) element of the array. If there were
no amorphous layer present and overheating and undercooling effects were
negligible, melting and subsequent solidification on cooling would follow
the path 1 » 6 » 8 » 6 » 1, The (8,6) and (6,1) elements of the array give
the conditions on the enthalpy for the indicated transitions to occur, but
they also show that certain other conditions involving neighboring cells

must be satisfied in more general cases.

D B



-35-

First let us introduce a notational form to help in specifying these
conditions. The general form employed consists of a sequence of three
letters abc and means the following: the cell under consideration is the
b cell and it can in principle be assigned any state number, the cell imme-
diately to its left is the one nearer the surface and is labeled a, the
deeper lying neighbor of b is the c cell. When a or ¢ can be any state they
are assigned the value x. If a neighboring cell is solid but the form of
the solid is unimportant, a and ¢ are assigned the letter s. If a neigh-
boring cell is 1iquid but it is unimportant whether the liquid is normal or
undercooled, a and ¢ are assigned the letter 2. In all other cases, a
state index number will indicate the condition of cells a and c.

Let us now consider the (8,6) element further. The appearance of the
notation s8x means that the b cell (the cell under consideratjon) is in a
1iquid sfate, its neighbbr to the left is solid, and the state of the neigh-
bor to its right need not be specified. If these cornditions are satisfied,
the cell can make a transition to mushy crystalline material. However, the
cell can 21so make the same transition if the states of a and ¢ are inter-
changed. In either case the b cell is now in a mushy crystalline state and
can make a transition to crystalline (6,1), LG polycrystalline (6,2), or FG
polycrystalline (6,3) if the enthalpy drops below E.. If the enthalpy of
the cell increases to above Eyc due to additional energy input rrom the
laser pulse or from the release of latent heat in other cells, the b cell

can remelt.
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In the second example we will consider the conditions for each of the
transitions that a supercooled 1iquid cell can undergo according to Fig. 4.4.
These conditions are all on row 9 of the array. The (9,5) element requires
that the change from supercooled liquid to mushy a-Si occurs when the
enthalpy of the cell falls below Ey,, the minimum enthalpy that a cell can
have and still be entirely liquid. The second possible change, given by
(9,6), is from supercooled 2-Si to mushy c-Si. For this to occur a timer
(TIMER1 in the program listing of Appendix B) must be greater than ty4, a
specified nucleation or growth delay. This delay can be thought of as the
time it takes for solidification of a supercooled 1iquid from an imperfect
crystalline (e.g., a FG p-Si) interface to become estabiished in a preferred
growth direction; it is associated with the interface kinetics. TIMER]
keeps track of how long a supercooled cell has a neighboring cell that is
either crystal, large-grained polycrystalline, or fine-grained polycrystal-
1ine. This state array assumes that nucleation and growth of a crystalline
phase cannot occur off an amorphous interface. (The justification of such
an assumption has not been clearly established.) The third transition (9,7)
is from supercooled 1iquid to mushy FG material. This was assumed to be the
path taken when the 1iquid nucleates. Two conditions must be met. First,
the enthalpy must be less than E,, the enthalpy above which bulk nucleation
is improbable, and sacondly a timer (TIMER2 in the program 1isting) must
be greater than t,, the specified nucleation time. Physically it is the
time it takes for a nucleus of critical diameter to form within a cell under-
cooled below T,. Finally, element (9,8) indicates that supercooled 1iquid

can change to normal 1iquid. This occurs when the temperature of the 1iquid
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equals or exceeds the melt temperature of the crystalline state. The con-
dition for the change is that the enthalpy of the cell must exceed Eyc, the

minimum enthalpy for which normal liquid material can exist.

5.0 WNumerical Methods

In this section we discuss several aspects of the numerical methods
used in LASER8. Additional information about these methods can be found

in f\bpendix A and by studying the program listing in Appendix B.

5.1 Dynamic Rezone

Two forms of grid expansion are employed in LASERS. Thefe is an initial
growth of the mesh which follows the energy diffusion into the material,
and then there is a buffer region added to the deepest part of the mesh to
approximate a semi-infinite slab. With the exception of the buffer region
all the nodes are equally spaced on the grid. This facilitated the coding
and perserves the order of accuracy for the scheme. Grid expansion is done
jn the following way. Initially N nodes spaced AX apart are laid down
starting at the surface. This mesh need not extend deeper than the depth
the laser radiation penetrates into the slab. As the problem progresses
the enthalpy of each of the nodes changes, and in particular the enthalpy
of the N-1 node may exceed some small value AE above the ambient value.
When this occurs a new node of width AX is added to the grid at ambient
conditions, and N is incremented accordingly. When the enthalpy of the new

N-1 node exceeds AE, another node is added and the process repeats itself
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until N equals NMAX, the maximum number of nodes specified. NMAX should
be large enough to extend the mesh well beyond the anticipated maximum melt-
front penetration. This type of expansion of the equally spaced grid is
completed when NMAX is reached and the second type of ekpansion is initiated,
as described next,

Once the grid has been expanded to its jnitially defined maximum value,
NMAX, and the NMAX-1 nodal enthalpy has exceeded AE, LASER8 adds M more
nodes as a buffer to the grid. These nodes are laid down on a geometrically
expanded buffer mesh where the expansion factor of each succeeding cell is
given by 2 e.g., the first added cell has width 2 AX, the second 4 AX,
etc. Thus the total width of this buffer is mgl 2" AX into the slab, After
the buffer is added, only the NMAX + M-th node is considered to be at ambient
conditions, the enthalpy and temperature of all the other nodes are calcu-
lated using the finite-difference equations described in Sec. 3.4. Although
an expansion rate of 2" has worked well with all the problems to date,
there may be times when another rate is desired. This rate is set in a

module of the program, as discussed in Appendix A.

5.2 Phase Front Location and Velocity

Strictly speaking the position of a phase front in a finite-difference
calculation cannot be determined with greater accuracy than one cell width,
If the mushy zones discussed in Section 4,2 extend across more than one
cell, the location and even the definitfon of phase fronts become uncertain,

However, in those cases in which a mushy zone does not extend more than
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one finite cell width it is possible to interpret the fraction of the latent
heat of melting given up by the cell (i.e., the transition ratio of Sec.
4.2) as defining the position of the melt front witnin the cell. In a one-
dimensional calculation the procedure is particularly simple because the
position of the melt front can be determined straightforwardly from the
melt fraction by 1inear interpolation. This is how LASERS treats the problem
of locating a single melt front. In those cases in which more than one melt
front is present in the material at the same time, the present version of
LASERS follows only the front nearest the surface. However, after a calcu-
lation is over the movements of all fronts can be determined from the final
output showing the history of all the cells (see, e.g. Figs. 6.8 and 6.9).

At each time step the state of every cell is specified. If a particular
cell is known to be in a mushy state, its enthalpy will change from one
time step to another while its temperature remains constant. The change
in enthalpy can be interpreted as a change in the position of the melt
front and this change divided by the fundamental time interval gives the
velocity of the melt front. The difficulty with this procedure is that the
time step is so small (~10-1% sec) that the position of the melt front may
oscillate about the true position and give large fluctuations in magnitude
and sign of the velocity. This can have serious implications for certain
applications of LASER8 because some of the program switches may be baseu
on the velocity uf the melt-front, as for example in the case in which it
is known that a-Si is formed from :-Si when the melt-front velocity exceeds
~15~20 m/sec in 100 directions. Also, in the application of a boundary

condition such as that of Eq. 2.4, it is necessary to know the velocity in
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order to determine the interfacial undercooling. Finally, one may wish to
base some switching on the condition that the melt front has reached its
maxjmum penetration. This condition is most easily determined by monitoring
the change in sign of the velocity, but it will be reliabie only if spurious
fluctuations in the velocity can be removed by an averaging procedure.

