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FREE-FREE GAUNT FACTORS:
COMPARISON OF VARIOUS MODELS

by

L. A. Collins and A. L. Merts

ABSTRACT

We develop the genera) theory of free-free absorption processes in terms of basic
quantum mechanical principles. We perform calculations of the free-free Gaunt factor
for several models of the electron-atom (ion) interaction in a variety of systems
including rare gases, alkali, and aluminum. In addition, we investigate plasma-
screening effects in such models as the Yukawa potential. Our calculations compare
well with those of other authors, and cur comparative study of various models allows a
more thorough understanding of their range of validity.

I. GENERAL FORMULATION

The free-free absorption or inverse Bremsstrahlung process is described by the following mechanism:

hv + e~E + A •• e~E' + A ,

where E (E') is the initial (final) energy of the continuum electron, hv(=Jta)) is the energy of the photon,
and A represents an atomic or ionic target. This radiative mechanism has been investigated extensively,
and a representative, though by no means exhaustive, survey is given in the first set of references.1'13

The process is usually characterized in terms of an absorption coefficient a^co)213'14, which relates the
number of absorptions by electrons per unit volume per unit time, kff, to the number density of free
electrons (n«) and of atoms (n;), the normalized electron distribution f(E)dE, and the Planck radiation
flux Pd(hv):

kff = nm, a(E,co) f(E)dE P ^ . (1)

The Planck radiation flux is related to the radiation energy density U by the speed of light c and is given
by

v3

Pd(hv) = &n cy [exp(-hv/kT) - 1] d(hv) [ergs/cm2 sec] . (2)

For a Maxwell-Boltzmann distribution of the electrons, we have

f[E)dE = ^(kBT)-3 '2 exp(-E/kBT) E1'2 dE , (3)

where T is the electron temperature in degrees Kelvin (UK), E is the kinetic energy of the electron ('/2mv2)
with v (m) the electron velocity (mass), and kB is the Boltzmann constant.



The absorption coefficient in units of cm5 is in turn related to a dimensionless quantity g(E,co), called
the Gaunt factor, through the expression

a(E,co) = oK g(E,co) . (4)

The scaling term crK is the Kramer's form of the semiclassical free-free absorpuon coefficient for an
electron interacting with a point charge Ze and is given by15

4r, Z 2e6

This construction is simply a convention whereby the absorption coefficient reduces to its proper
semiclassical limit when the Gaunt factor approaches unity (a -> OK when g -» 1). This convention
prcv j!> useful in many cases since, even for more detailed quantum mechanical treatments of the free-
fre • process, the Gaunt factor remains close to one. One additional point is worth noting: we have used
the symbol Zc rather than Z to denote the charge that appears in aK and in g [see Eq. (11)]. We make this
distinction since the resulting absorption coefficient, a, is independent of this choice (a = Cgg; aK

K 21
and g « Z^2). In fact, for a neutral system, the quantity Zc has no apparent meaning and is irrelevant to
the calculation of a. For comparison among various models within the same calculational scheme, we
generally set Zc = 1, whatever the species under consideration. Care must be exercised in comparing
Gaunt factors for ionic systems calculated by different authors since Zc may reflect other conventions.

For most applications, the quantity of greatest interest is the absorption coefficient averaged over a
particular electron distribution:

J"a(E,co)fl:E)dE
a(T,to)= ' , . - , (6)

Jf(E)dE

where we recall that E is the electron energy, T is the electron temperature, and a is the frequency of the
radiation field.

For a Maxwell-Boltzmann distribution [Eq.(3)], we have16

4uZ?e6 / 2m \\n .
a(T,to)= — - g(T,co) [cm5], (7)

3V3hcmV\7rkBT/

where the averaged Gaunt factor g is given by

g(T,co) = (kBT)-' f0 g(E,co)exp(-E/kBT) dE . (8a)

The averaged Gaunt factor is also related to the absorption coefficient per unit pressure per atom, K,
which is more common in astrophysical models:

K = C5Z?(Ak2r393/2g [cmVdyn] , (8b)

where Ak2 is the photon energy in Rydbergs, 9 = 5040/T (kelvins), and C5 = 2.0991 X 1CT28 (see
Appendix A).