In order to define the front velocity with sufficient accuracy, it is
necessary to carry out some form of averaging of the melt-front position
over time before calculating the velocity. To do this we have used an

equation of the form
V= (az - al)/NAt » ’ (5.1)

with

n n
az = z dz(tj)/n; dl = z dl(ti)/n . (5.2)
j=1 j=1

n is the number of consecutive time intervels over which the distances d,
and d; are averaged to determine d, and d; to be used in Eq. 5.1, The
choice of values of n and ‘N to use in a given calculation should be related
to the magnitude of v and how it changes with time. Presumably n can always

be taken << N and in many cases it may be sufficient to take n = 1,

5.3 Treatment of Thermal Conductivity

Primarily because of the existence of mushy cells, the best method for
dealing with the thermal conductivity in a finite-difference treatment of
a moving boundary problem is not obvious. As a consequence, we carried out
extensive testing of three different methods for treating the conductivity

under the assumptions that the phase front is sharp and that its position
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js given by the solid fraction of the cell, as discussed above. It can be
seem from Eq. 3.10 that the effective conductivity between two cells has
been taken as the average of the conductivity of the material in each of
the two cells. This is the standard approach used in most finite-difference
calculations, but problems can be expected when one or both of the cells
contain slush.f The problem is particularly troublesome when the conduc-
tivities of tﬁe material composing the slush differ greatly. Figure 5.1
shows the thermal conductivity of c-, a-, and 2-Si as a function of tem-
perature; also shown is the specific heat. The value of K for a-Si is an
order of magnitude less than that for £-Si. The question then concerns the
value of K to be assigned to a cell containing a changing mixture of phases

as the melt front moves through.
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Fig. 5.1. Thermal conductivity (K) and specific heat (C,) as a function of
temperature for the various phases of s‘lico*ﬁ
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In the first method tried, an equivalent conductivity in a mushy' cell

was calculated from the equation

X 1-
g - (5.3)
or
A KsKy (5.4)
Ke  XsKy + (I-XgJKg *

Here, X5 is the solid fraction and Kg and K, are the thermal conductivities
of the solid (crystalline or amorphous) and liquid, respectively. This
conductivity was then used in Eq. 3.10 to determine the conductivity between
cells. Intuitively this method is the most physically reasonable of the
three tried. Unfortunately its implementation in the calculation led to
nonphysical behavior of the temperature near the melt front. As a melt
front moved through a cell, oscillations of the temperature in the neigh-
boring cells were set up that worsened as the range over which the conduc-
tivities varied increased.

The second method was similar to the first except the effective con-

ductivity nf a cell was assumed to vary according to the relationship
This method reduced the temperature oscillations seen with the first method
but did not eliminate them. As the mesh was refined, the magnitude of the
oscillations decreased, confirming that this behavior was nonphysical.

The third and final method tried was the simplest and gave the best

results in the discrete formulation. In this method the conductivity was
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assumed to be constant as a melt front moved across a cell. The conductivity
between cells was taken to be the average of conductivities of adjacent
cells. This method eliminated the oscillations, leaving only the step
changes 1h temperature present in all three methods and caused by the change

of phase process.

5.4 Analytical Approximations of Mumerical Functions

Input data such as the thermal conductivity and specific heat as a
function of temperature, the temporal shape of the laser pulse, and the
various segments of the state diagram (T = T(e)) will generally be given as
numerical functions. To make the computer program as efficient as possible,
it was decided 10 approximate these funciions by analytical forms so that
table look-up and interpolation subroutines could be avoided.

A1l of the functions used in the program can be approximated by simple
analytical forms over one or more ranges of the independent varia_ble. Study
of the program 1isting given in Appendix B will show that the excimer laser
pulse shape used in some of the test calculations has been approximated by
two quadratics, the function used to describe the temperature as a function
of enthalpy was obtained by solving a quadratic for e(T), and the thermal
conductivity of c-Si was approximated by an exponential, while that of g£-S§
was approximated by a straight line.

Obviously, 2 user who prefers to work directly with numerical functions

can easily modify the program to make this possible,
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6.0 Results of Test Calculations

In this section results of several test problems will be considered.
The accuracy of LASER8 was explored using two problems with analytic solu-
tions as well as by comparison with results from HEATINGS. Infurmation on

the performance and efficjency of the program was gathered while running

several test cases which are described fully in Ref. 25. Finally, the

results of a multiphase laser annealing example are given to demonstrate
some of the unusual capabilities of LASERS8. Al1 the tests and examples were
run on the IBM 3033's of Oak Ridge National Laboratory.

6.1 Accuracy Tests

The accuracy of the LASER8 program was tested by comparison of the
finite-difference solutions with solutions of two problems that can be
solved analytically. One of these problems does not involve a phase change
and will be discussed in Sec, 6.2; it is given in Carslaw and Jaeger?’ as
problem VI on page 80. The other problem, also given in Ref. 21 (page 287,
problem 11I), involves the propogation of a melt front into a material and
represents a fairly stringent test of LASER8; we discuss it first as a test
of accuracy.

The problem considered first deals with a semi-infinite sample in which
the solid is initially at a constant temperature Ty, less than the melting
temperature Tc' For all1 t > 0 tne surface is held at some temperature
Tsur > Tc. Expressions for the melt-front position and the temperature
profiles in the 1iquid and solid as a function of time are given in ana-

lytical form. The test problem was simplified by assuming the thermal
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properties of the 1iquid and solid to be the same. The temperatures Tjp, Tc»
and Tg,r were taken to be 0°C, 50°C, and 100°C, respectively. The tempera-
ture profiles generated by the amalytic solu;ion and by LASER8 at a time
1.301 sec after t = 0 differed by less than 0.5 degrees except at the
position of the melt front where the differences were somewhat higher, as
might be expected. The maximum absolute error of the finite-difference
calculations is large at early times because of the difficulty in treating
the step change in temperature at the surface. However, this error quickly
damps 2ut and is less than a half a degree at 1.5 sec.

We concluded from the results of the tests calculations mentioned in
this subsection that LASER8 gives an excellent approximation to the solutions

of the analytical test cases.

6.2 Test Runs

a) Linear Picosecond Test Problem

The experiment simulated involves a constant-intensity laser pulse of
200 psec duration impinging on the surface of a silicon wafer assumed to
have the constant optical and thermal properties given in Table 6.1,

Figure 6.1 shows the lucation of the melt front as a function of time.
The two curves were generated by HEATINGS and LASER8, as indicated on the
figure, Shortly after the laser pulse stops, at 200 psec, the 1iquid silicon
begins to recrystallize and the melt front to retreat back to the surface.
Both codes show complete resolidification at about 1.26 nsec. Figure 6.2

is an enlargement of the region around the onset of melting on Fig. 6.1.
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Table 6.1. Input data for the linear picosecond test case.

Variable Value Units Description

Ey 0.3 J/cm2 incident laser energy
ty 10-10 sec pulse half width

R 0.6 - surface reflectivity
a 108 cm-l absorption coefficient
K 1.5 J/g deg sec thermal conductivity
Cp 1.0 J/g deg specific heat

P 2.33 g/cm3 density

L 1500 J/g latent heat

Tc 1410 °c melting temperature
Tin 20 °c initial temperature

The "scallops” evident in this figure are inherent in a finite_volume formu-
latjon, with the size of the scallops dependent on the cell size used in
the discretization. From Figs. 6.1 and 6.2 it is evident that the agree-
ment between the two calculations is excellent even though some quite
different numerical techniques are used in the two computer programs.

The temperature at the surface produced by the models is also of
interest. The rapid increase in surface temperature produced by the laser
pulse is shown in Figure 6.3. When the pulse is over, the surface tempera-
ture quickly drops to the melting temperature where it remains untii soli-

dification is complete; this is the same behavior generally found in this
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type of calculation®. Figure 6.4 provides a detailed examination of the
surface temperature at the onset of melting. As we would expect, the tem-
perature remains constant at T. for the short time it takes the first cell
to melt. It then begins a stair-step rise as each successive cell accumu-
lates the energy required for the melting process. As the distance between
the melt front and the surface increases, the effect of the scalloping of
the melt depth in Fig. 6.2 is reduced because of the increasing amount of
liquid silicon. The rise in surface temperature on Fig. 6.4 becomes smoother

the farther the melt front penetrates into the sample and away from the

surface.

An analytic solution for this heat conduction problem is possible before
the onset of melting. Temperature profiles at 8.25 psec after the beginning
of the laser pulse are shown in Fig. 6.5; obviously there is again excellent
agreement between the analytic and LASER8 solutions. This figure provides
good evidence that the cell width used for these runs, AX = 25 x 10-8 cm,

was adequate to accurately resolve the laser energy profile.

b) Nonlinear Picosecond Test Problem

The constant properties used in the problem above are not realistic

because both the thermal conductivity and the specific heat vary with tem-

perature, From measured values of these properties, either table look up
procedures or fitted analytic functions can be used to obtain the values
at a given temperature.

The nonlinear picosecond case differed from the 1inear one in only two
respects. First, the values for Cp and K were temperature dependent. The

LASERS code used a fitted function to evaluate the properties while the

i
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for the 1inear picosecond test case at a time before melting

occurs.

t is the time after the beginning of the laser pulse.
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HEATINGS code used linear interpolation between tabular values. Second,
the energy density was lowered to 0.1 J/cm? so that the surface would not
vaporize before the pulse was over. Vaporization in the linear problem was
not allowed although the temperature exceeded the vaporization point
briefly. The thermal conductivity of silicon falls rapidly with temperature
to a value much less than that shown in Table 6.1 (see Fig. 5.1). As acon-

sequence a pulse of 0.3 J/cm? would cause excessive surface vaporization.

Figure 6.6 compares the computed melt depths and surface temperatures ~-

from HEATINGS and LASERS calculations. Again excellent agreement between
the results obtajned with the two codes was found. The calculations with
HEATINGS were terminated after ~300 psec because of the long running time

on the computer.
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Fig. 6.6. Comparison of melt depth and surface temperature as a function
of time from LASER8 (L8) and HEATINGS (H5) calculations for the
for the nonlinear picosecond test case.



c) Nanosecond Test Problem

In additional testing of LASER8, we ran a problem with a triangular
(isoceles) pulse of 20 nsec FWHM using temperature-dependent values of the
thermal conductivity but a constant value of the specific heat (Cp =1 Jd/g
deg). These choices were made in order to reduce the differences introduced
by the use of analytical (LASER8) and numerical (HEATING5) functions for
Cp and the pulse shape. Figure 6.7 shows the comparison of the melt-front
profiles obtained with the two programs at energy densities of 1.2 and 1.4
J/cm?. The agreement is very good with the greatest differences being less
than the finite-difference cell size of 100 A. Correspondingly good
agreement was also obtained for the surface temperature as a function of

time, but we will not show that here.
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Fig. 6.7. Comparison of melt-front profiles obtained from LASER8 and
HEATINGS calculations for energy densities of 1.2 and 1.4 Jfcm2,
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6.3 Performance Comparisons

A study was made to compare the computational efficiencies, or per-
formance, of LASER8 with HEATINCS and with two research codes developed
during the evolution of LASER8. The results of these studies are discussed
jn Ref. 25 and will be summarized only briefly here. ?irst, however, we
again emphasize that LASER8 was designed to study problems inaccessible to
HEATINGS, and that as a consequence the programming philosophy of the tuo'
programs is quite different. To be more specific, the constraints imposed
by the state array and by temperaiure-dependent thermal and optical pro-
perties made it difficult,‘and probably undesirable, to employ in LASERS
some of the numerical techniques used in HEATING5. For example, HEATINGS
uses Levy's modification of the classical explicit procedure (see page 10
of Ref. 3) to speed up the calculations by adjusting the time step as the
calculation proceeds. The introduction of the Levy technique into LASERS
was judged to be undesirable because of the requirement of energy conser-
vation while iterating on the state array.

For problems in which the time step was held constant during a calcu-
latjon, LASER8 was found to be more than a factor of ten faster than
HEATINGS5. However, when HEATINGS was run with the Levy option to adjust
the time step, the running times became comparable for calculations such
as those leading to Fig. 6.7. Presumably, any type of accelerator intro-
duced into LASER8 would result in it again being faster; this might be a
direction for the future development of the program but because of the
state array considerable care will be needed to ensure that stability con-

ditions and conservation of energy are not violated.
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6.4 A Complex Multiphase Laser Annealing Example

In order to demonstrate the unusual capabilities and flexibility of
LASER8, a more complex example than those used in the test cases given above
will now be considered. The basic problem corresponds exactly to that shown
schematically in Fig. 2.1. One version of its state diagram is shown in
Fig. 4.2 and discussed extensively in Section 4., We will not provide the
details of the probiem and the choice of input data here except to remark
that the a-Si layer was 1900 A thick, the cell size was 100 A, and the laser
pulse shape corresponded very closely to that shown in Fig. 3.2. Instead,
attention is drawn to the richness of the results that can be obtained, as
jllus.rated in the following discussion which considers how the effects of
bulk nucleation and the phenomena of “explosive crystallization" can be
simulated. We emphasize that the examples given here are not intented to
closely replicate experimental results; they were choscn simply to illustrate
the power of LASERS.

Figures 6.8 and 6.9 are reproductions of one form of the computer
output, with lines indicating the boundaries between various regions drawn
in by hand. The letters on a figure indicate the state of each finite-
difference cell at the time printed on the left hand side. The letters
have the following correspondence: € » c-Si; A » a-Si; S » 2-S§ below T,
(supercooled); L + 2-Si at T. or above; F » fine-grained polycrystalline

mater al, and P + large-grained polycrystalline materjal.

a) Bulk Nucleation

Figures 6.8a-c show the type of behavior that follows from a simula-

tion in which bulk nucleation, leading to the formation of fine-grained
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except the left-most represents a cell size of 100 A; the sur-

Melting and solidification of an a-Si layer on a c-Si substrate
face cell is 50 A,

array was set up to simulate bulk nucleation.

frradiated with an excimer laser pulse of 0.

Fig. 6.8a.
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polycrystalline material, was forced té play a prominent role. From Fig.
6.9a, which shows the results of a calculation for Ey = 0.2 J/cm2, we see
that the material in the first finite-difference cell began to melt at ~18
nsec and so became mushy (M). The nucleation timer was set at 4 nsec and
consequently the first cell nucleated at 22 nsec, followed by nucleation of
the second cell at 26 nsec; the nucleation temperature T,, set at 1250° for
these calculations, was never exceeded in these cells before the nucleation
event. During the time from 22 to 38 nsec, the region from the surface to
the melt front consisted of a mixture {slush) of solid and supercooled
1iquid due to bulk nucleation events. The penetration of the melt front
into the a-Si was produced primarily by the release of latent heat. This
effect becomes particularly apparant after 36 nsec when the surface region
had solidified but a buried molten layer continued to penetrate into the
solid, driven by the release of the latent heat of crystallization (L. =
1800 J/g) which is greater than the latent heat of melting of a-Si (L =
1319 J/g). This effect is very similar to explosive crystalljzation
described below but differs from it in that the latent heat is released by
successive nucleation events rather than by growth from a solid-1iquid
interface trailing behind the melt front (see Fig. 6.9a). The resolidified
layer is shown as being composed of a mixture of FG and LG p-Si, but exper-
imentally the LG material with 200 A grain size would be indistinguishable
from the FG material with 100 A grain size.

Next, we consider the sequence of events jllustrated on Fig. 6.8b for
a laser pulse energy of 0.4 J/cm2, At ~10 nsec the first cell began to
melt and 4 nsec later nucleation occurred in it; by the time the first cell

nucleated the melt front had penetrated to the fifth cell (~500 A). By the
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30th nsec, additional nucleation events and the formation of FG materijal
have occurred in the 3rd, 8th, and 1lth, resulting in an extended region
filled with a mixture of phases and states. At the 38th nsec the maximum
melt front penetration has been reached, most of the mixed region has
solidified, while the temperature of the molten material near the surface
has risen above 1410°C, as indicated by an L in the surface cells. Finally,
at ~60 nsec, the melt front originating from this near-surface region
returns to the surface and solidification is complete. The appearance of
a LG p-Si region within approximately 10 cells of the surface and a FG
region in the 1llth to 15th cells in the solidified material was dictated
by conditions specified in the state array, which were chosen to qualita-
tively simulate the experimental observations,

Figure 6.8c shows the results for E, = 0.6 J/cm2. Nucleation occurs
only at the surface and near the 1iquid-solid interface. This behavior
results from the fact that although for times less than 30 nsec the majority
of the liquid is undercooled for longer than 4 nsec, bulk nucleation does
not occur in most cells because the temperature is above the nucleation
temperature. Only when the melt front pauses at its deepest penetration is
the 1iquid below T, for the 4 nsec required for nucleation. For times
greater than 32 nsec, the temperatures of all molten cells, including that
of the remelted surface cell, are above the melting point of c-Si at T, =
1410°C. The melt front subsequently returns to the surface in a manner

typical of c-Si at a velocity of ~4 m/sec.

b) Explosive Crystallization

Figures 6.9a-c show the results of calculations designed to simulate a

somewhat different physical phenomena than that of Figs. 6.8a-c, Whereas
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Fig. 6.9a. Results of a calculation similar to that of Fig. 6.8a but with
the LASER8 program modified to simulate "explosive crystalli-
zatjon*. The energy density was 0.15 J/cm2,
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Fig. 6.9. The same as Fig. 6.9a but with Ey = 0.2 J/cm2,
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Fig. 6.9c. The same as Fig. 6.9a but with E; = 0.4 J/cm2,
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the model ing 1eading to the latter allowed bulk nucleation to occur through-
out an extended region, the calculations discussed here confined fhe nucle-
ation events (indicated by the first appearance of FG material) to a region
very near or at the interface. Once a nucleation event occurred, the newly
solidified material was allowed to serve as a seed for further growth thus
making additional nucleation events unnecessary.