Another common quantity of interest is the effective mass absorption coefficient oeff (cm2/g), which is
related to the absorption coefficient by

Noa
°dr=—— n,. , (9)



where No is Avagadro's number, and A is the atomic weight of the target (g/mole). The effective
absorption coefficient is important in considering the attenuation of radiation through a material. For
the case of only free-free absorption, the intensity of radiation I, at radial distance X, compared with that
at the origin I,, is given by

I-I.exp(-TX) , (10)

where x = p Oeffwithp the mass density (gem"3).
The absorption coefficient can also be employed to determine the real part of the index of refraction,

n, of a medium. In the case of sharp density gradients such as those encountered at the surface of a metal,
the real part of n, or reflectivity, may be more important than the imaginary part related to absorption.
The reflectivity. Re n, can be determined from formulae given by Griem17 [see Eqs.( 14-2) and (14-3) and
the discussion on p. 551 in Grieml. In many cases, however, this quantity can be obtained more readily
from direct experimental measurements.

II. FREE-FREE GAUNT FACTOR

A. General Form

In our case, we calculate the free-free Gaunt factor from quantum mechanical considerations. For
scattering from a central potential, from a ground-state closed-shell target, or from an atom or ion with a
single s-electron outside a closed shell, the free-free Gaunt factor has the form (see Appendices A and B)*

where

Cm

ML= Jf^db-dclk')2 , (12)

In these equations, k is the wavenumber [k = (2mE/ft2)1/2], C is the orbital angular momentum of the
continuum electron, 8mix is given by max(B,8')> and db- is the dipole matrix element. More complicated
coupling schemes are discussed by Sobelman." Since g is a dimensionless quantity, we may express it
equally well in atomic units (e = h = me = 1; 1 a. u. of energy = 1 hartree = 27.212 eV):

The dipole matrix element in the length form (L) -, given by

dfa. (k|k') = / Wr) rfW (r)dr , (14a)

where fu(r) is the radial wavefunction for the continuum electron [see Eq.(17g)]. Another common
expression for local potentials is the acceleration (A) form

d
= / fM(r) - V(r) W(r)dr , (14b)

Or

*This form can also be used for scattering from a target consisting of a single s-electron outside a closed-shell,
provided that && is replaced by 1/4 [du. (S) + 3du-{T)], where S (T) stands for singlet (triplet) scattering.



where V(r), the interaction potential, is in hartrees. These two forms are simply reJateu u,

dL = oT2dA(V) . (15a)

Some authors express the acceleration form in terms of the potential U in Rydbergs (U = 2V), giving
the relation

dA(V) = -dA(U) . (15b)

A more common representation of the Gaunt factor is

where the photon energy (Ak2) and wavenumbers are expressed in Rydberg units. Similarly, we can
write

( 1 6 b )

and

g ( E ; t 0 ) = - ^ M A ( U K ( 1 6 C )

where the latter is the expression used by Green.16

B. Continuum Solutions and Model Potentials

1. Scattering Formulation. The total-system wavefunction for an electron scattering from an N-
electron atom (ion) solves the following Schrodinger equation18"25

, (17a)

where

In these equations, Ho is the Hamiltonian of the atom; Vra (VK) is the interaction of the incident electron
with the nuclear charge (bound electrons) of the target; T is the kinetic energy of the scattered electron;
and E is the total energy of the system. The notation \|/(1 ... N + 1) stands for the more involved
representation v|r(T|... XN+I), where v, has both spatial R\ and spin O; coordinates. The wavefunction for
a particular state, n, of the target atom satisfies the eigenvalue equation

Ho<Da(l...N) = Eo<t>D(l...N) ,and

«Dn|*n.> = 6nn. . (17b)

Equation (17a) is an (N+l)-body expression and is difficult to solve in this form. We reduce this
equation to an effective one-particle equation by introducing an expansion of the total-system
wavefunction iy in terms of a complete set of target states of the form