Figure 6.9a shows what might be described as a pure explosive crystal-
Tization process. The laser pulse with Ey = 0.15 J/cm? caused the surface
to melt at 15 nsec and the melt front initially just barely penetrated
beyond the first cell. The basic LASER8 program was modified slightly to
require that the nucleation of polycrystalline silicon be suppressed until
after the melt front just began to return to the surface (by monitoring the
sign of the melt-front velocity). The release of latent heat then drove the
melt front into the next cell in a manner similar to that shown in Fig. 6.8a.
However, in the present case, polycrystalline material was allowed to grow
off the already crystallized layer at the surface so that after each new
cell was melted it could resolidify by using the cell adjacent to it on the
surface side as a seed.

Figures 6.9 and c show the evolution of the solidification behavior
as the energy density is first increased to 0.2 J/cm2 and then to 0.4 J/cm2,
This behavior can be described as a mixture of normal and explosive crystal-
1ization, with Fij. 6.9c showing the simultaneous propagation of a buried
molten layer into the solid and a more normal return of the melt front to

the surface from the initially nucleated cell,
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7.0 Concluding Remarks

In this report we have described the conceptual basis, the development,
and the usage of the computer program LASER8. Here we wish to emphasize
again that LASERS is primarily a research tool, designed to have the capabi-
lity of 1ﬁvestigating some of the most difficult problems presented by the
experimental results on pulsed laser processing of semiconductors, such as
Si, Ge, and GaAs. These problems are associated primarily with ultrarapid
melting and solidification and include the role of undercooling and over-
heating in a phase change, the way in which interfacial kinetics influence
the undercooling, and the way in which phase nucleation can be simulated
in a heat flow calculation. Because definitive solutions to these problems
are not yet known, our treatment of them will continue to be studied
intensively, with the result that LASER8 will undergo continual evolution.
It is really not appropriate then to speak of a single computer code called
LASER8 that can be used routinely as a tool to study engineering type
problems. We believe the ideas and numerical techniques underlying LASERS
are much more important than the code itself. Consequently, those who
choose to use LASER8 are encouraged to experiment freely with it if they
feel so inclined.

The illustrative examples given in the report are just that, and not
jntended to reflect our current thinking on the problems they represent.
For example, the very complex solidification behavior and morphologies of a
pulsed laser irradiated a-Si overlayer on a c-Si substrate are still being
studied intensfvely and the results shown on Figs. €.8 and 6.9 are meant
only to jllustrate that complexity. The results of more refined studies of

this problem will be reported in later publications,
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Another comment in this same vein concerns the other problem discussed
in Sec. 2 which stimulated the development of LASER8, i.e., the transfor-
matjon of c-Si to a-Si by pulsed laser irradiation. The picosecond test
cases of Figs. 6.1 and 6.6 show regrowth velocities of ~100 m/sec, well
above the velocity at which a-Si should be formed although we did not allow
for it. The processes involved in this transformation almost certainly
involve very strong undercooling of the 1iquid during the return of the melt
front to the surface. Although LASER8 provides a framework for including
this undercooling, the exact way in which it is to be incorporated into a
calculation has not been discussed here. This too is a research problem we
hope to report on shortly.

Finally, it should be apparant that the techniques used in LASER8 are
applicable to a much wider class of problems than those of laser annealing
of semiconductors. Obviously the same techniques can be applied to rapid
heating and cooling of metals, insulators, and ceramics. Silicon has been
emphasized in this report because it was the material entering most promi-
nently in the development of laser annealing. As we have seen, a-Si has a
latent heat assocjated with its melting and solidification that js almost
as great as that of c-Si (Fig. 4.1). True glassy materials do not melt or
solidify in this way. LASER8 should provide a powerful tool for the study
of the glass transformation in glass forming materjals because of the great

flexibility provided by the state diagram and the state array.
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Appendix A
A Guide to the Use of LASERS

A.0 Introduction

LASER8 is controlled through four input 1ists: DIMEN, PULSE, BCIC,
and MATPRP. These set values of parameters associated with the finite-
difference calculation, the laser pulse, the initial conditions, and the
material properties respectively. In the version of LASER8 described here,
starting conditions are limited to a pure crystal, an amorphous layer on a
crystalline substrate, an all amorphous material, or restarting from any
configuration of the nine allowable states shown in the state array of
Fig. 4.4. The laser pulse can have any user-defined profile (a specific
excimer laser profile is given in the program 1isting in Appendix B) or the
user may wish to use the triangular or square pulse approximations built
into the code. A triangular pulse is often a satisfactory approximation
to a gaussian or a skewed gaussian,

LASER8 is written in modular, top-down programming. Thus modifications
can be made inside a mdule, for example by adding other states or materials
jnto the module “UPDATE NODE STATFS", or entire modules can be removed and
replaced with compatible modules. Of course, a series of similar problems
can be run just by modifying the input parameters. A description of all

the input quantities follows.

INPUT LIST MEMBER DESCRIPTION

DIMEN
N = number of nodes actually being calculated; it
should initially be large enough to fully
describe the penetration of the laser radiation
into the material.
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PULSE

BCIC

MATPRP

DX
NVS

DTOUTG
DTOUTD

TH
EL
ALPHA

RS,RL
ISHAPE

TINIT
XA

ISTARY

T0
TP

maximum number of nodes that will be used (< 240);
once NMAX is reached 10 nodes are extended into
the slab to a depth of 1024 times DX.
constant space step used for entire problem.

number of time steps between two averaged melt-
front positions used in a velocity calculation.

number of time steps used in éveraging the melt-
front position for use in a velocity calculation.

time step between state graph outputs.

time step between temperature and energy profile
outputs. .

half the total width of the pulse.
energy density of the pulse.

absorption coefficient of material at the wave-
length of the laser pulse.

refiectivity of solid and liquid, respectively.

1 for a square pulse,

2 for a triangular pulse, and

3 for a user supplied pulse profile (area must be
normalized to unity’ .

initial temperature of entire slab.

depth of the amorphous layer; XA =0 if no
amorphous layer is present.

0 if starting time = 0.0, and
1 if a restart file continuing from a set of
conditions is to be read.

decision value for TIMER]

decision value for TIMERZ; usually taken as the
time required for a critical nucleus to form in a
cell in a supercoc’ed melt.
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RHO = density of material; presently assumed constant
and equal for all phases.

TA = melt temperature of amorphous material.

HA = Jatent heat of amorphous materijal.

TN = temperature above which a critical nucleus cannot
form in a supercocled melt.

HC = latent heat of crystalline material; polycrystal-
1ine material assumed to have same value.

TC = melt temperature of crystalline and polycrystal-
line material.

CL = specific heat of 1liquid material (assumed

constant).

A.1 Inputing a Laser Pulse Profile

To input a laser pulse profile into LASERS the module labeled CALCULATE
ABSORBED LASER ENERGY PROFILE must be modified. Certain properties of the
brofile are assumed by the code and care must be taken that these are met.
First, for any given profile, the area should be determined and used to nor-
malize the area under the new profile to unity. The normalized numerical
profile should then be piecewise fit with some continuous functions, e.g.,
parabolas. Usually two or three parabolas are sufficient. For continuous
profiles the area is normalized by dividing the functional representation by
the original area.

Inside the module labeled CALCULATE ABSORBED LASER PROFILE are three
sections. The first is for a square pulse. The second is for a triangular
(isosceles) pulse. The third is for a user supplied normalized profile.
The first 1ine of this section must be labeled with 89 and the last 1ine of

the section is GO TO 86. The profile is inserted in the following form:
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S1 = S1*PULDUR*(value of profile at this,tile).
If the profile is a piecewise fit of several curves and/or straight lines,
then this 1ine would be preceded by an IF test like:

IF(TIME.LE.end of piece one) S1 = S1*PULDUR*(...),
and so on for each of the pieces of the profile. The profile is a function
of TIME which is the elapsed time in seconds since the pulse began. The
other varjables, S1 and PULDUR, are described in the following section.

A.2 Varjables used in LASERS

Here we give an alphabetical 1isting of all the variables used in
LASER8 and a short description of each.

ALPHA Absorption coefficient of the materjal at the laser wavelength
CL Specific heat of 1iquid material
DE Difference in enthalpy between crystal and amorphous phases at

the melt temperature of amorphous material
DELTAE Increase in enthalpy needed before a new node is added
DEPTH Depth of the melt front

DIFMAX Maximum diffusivity of the materjal - used to determine stability
criterion

DT Time step
DTOUTD Time between outputs of temperature and energy profiles
DTOUTG Time step between state graph outputs

DX Constant space step used for entire problem
E() Enthalpy array
EA Enthalpy at which amorphous material begins to meit

EAINIT Initial enthalpy in amorphous cells
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EC Enthalpy at which crystalline material begins to melt
ECINIT Initial enthalpy in crystalline cells

EIN Enthalpy above which no nucleation occurs

EL Energy density of the pulse

ELA Enthalpy above which amorphous material is liquid
ELC Enthalpy above which crystalline material is liquid
HA Latent heat of amorphous material

HC Latent heat of crystalline material

IPHASE State number of a particular cell (see ISTATE)
ISHAPE Selects type of laser pulse profile

ISTART Selects restart from stored data or no restart
ISTATE() Array of the state of each cell

K() Array of the conductivities of each cell

KAKL Average of K-amorphous and K-liquid

KCKL Average of K-crystal and K-liquid

KEQL Equivalent conductivity across left boundary of cell
KEQR Equivalent conductivity across right boundary of cell
KFKL Average of K-fine grain and K-1iquid

N Number of nodes being calculated

NMAX Maximum number of nodes that dynamic rezone allows

NSTATE() Output array of state of each cell as a single letter

NVS, NVW  Number of time steps used in calculating melt-front velocity
PULDUR Total pulse duration

RATIO Stability criterion for explicit method ¢ »

RHO Density of material

RL Reflectivity of 1iquid in the surface region
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Reflectivity of solid in the surface region

Array of the fraction of surface energy absorbed in a cell
Laser energy at the surface

Constant used to calculate S1

Temperature array

Melt temperature of amorphous material

Melt temperature of crystalline material

Decision value for TIMER1

Half the total pulse duration

Time from the beginning of the pulse

Array of timers for comparison to TD

Array of timers for comparison to TP

Initial temperature of the materijal

Temperature above which nucleation cannot occur

Time step between temperature and enthalpy profile outputs
Time step between state graph outputs

Decision value for TIMER2

Constant used in updating enthalpy

A.3 How LASER8 Works: Description of Principal Modules

Whenever a module must delineate between the many possible states the

material of a finite-difference cell might be in, a computed GOTO statement

js used.

In the version of LASER8 given in Appendix B and discussed here,

each label in the GOTO statements is a two digit number, The first digits

correspond to the ISTATE numbers and have the following correspondence:
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1=crystalline 2=16 polycrystalline 3=FG polycrystalline
4=amorphous S=mushy4 6=mushyl
T=mushy3 8=1iquid =supercooled

The second digit is constant for a given computed GOTO statement, for example,
it is 0 in the module labeled UPDATE NODE STATES. These labels are kept in
numerical order. For efficiency, state calculations are combined when they
are identical. For example, the conductivity of liquid and supercooled
1iquid are assumed to be the same function of temperature so there would be
only one label for both in the GOTO statement for the calculation of thermal
conductivity. If labels are necessary between the computed GOTO cases, they
have three digits and their leading digit is the ISTATE number. An example
of this can be seen in the UPDATE NODE STATES module of the listing in
Appendix B.

If it is desired to add different materials or simply more states to
the STATE ARRAY, new iSTATE numbers (10, 11, 12,...) can be added to the
possible cases of each computed GOTO statement. Care should be taken that
jdentical labels are not used in the program. If a conflict occurs, the
above labeling criteria should take precedence over any other labeling
scheme used in the program.

If a user wants only to modify a particular aspect of an existing state,
he would go to the module that deals with that aspect and state and modify

the appropriate lines; the labels will not be changed in this case.

READ IN INPUT PARAMETERS
This module reads in the four input lists: dimensional parameters,
pulse parameters, initial conditions, and materjal properties. It then

prints a header for the output.
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CALCULATE MISC VALUES
With the input values established, this module initializes the time
variables and calculates the largest stable time step. It also calculates

various constants used in the program.

SWITCH CRITICAL TEMPERATURES INTO ENTHALPIES
This module takes the materials properties and the initial temperature
and calculates the critical enthalpies on the temperature/enthalpy state

diagram,

INITIALIZE ARRAYS WITH IC AND BC
This module uses TINIT, XA, and the enthalpies calculated in the pre-
ceding module to initialize the temperature, enthalpy, state, and S(heat

generation) arrays.

LOAD RESTART VECTORS
If ISTART equals 1 then this module reads in restart data from unit 1

whick will overwrite some 2nd perhaps all of the initial'conditions.

CALCULATE INITIAL CONDUCTIVITIES
Given the startup temperature array, this module calculates the initial
conductivities K(T). The present module assumes the material is silicon,

It uses a computed GOTO statement,

CALCULATE PERCENT OF ENERGY ABSORBED IN EACH CELL
This module uses DX and ALPHA to integrate EXP(-ALPHA*X) over each

cell, It stores this value in the $ array.
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OUTPUT PARAMETER VALUES
Input parameter values are printed here, with the exception of the

initial conditions which 'LOAD RESTART...' may have changed.

OUTPUT INITIAL VALUES
The temperature and enthalpy profiles are output at the initjal time.
This gives the initial condition of the slab even if 'LOAD RESTART...' is

executed.

BEGIN TIME LOOP

Label for the beginning of the time loop. The value of NM1 is also set
at this point.

FIND SURFACE REFLECTIVITY
Given ISTATE(), E(1), RS and RL, the surface reflectivity RO is calcu-
lated. The reflectivity changes linearly from RS to RL as the surface cell

melts. This module uses a computed GOTO statement.

CALCULATE ABSORBED LASER ENERGY

Given the value of ISHAPE, this module selects the appropriate pulse
profile and then calculates the amount of laser energy S1 transmitted
through the surface during any time step. (Also see 'Inputing a Laser Pulse

Profile’,)

UPDATE ENERGY BY ROSE'S SCHEME

This module updates the enthalpy array E(), by a scheme proposed by
Rose. (See Sec. 3.)



-78-

CHECK DIFFUSION INTO MODEL

This module checks to see if thermal diffusion has raised the enthalpy
in the deepest node above the limit set by DELTAE. If it has, then a new
node is added to the grid, as described in Sec. 5.

CHECK IF NMAX IS REACHED

If N equals NMAX then a new node will not be added. Instead, E{NMAX)
is found by extending 12 nodes deep into the slab. Each node is twice as
wide as the previous one so the maximum depth reached by these nodes is
greater than 4096 * DX. The accuracy will be degraded if NMAX is so low

that the melt front reaches into this region.

UPDATE NODE STATES
This module uses a computed GOTO statement to update the timers, and
the previous states of the cells from their values at the preceding time

step.

DETERMINE CONDUCTIVITIES AND TEMPERATURES
The updated states and energies are used to calculate the new tem-
peratures and conductivities for all the cells by a computed GOTO statement.

The modute shown here assumes the material is silicon.

FIND DEPTH AND VELOCITY OF FRONT CLOSEST TO SURFACE
Calculates melt-front penetration and velocity for the melt-front

closest to the surface.
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OUTPUT STATES
Output the NSTATE() array for each DTOUTG time step on unit 2. This
produces a line printer graph of the state of each cell as a function of

time. This module uses a computed GOTO statement.

OUTPUT TEMPERATURE AND ENTHALPY PROFILES
Output the T() and E() arrays for each DTOUTD time step on the standard

unit.

CHECK IF TIME TO STOP

This module checks to see if it is time to stop the calculation. The
criteria is as follows: First, do not stop while the pulse is still on.
This makes the code robust in the sense that pulses that peak late or even
double pulses can be modeled. Secondly, do not stop until the entire slab
js solid. This criterion became necessary when mushy or liquid regions

remained deep in the material after the pulse was off.
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APPENDIX B

Program Listing

sseo LASERS eos»

LASER MELTING PROGRAM
ASSUMES TEMPERATURE DEPENDENT OPTICAL AND THERMAL PROPERTIES

LAYERS OF AMORPHOUS,CRYSTALLINE,AND POLYCRYSTALLINE

INITIALIZE WHOLE ARRAY. CALCULATE ONLY CHANGING VALUES
LET N FOLLOW PROBLEM

FOR MORE INFORMATION CONTACT AL GEISY

P.O. BOX Y Bldg. 9207A
OAK RIDGE NATIONAL LABORATORY
OAK RIDGE TN 37830

ccceecececeecceececceccecececceceeccececececcececcecceececccececceccecececcccceccce

OF INPUT VARIABLES

NUMBER OF NODES ACTUALLY BEING CALCULATED
SHOULD INITIALLY BE LARGE ENOUGH TO ENCOMPASS
LASER PENETRATION INTO MATERIAL

MAXIMUM NUMBER OF NODES THAT WILL BE USED < 248
ONCE NMAX IS REACHED 12 NODES ARE EXTENDED INTO
THE SLAB TO A DEPTH OF 4686 s DX

CONSTANT SPACE STEP USED FOR ENTIRE PROBLEM

NUMBER OF TIME STEPS BETWEEN TWO AVERAGED MELT-FRONT
POSITION USED IN A VELOCITY CALCULATION.