V(l - N+l) = lA[*nKl... N) Fn-(N+1)] , (17c)



where FnKN+l) represents the continuum function and A is an antisymmetry operator, which
guarantees that the product satisfies the Pauli restriction for fermions. We now substitute Eq. (17c) into
Eq. (17a), multiply through by 4>n<*(l...N) and the spin functions for the continuum electron, and
integrate over all target coordinates dxu ... dtN and the spin of the scattered electron o>j+i to derive the
following expression for the continuum orbital Fn:

[T + (E,, - E)] Fn(RN+1) = IV ra , (RN+1) Fn.(RN+1) . (17d)

n'

where

V^R) Fn. (R) = «Dn|VK + Vm|A(On,Fn,)> -
Thus, we have reduced the many-body formulation to an effective one-particle equation whose solution
is the wavefunction for the scattered electron. We note that Eq. (17d) involves coupling between all
channels n'. However, in practice, we invoke the close-coupling (CC) approximation by which the
infinite sum in Eq. (17d) is trancated at some small number of channels. We further reduce Eq. (17d) to
a set of coupled, radial integrodifFerential equations by (1) making a single-center expansion of the
bound and continuum orbitals

Fn(R) = ? R - ' U R ) Y , J R ) , (17e)

where Yjm is a spherical harmonic, (2) multiplying through by Y2nm*(R), and (3) integrating over all
angular coordinates dR. The resulting set of coupled radial equations can be written in the abbreviated
form

- £ / Woa-(R|R')fa-(R')dR' = 0 , (17f)

where

La = -jT-2 — 8n (2n + 1 )R~2 + kj , and

k ^ ^ E - E , , ) .

The channel label is given by a = (n Cn), where Cn is the orbital angular momentum of the incident
electron. The coupling potential W ^ is a complicated expression that is energy-dependent and nonlocal
and has the general form

/Y!nm*(R')VM.Y!n,m.(R')dR' .

2. Static-Exchange (SE) Approximation. In general, we do not treat the full close-coupling equations
[Eq. (170], but make some simplifying approximations: (1) that we consider only elastic scattering (n =
n' = ground state of the target) and (2) that we treat only scattering from a local central potential, from a
closed-shell target, or from an atom with a single s-electron outside a closed shell. The restriction to
elastic scattering does not eliminate multichannel effects since the sum in Eq. (170 runs over the closed
electronic channels. These virtual excitations give rise to correlation and polarization effects and
represent the distortion of the target atom by the incident electron. While we do not solve the CC
equations for more than one channel, we do include these correlation effects in some cases by model
potentials (see Section II.B.3).

For most cases, we neglect these virtual excitations and invoke the SE approximation whereby the
target is frozen in its ground state but the Pauli principle is satisfied. Within these simplifying
assumptions, the continuum function solves a single-channel Schrodinger equation of the form

(17g)



where

8 is the orbital angular momentum, and k2 is the energy in rydbergs of the scattered electron.
The continuum orbital behaves asymptotically:

(17h)

where T\M is the phase shift, which describes the distortion of the wavefunction by the target. We have
employed wavefunctions that have the form of Eq. (17h) in all of our deviations of the dipole matrix
elements and Gaunt factors. The scattering programs usually produce a solution that behaves
asymptotically:

2 , (17i)

where jj (fj8) is the Ricatti-Bessel (Ricatti-Ni.amann) function of order C and K is the reactance matrix
[= tan(T|()]. The reactance matrix form can be converted into the behavior o'.'Eq. (17h) by dividing f^R)

The interaction potential W is in general nonlocal and energy-dependent and is traditionally divided
into t.vo parts:

W(R|R') = V s(R)8(R-R') + Ve(R|R') . (17j)

The first term or static (direct) potential is simply the electrostatic interaction of the target and
continuum electron averaged over the ground state of the atom. The second term, or exchange kernel,
which is a function of the bound orbitals, arises from the enforcement of the Pauli principle on the total-
system wavefunction. For the cases under consideration, the expressions for V, and Ve are given in
Appendix C. Generally, we shall use the SE case as the standard against which we evaluate other models,
although we shall augment this formation with model polarization-correlation potentials. Since these
potentials mock the virtual transitions to the excited electronic states, they also simulate the distortion
of the target by the incident electron.

3. Model Potentials. We shall also consider various approximations of the interaction potential [Eq.
(17j)]. In all of these cases, we neglect the exchange kernel and replace V, by a local, model potential. The
following paragraphs present eight models.