NUMBER OF TIME STEPS USED IN AVERAGING THE MELT-FRONT
POSITION FOR USE IN A VELOCITY CALCULATION.

TIME STEP BETWEEN STATE GRAPH OUTPUTS

TIME STEP BETWEEN TEMPERATURE AND ENERGY PROFILE OUTPUTS
HALF THE TOTAL WIDTH OF THE PULSE

ENERGY DENSITY OF THE PULSE

ABSORPTIVITY OF MATERIAL AT THIS WAVELENGTH

REFLECTIVITY OF SOLID AND LIQUID RESPECTIVELY

1  SQUARE PULSE

2 TRIANGULAR PULSE

3 USER SUPPLIED PULSE PROFILE - AREA MUST EQUAL 1
INITIAL TEMPERATURE

DEPTH OF AMORPHOUS LAYER. © IF NONE
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c

C

c T
c

c

C RHO
C

c TA
C

c HA
c

c TN
c

c

c HC
c

c TC
Cc

c CL
c

c VMAX
C

¢

c

ISTART=
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@ START AT TIME =0.0
1 READ RESTART FILE CONTINUE FROM THESE CONDITIONS

TIME REQUIRED FOR SURVIVABLE NUCLEUS TO EXIST IN
A REGION OF DX IN A SUPERCOOLED MELT.

NUCLEA® ON DELAY FOR FORMATION OF LARGE GRAIN POLY
OFF OF FINE GRAIN POLY IN A SUPERCOOLED MELT.

DENSITY OF MATERIAL ASSUMED CONSTANT OVER PHASES
MELT TEMPERATURE OF AMORPHOUS MATERIAL
LATERT HEAT OF AMORPHOUS MATERIAL

TEMPERATURE ABOVE WHICH A SURVIVABLE NUCLEUS CANNOT
EXIST IN A SUPERCOOLED MELT

LATENT HEAT OF CRYSTAL ARD POLYCRYSTALLINE MATERIAL

MELT TEMPERATURE OF CRYSTAL AND POLYCRYSTALLINE MATERJAL
SPECIFIC HEAT OF LIQUID MATERIAL ASSUMED CONSTANT.
MELT—FRORT VELOCITY AT WHICH AMORPHOUS MATERIAL FORMS

cccccecececeecccecceececcecececcceccececceecececccececcceeeceeecccecccecececccececcce

IMPLICIT REALs8 (A-H,0-Z,K)
CHARACTERe1 NSTATE(250
DIMENSION K(250) E(250),7(250),5(250),

STATE(250) TlMERi(ZSO) TIHER2(250)

DATA TIMER1/250¢0.0D0/, TIMER2/25040.0D0/

aAaonn O

OPEN
OPEN
OPEN

OPEN FILES FOR OUTPUT DATA

2.FILE="state.dot’)

gt,FlLE-'roltort.dot')

6,FILE='temp.dat’)

READ IN
READ

READ IN
REAC

READ IN
READ

READ IN
READ

A OO OO0 OO0

DIMENSIONAL PARAMETERS

+N,NMAX ,DX ,NVS ,NVW,DTOUTG,DTOUTD

LASER PULSE PARAMETERS

+TH,EL,ALPHA ,RS,RL, ISHAPE

INITIAL AND BOUNDARY CONDITIONS

+TINIT XA, iSTARTY

PHYSICAL PROPERTIES OF THE MATERIAL

+TP,TD,RHO,TA ,HA, TN
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READ = ,HC,TC.CL,VMAX

o0

o0

OUTPUT HEADIMNG
PRINT 100
100 FORMAT(® °,23X,°LASER8*.,/’ *,15("¢"),"' LASER ANNEALING °,
& *MODEL °,15(°¢")/

MISC VALUES

TIME=® .6D0

TOUTG=0.D0

TOUTD=0.D0

DEPTH=0.D0

DEP1 =0.DO

DEP2 =0.D0

V  =0.D0

VPROD=0.D®

VAPRE=® . DO

NCOUNT=0

ICOUNT=0

IFRMAX=0

SUMS1=0.0D0

PULDUR=2.0D0eTH

KAKL=(©.02D0+0.400)s.500

KCKL=(®.21600+0.500)¢. 500

KFKL=(@.1D-148.500)¢.5D0

K(NMAX)=1.6D0 :
DIFMAX = LARGEST DIFFUSIVITY ENCOUNTERED IN PROBLEM
FOR SILICON IT IS AT 20 DEGREES C

DIFNAX=1.000

RATIO=1.8D6/2.000

DT=RAT 104DX¢DX/D1FMAX

W=0.5D0/(DXeDXeRHO)

SCONST=EL/(2.0D0¢RHOeTHeDX)

RATDX2=RATIO#DX DX+ RHO

SWITCH CRITICAL TEMPERATURES INTO ENTHALPIES
EC=0.0D0
ELC=HC
ELA=CLe¢ (TA-TC)+HC
EA=ELA-HA
DE=EA-(0.914259D0-DSQRT(0.8358693D0+.4676D-3+(TC~-TA)))/.2338D-3
EIN=(TN-TC)sCL+HC
ECINIT=(.914259D0-DSQRT(.8358693D0+.46760-3¢(TC-TINIT)))/.2338D-3
EAINIT=ECINIT+DE

INITIALIZE ARRAYS WITH IC AND BC
I1X=0
IF(XA.EQ.0.0D8) GO TO @
1X=XA/DX+ . 5D®
00 6 I=y,IX

Tgli-T!NlT

E(I1)=EAINIT
S(1)=0.0600



ISTATE(1)=4
6 CONTINUE

IXe IX41

NMAXP=NMAX+13

DO 6080 I=1X,NMAXP
T(1)=TINIT
E(I1)=ECINIT
s{1)=0.0D0

ISTATE(I)=1

6000 CONTINUE

c
C FIND INITIAL ENERGY IN CELLS AT TIME @ (ETe)
IF(IX.EQ.0) THEN
ETO=(NMAX-1)sECINIT

ELSE
ETO=(IX-.5)sEAINIT+(NMAX-IX-.5)s ECINIT
ENDIF
00 8010 [=1,12
ETO=ETO+(ECINIT)e (200 (1-2)42¢0¢(1-1)) .

6016 CONTINUE
c

C LOAD RESTART VECTORS
IF(ISTART.€Q.0) GO TO 9ee
READ(1.2100) TIME,N,DX,DT
nsAost.zzoo (T(M2),E(M2) ,ISTATE(M2),.M2=1,N)
cooo CONTINUE

C CALCULATE INITIAL CONDUCTIVITIES (K)
D0 9 I=1,NMAXP
IPHASE=ISTATE(1)
GO TO (14,14,14,44,54,684,74,84,84), IPHASE
14 :glg-osxp(-.soos7io-z-r(1)+.Jss7asoo)+.zzsas4oo
)
44 K(1)=e.0200
GO T0 9
54  K(I)=KAKL
6o To 9
64 K(I)=KCKL

74 K(I)=KFKL
84 K(I)=3.24351110--4eT(1)4+3.8711424D-2

9 CONTINUE
c

C STORE INITIAL STATE OF CELL 1 FOR CALCULATION OF MELT DEPTH
IF(ISTATE(1).EQ.4 ) THEN
EX1=EA
ELX1=ELA
HX1=HA
ELSE
EX1=EC
ELX1=ELC
HX1=HC



o000

c
c

c
c

c
c

[+ Xels)

c

ENDIF

CALCULATE PERCENT OF ENERGY ABSORBED IN EACH CELL
ASSUMING IT IS GENERATED IN THE SURFACE LAYERS
BY INTEGRATING [ALPHA EXP(-ALPHAsX)] OVER EACH CELL
DPTH1=0.DO
D0 7 I=1,N
DPTH2=DXe ( I-.500)
IF(DPTH2.GE.5.0-5) GO TO 7000
S(1)=DEXP(—ALPHAsDPTH1)-DEXP(-ALPHA+DPTH2)
DPTH1=DPTH2
7 CONTINUE