(a) Static Interaction.
Point Charge Model

" | , (18)

Yukawa or Screened Coulomb Model

Vy(R)—-exp(-XR) , (19)

Averaged Static Model

VS(R) = + T p(r*)!R-?|-'dr - ZN R~' , (20a)



where

p(?) = I ni|(Pi(r)|2 , (20b)
i-l

9i is a bound orbital of the target system, ZN is the nuclear charge, n; is the occupation number, and ^ is
the number of occupied orbitals. For a closed-shell target or for an atom with a single s-electron outside a
closed shell, the static potential given by Eq. (20a) is exact. For other systems, the average implied in Eq.
(20a) forms an approximation to the actual direct potential. When the orbitals of the neutral system are
used to represent the ion, we term this the frozen-core (FC) approximation.

For an ionic system, we introduce plasma-screening effects into the static potential with the following
construction:

Screened Static (SS) Model

fYs(R) R . R , ^ (2Qc)

where XD is the inverse of the Debye length (£D) and Zris the residual ionic charge. For example, for Al+,
ZN in Eq. (20a) will be 13.0 while Zr will be 1.0. This is a crude model of plasma screening but gives some
indications of the trends.

(b) Exchange. We introduce exchange effects through a local, energy-dependent, free-electron
gas21'22 potential:

Free-Electron Gas (FEG) Model

(21a)

where Vs is given by Eq. (20a),

(21b)

and the plus (minus) sign at the beginning of the right-hand expression indicates singlet (triplet)
scattering. The Fermi momentum has the form

where p is given by Eq. (20b) and a is 3 (6) depending on whether the target has a closed (open) valence
shell. The parameter n is constructed as

Ti = (k2 + I + kF)'/J/kF , (21c)

where k2 is the scattering energy of the electron in rydbergs and I is an effective ionization potential of
the target. This form is termed the Hara free-electron gas-exchange (HFEGE) potential.21 Riley and
Truhlar suggest a modification in which the ionization potential is set to zero (I = 0). Because of its
behavior, this modification is designated the asymptotically adjusted free-electron gas-exchange
(AAFEGE) model.

For Eq. (20a) and Eq. (20c) and for Eqs. (21a) - (21c), we have represented the static (S) potentials in
terms of the vector variable R, which has both radial and angular components [R = (R, 8, cp)]. We
derive a radial equation as in Eq. (17g) from the vector Schrodinger equation by (1) invoking a single-
center expansion of the continuum wavefunction, the bound wavefunction, and the potential in
terms of spherical harmonics Y!m (R); (2) multiplying through by Yj.m.(R); and (3) integrating over all
angular coordinates [see Eqs. (17d)- (17f)].



(c) Polarization—Correlation. The above-mentioned model potentials are approximations to the SE
interaction term W. If we wish to go beyond the SE level for elastic scattering, we must include
correlation-polarization effects. These effects arise from virtual excitations of the target atom and result
in an additional nonlocal, energy-dependent term in Eq. (17f).

We employ two models for the polarization-correlation interaction. The first is simply the asymptotic
form truncated at some small radial value within the charge cloud of the target in order to satisfy the
proper behavior at the origin:

Cut-off Polarization Potential (SEPla) Model

VP ,(R)=^4{l-exp[-(R/Ro) s]} , (22a)

where a is the dipole polarizability of the target atom. We adjust the parameter R,, to make the phase
shifts agree as closely as possible with those of more elaborate scattering calculations. When the whole
cutoff term is raised to the sixth power with the exponential coefficient reduced to linear dependence, we
term the model SEPlb.

The second model is based on an FEG treatment much the same as the exchange term:

FEG Polarization Potential (SEP2) Model

V R ( R ) = f V - ( R ) r < R « (22b)
lvP I(R) r > R o ,

where V ^ is the FEG coorelation potential2728 and VP1 is given by Eq. (22a). The matching point R,, is
selected so that the two forms merge smoothly. This polarization potential, unlike SEP1, has no
adjustable parameters.