7000 CONTINUE

OUTPUT INPUT VALUES
PRINT 110
PRINT 120 ,N,NMAX,DX,DTOUTG,DTOUTD,TH,EL,ALPHA,RS,RL,

ISHAPE, TP, TD,RHO, TA HA, TN ,HC, TC,CL, VMAX

*  NAME ALL UNITS KG W J CM SEC*/)

* DIMEN’,/' N=',I3," NMAX=',13,' DX=',D10.4,

. °'°25€;;=°}""' DTOUTD=",D108.4,//

* HALF WIDTH (TH)=',D10.4,* LASER ENERGY (EL)=',D10.4,/

* ALPHA=',D10.4,° REFLECTIVITY(RS)=",FS.3,

* REFLECTIVITY(RL)=",F5.3,° ISHAPE=’,12,//° MATPRP’,/

110 FORMAT
120 FORMAT

NUCLEATION TIME (TP)=",D10.4,

NUCLEATION DELAY (TD)=",D10.4,/° DENSITY (RH®)=',FS5.3,/
TCR AMORPHOUS (TA)=’ F6.1,° LATENT HEAT (HA)=’,F6.1,/
NUCLEATION TEMP (TN)=',F6.1,° LATENT HEAT (HC)=' F8.1,
TCR CRYSTAL (TC)=",F8.1," SPECIFIC HEAT (L)=",F6.3,

VMAX =’ F6.1)

OUTPUT INITIAL VALUES
PRINT 150 ,TIME,DT
PRINT 205
PRINT 210 , (T(M2),M2=1,NMAX)
PRINT 215
PRINT 170 , (E(M2),M2=1,NMAX)
150 FORMAT(®' *,//° TIME =*,D13.5," SEC DT="D13.5)
170 FORMAT(® *,(12X,10(D16.4,1X)))

OUTPUT HEADING FOR LINE PRINTER GRAPH OF STATE VS TIME
WRITE 2.220}
WRITE(2,230) DX

230 .ronuar(' '/’ TIME (SEC)’,15X,°DEPTH (*,D11.5,° CM)'//,17X,

'0'.?!.'10'.8!.'20'.8!.'30',8!.'40'.8X.'50'.8X.'00'.8X.
& *70’

BEGIN TIME LOOP
27 NMi=N=1
IF(N.GT .NMAX) NMI=NMAX-1


http://DPTH1-0.De
file://-/F6.1

c

C FIND SURFACE REFLECTIVITY (Re)

c

12
52

62

92

IPHASE=ISTATE(1)

GO TO (12,12,12,12,52,62,62,92,92), IPHASE

RO=RS

GO TO 1000

SF=(ELA-E(1))/HA

RO=RSeSF+RLe (1.0D0-SF)

GO TO 1000
SF=(ELC-E(1))/HC
RO=RSeSF+RLe (1.000-SF)

GO TO 1000

RO=RL

C CALCULATE ABSORBED LASER ENERGY PROFILE
1000 IF (TIME.GT.PULDUR) GO TO 848
C DEFAULT IS SQUARE PULSE

S1=SCONST+DTe(1.0D0-RO)
GO TO (86,87,89), ISHAPE

C TRIANGULAR PULSE

87

IF(TIME.LE.TH} S1=2.0D0¢TIME®S1/TH
IF(TIME.GT.TH) S1=2.0D0¢(S1-(TIME-TH)eS1/TH)
GO 70 86

C USER SUPPLIED NORMALIZED PROFILE (AREA UNDER CURVE = 1)
C THIS IS AN EXCIMER PROFILE
89

841

IF(TIME.LT.40.D-9) GO TO 841
S1=S10PULDURe (7.84728D07+TIMEe(~-2.33377D15+1.74295022
oTlME))
GO 70 86
IF(TIME.LT.16.D-9) GO TO 842
Sl-SloPULDURO(z 74602D7+TIMEe (4.038533D14-1. 9;:;;:22

GO T0 8¢

842 S1=S1ePULDURe(2.4668506+TIMEs(3.45003D15~1.11884D23

c

c
c

o000

oTIME))
GO 70 8¢

840 Si=06.0D0

86 CONTINUE

SUMS 1=SUMS 14S1

UPDATE ENERGY (E) BY ROSE'S SCHEME

E(1)=E(1)42.8D00 (WeDTo (K(1)4K(2))e(T(2)-T(1))+S1e8(1))
DO 2 I=2,NMI
KEOL-{K l 1)+K(1
KEQR=(K (1) +K(1+1
(E(1=E(1)3weDTe (KEQRe (T(141)-T(1))
+KEQLe (T{I=1)=T(1))) +S(1)eSH

2 courxuue

CHECK FOR SIGNIFICANT DIFFUSION INTO MATERIAL
ADD RIGHTMOST NODE AS NECESSARY

IF(N.LT.IX) GO TO 58e



Sse

Se1

-87=

DELTAE=ECINIT+.2508

GO TO 581

DELTAE=EAINIT+.2500

CONTINUE

IF(E(NM1).LT.DELTAE) GO TO 1400
IF(N.GE.NMAX) GO TO 57

C ADD NODE

Ne=N+1
GO TO 1400

C IF NMAX REACHED FIND E(NMAX) BY EXTENDING 12 NODES DEEP INTO THE SLAB
C EACH NODE IS TWICE AS WIDE AS THE PREVIOUS ONE
C THE EXPANSION RATE IS ADJUSTED WITH THE 2e¢¢] TERMS

57

N=NMAXP

&z(uqu)-s(uuax)+-.oI.i(x(uunx+1)+x(uuax)) (TONMAX+1)=T (NMAX) )
+

NMAX ) +K (NMAX—=1)) o (T (NMAX=1)~T (NMAX) ))
00 1400 lw1,12
NI=NMAX+]
KEQL=3.00eK(NI-1) oK (NI / x NI)+2.0@eK(N"~1
XEQR=3.D0eK(NI)oK(NI+1)/(K(NI+1)+2.00eK (NI

&E(Nl)-t(ul)+2 ooowoor/(zoo1+zoo(1 1))o(xzoao(r( 1)—r(u1)){;z-.1)

+KEQLe (T(NI=1)=T(N1)) /(200 (1=~1

14060 CONTINUE

c
c
C UPDATE NODE STATES : 1=CRYSTAL  2=LARGE POLY 3=FINE POLY
c 4=AMORPHOUS S=MUSHY4 S=MUSHY1
c 7=MUSHY3  B=LIQUID 2=SUPERCOOLED
DO 1100 =1, M1
IF(1.EQ.1) THEN
IM1=2
ELSE
IM=]-1
ENDIF
IPHASE=ISTATE(])
¢o 10 1o 10,30,46,50,60,70,80,98), IPHASE
10 IF(E(1).CE.EC) .ISTATE(1)=6
GO T0 11oo
30 IF(E(1).GE.EC) ISTATE(I)=?7
GO T0 1100
40 I1F(E(1).GE.EA) ISTATE(I)=3
GO TO 11ee
se IF Eilg.LT .EA) ISTATE(I)=4
1IF(E(T).GE.ELA ) ISTATE(I)=9
GO TO 1100
6o IF Ei g .GT.ELC) GO TO 6e1
IF LT.EC) GO T0.802
IF(V .GE. -VMAX) GO TO 1100
IF eix;.cr.sa) ISTATE(1)=S
IF(ECI).GT.ELA) ISTATE(I)=9
GO TO 1100
601 ISTATE(I)=8
GO TO 1100
602 IF(ISTATE(I+1).€Q.1 .OR. ISTATE(IM1).£Q.1) GO TO 663



L1 2]
70

802
90

901
902

903
904

905
908
907

1100
c

ISTATE(1)=2
GO TO 1100

ISTATE(1)=1
GO TO 1100

F Etl; .LY.EC) ISTATE(I)=3

€(1).GT.ELC) ISTATE(I)=8

GO TO 1100

IF(E(1).LT.ELC) GO TO 801
GO TO 1100

IF(ISTATE(I+1).LT.4 .OR. ISTATE(IM1).1LT.4) GO TO 802
ISTATE(1)=9
GO TO 1100

ISTATE(1)=6
GO TO 1100

IF(E(1).GE.ELC) GO TO 906
IF(E(I).LT.ELA} GO TO 905
IF(E(1I).LT.EIN) GO TO 901
TINER2(1)=0.D0
GO TO 902
TIMER2(1)=TIMER2 (1)+DT7
IF(ISTATE(I+1).€Q.1) GO TO 907
IF(ISTATE(I+1).LT.4 .OR. ISTATE(IM1).LT.4) GO TO 903
TINER1(1)=0.D0®
GO TO 904
TIMERY (1)=TIMERY (1)+DT
IF (TIMER1 x .GT.TD) ISTATE(I)=6
IF(ISTATE(1).EQ.6 .AND. ISTATE(I-1).EQ.3) ISTATE(I)=?
IF({ TIMER2 1 .GT.TP) ISTATE(1)=7
GO TO 1100

ISTATE(I)=S
GO TO 1100

ISTATE(I)=8
GO TO 1100

ISTATE(1)=6
CONT INUE

[

C DETERMINE CONDUCTIVITIES ;K) ess HARDWIRED FOR SILICON oo
C OETERMINE TEMPERATURES (T

1

31

49

81

00 1 I=1,N
IPHASE=ISTATE(I)
co T0 (91,11,31,41,51,61,71,81,81),IPHASE
-14|o+£(x)-( 9142589998D6~1.169196D-4¢E(1))
x -ozxp(- 0039967100+ T (1)+.36578600)+.225894D0
1
i -1410+:(x)-(.914250999000-1.1391930—4-5(:))
K(1)=.1000
GO 70 1
EI-E(I )-DE
i ;-1410+Elo( .$14258999800~1.169196D-4¢E1)
K(I1)=0.01500

r(x)-rc+(£(1)-uc)/cL



[t Xz X 2]

B

o0

o0

IF(T(1).G7.3267.00) T(1)=3267.D0
K(I)=3.2485111D—4eT(1)+3.8711424D-2
60 To 1 :
51 Tsrg-TA
K{1)=KAKL
GO TO 1
61 Til;-Tc
K(1)=KCKL
GO TO 1
71 Tsl =TC
K(1)=KFKL
1 CONTINUE

FIND DEPTH OF FRONT CLOSEST TO THE SURFACE
IF(E(1).LT.EX1) GO TO 894
DPTHM1=DEPTH
IF(E(1).GT.ELX1) GO TO 891
DEPTH=0.5D0eDX*E(1)/HX1
GO TO 894

881 DO 892 I=2,N
IFiISTATEiI;.GT.‘ .AND. ISTATE(I).LTY.8) GO TO 893
IF(ISTATE(1).LT.5) GO TO 897

892 CONTINUE
GO TO 894

NEXT THREE STATEMENTS ARE FOR MELT FRONT AT CELL BOUNDARY
897 IFRNT=I
DEPTH=DXe (IFRNT-1.500)
GO TO 894
893 IFRNT=I
HX=HC
lr(lsrAreil).Eo.4 HX=HA
DEPTH=DXe(I-1.5D0)+DXeE(1)/HX
894 CONTINUE °

CALCULATE VELCCITY OF THE FRONT CLOSEST TO SURFACE
VAPRE=V
NCOUNT=:<NCOUNT+1
IF(NCOUNT.LE. (NVS-NVW/2)) GO TO 893
DEP2=DEP24DEPTH
IF NCOUNT.NE.(NVS+NV'/2;; GO TO 898
ve=((DEP2/NVW)~(DEP1/NVW))/(NVSeDT)
DEP1=DEP2
DEP2=9.0D0
NCOUNT=0

ESTABLISH MAXIMUM MELT-FRONT PENETRATION AND TIME
VPROD=VsVAPRE
IF(VPROD.GE.0.D0 .OR. ICOUNT.EQ.1) GO TO 89S
DEPMAX=DEPTH
TMAX=T IME
IFRMAX=IFRNT



C
c

c
c

OO0

c
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JICOUNT=1
895 CONTINUE
TAKE NEXT TIME STEP
TIME=TIME +.DT
TOUTC=TOUTG+DT
TOUTD=TOUTD+DT
INCREASE TIME STEP TO MAXIMUM ALLOWED BY STABILITY CRITERION
CPNMAX=1.00478D0+E(NMAX) ¢ (-8.62645D-5
& —2.51611D=-7+E(NMAX))
IF(T(NMAX).GT.1000) CPNMAX=1.D®
DT=RATDX2eCPNMAX /K (NMAX )
TIME TO OUPUT TEMPERATURE AND ENERGY PROFILES ?
IF(TOUTD .LT. DTOUTD) GO TO 3500
TOUTD=0.0D0
SUM ENERGY STORED IN FIRST NMAX+12 CELLS
SUME=.5D0e E(NMAX)+.5D0+E(1)
NXM 1 =NMAX-1
DO 180 [I=2,NXM1
SUME=SUME+E(I)
180 CONTINUE
00 190 I=1,12
SUME=SUME+ ( E(NMAX+I)+E(NMAX+I-1))e
& 200 (1-3)4200(1-2))
190 CONTINUE
SUME=(SUME-ET@) ¢DXsRHO
SUMSX=SUMS i»DXeRHO
SOME ENERGY ESCAPES OUT FIXED TEMP BACK BC
PRINT 200 , TIME,N,V,DEPMAX, TMAX,DEPTH
PRINT 211 , SUMSX,SUME
PRINT 205
PRINT 210 , (T(M2).M2=1,6N)
PRINT 218
PRINT 210 , (E(M3),M3=1,N)
200 FORMAT(® °,//*' TIME =*,D13.5," SEC Ne'’,14," V=,
& F8.1,/' DEPMAX=’,D13.5,° TMAX=’,D13.5,
& * DEPTH=',D13.5)
211 FORMAT(® *, °*LASER ENERCY IN =°’,D13.5,
& * ENERGY IN NMAX+12 CELLS =°*,D13.5)
210 FORMAT(’ '.itzx.to D10.4,1X)))
225 FORMAT(® *,(12x,10(A1,11X))
208 FORMAT(’® ',’ TEMPERATURE’
215 FORMAT(® *,’ ENTHALPY')
220 FORMAT(’ *,’ STATE A=AMORPHOUS CaCRYSTAL P=LARGE POLY’,
& * FmFINE POLY M=MUSHY L=LIQUID S=SUPERCOOLED’)

C TIME TO OUTPUT STATES ?
\ 3500 IF(TOUTG .LT. DTOUTG) GO TO 27

TOUTG=0.D0
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C PREPARE OUTPUT STATE ARRAY
DO 1200 I=1,N
IPHASE=ISTATE(1)
GO TO (13,23,33,43,53,53,53,83,93), IPHASE
13 NSTATE(I)="C"
GO TO 1200
23 NSTATE(I)='P*
GO TO 1200
33 NSTATE(I)=°F*
GO TO 1200
43 NSTATE(I)=°A’
GO TO 1200
53 NSTATE(I)="M'
GO TO 1200
83 NSTATE(I)="L’
GO TO 1200
93 NSTATE(I)=’S’
1200 CONTINUE

c
C OUTPUT LINE PRINTER GRAPH OF STATE VS TIME
NG=MIN(N,100)
WRITE(2,235) TIME, (NSTATE(M1),M1=1,NG)
235 FORMAT(* *,013.5,3X,100(A1))

C
C
C CHECK IF TIME TO STOP
IF(TIME .LT. PULDUR) GO TO 27
DO 1300 I=19,N
IF(ISTATE(1).GT.4) GO TO 27
c1300 CONTINUE

C
C WRITE OUT RESTAR VECTORS
112 IRITE 1.2100) VIME,N,DX,DT
IRITE 1, 2200 (T(M2) ,E(M2), ISTAT?(Mz).Mz-l.N)
S

2100 FORMAT °',020.14,15,013.5,D13
2200 FORMAT . (D260. 14 5X D2e. 14 5%,12))

CLOSE

CLOSE

CLOSE

STOP

END
000000009090900000009000 SAMPLE INPUT FILE 00000000000000090000000000000000000000
20,33,1.0-8,500,100,1.0-9,10.D0-9 N,NMAX ,DX,IVS,IVW,DTOUTG,DTOUTD
33.50-9,.3D0,1.D06,.5800, .69D0,3 TH,EL,ALPHA,RS,RL, ISHAPE
20.000,19.0-6,0 TINIY XA, ISTARY
4.0-9,8.0-9,2,3300,1260.D00,1318.8D0,1310.D0 TP,TD,RHO,TA ,HA,TN

1799.100,1410.00,!.0D0, 1500.00 HC,TC,CL, VMAX
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