We have tested our construction of this potential by comparing our results for the rare-gas systems
with those of O'Connell and Lane.27 Since we employ the FEG correlation potential of Perdew and
Zunger (see Padial and Norcross28), we find slight differences with the above authors, who employed a
more attractive form of Vc^. For example, we determine matching radii of 1.773, 2.047, and 2.9177 a,,
for helium, neon, and argon, respectively, while O'Connell and Lane give radii of 1.67,1.95, and 2.87 for
these elements. We have used the following polarizabilities for this calculation: 1.38 (helium), 2.66
(neon), and 11.00 â  (argon). These slight differences in the Vcn- and R,, parameters do not greatly affect
the scattering results and lead to s- and p-wave phase shifts that are in excellent agreement.

(d) Other Forms. The models described above are completely self-contained and are treated with
computer programs GAUNTBA and GNTLABA. Several other programs, which model the macro-
scopic properties of a medium, use other schemes for determining the absorption coefficients and Gaunt
factors.

MOOP Model
MOOP, which is a locally written program to determine opacities, employs a scaled point-charge

form for the Gaunt factor as given by Green5

(23)
raw

where

S

gro is the Gaunt factor for a point charge Ze averaged over a Fermi-Dirac distribution, kD is the inverse
Debye length, T2=Z2/kT, u=hv/kT, a is the degeneracy parameter, and go is the asymptotic value of the
point-charge Gaunt factor (E = 0). The Gaunt factor for a point-charge is given by Karzas and Latter,4

and the values of gn> and 2Ii/2
(a)/\/i (= gro/g) can be obtained from tables by Green.5

( tf 2V go \ ISL±
\ * ~ — ^ D l\ ; log i d ±
\ u / \ 1 — e~' / IU "r



XSNQ Model
The XSNQ package,18 a nonlocal-thermodynamic-equilibrium emission and absorption coefficient

subroutine, also employs a scaled point-charge form for the Gaunt factor. The scaling is in terms of an
effective charge Z'°, which is given by Eq. (3.2) of Ref. 18. For a neutral system, Z*° is zero, clearly
leading to an incorrect representation of the Gaunt factor.

4. Method of Solution. We employ two methods to determine the solution of Eq. (17g): (1) the
iterative integral equations (HE) method23 and (2) the linear algebraic (LA) method.20-24 Both methods
provide highly accurate solutions of the Schrodinger equation and give Gaunt factors within a few
percent of each other. In the remainder of this section, we present a brief description of each procedure.

(a) Iterative Integral Equations Method. For the HE exposition, we rewrite Eq. (17g) as

Lf(R) = X(R|f) . (24a)

where

L=L-V 5 (R) ,and (24b)

X(R|f) = I Ve(R|R') i[R') dR' . (24c)

To start the iterative process, we solve the homogeneous equation

Lf°(R) = 0

and term this solution the zeroth iterate. We now substitute f ° into Eq. (24c) and determine X(R|f °).
Since both the exchange kernel and the wavefunction are known, the expression for X behaves like a
local potential. We then use this "potential" to construct the next iterate:

Lf'(R)=X(R|f°) . (25b)

We continue this scheme by the prescription

(25c)

until the phase shifts from successive iterations agree to within a specified tolerance.
The actual form of the scattering equation at each iteration involves only a local potential. This can be

seen more readily by making the identification

~ 1 , (26a)

which is valid for a converged function, and by substituting it into Eq. (25c) to obtain

[L + Vn_,(R)]P(R) = 0, , (26b)

where

We solve Eq. (26b) by an integral equations (IE) algorithm. We first convert the differential form to an
integral equation by employing the free-particle Green's function GS(R|R') such that

fu(R) = k-"2 jt(kR) + J^ G8(R|R') V, .,(R')fks(R')dR' , (27a)

where

LG,(R|R'1 = 5 (R-R ' ) ,and (27b)



L}B(kR) = O . (27c)

The Green's function in this case has a very simple form:

f G'CRJG^R') R < R '
G 8(R|R') = - [ G ' ( R ' ) G 2 ( R ) R > R ' . (28)

where d is k" 1 ^ (kR) and G2 is \Cl/% (kR). Substituting Eq. (28) into Eq. (27a) and making several
rearrangements of the resulting expression,23 we can write the solution as

fk8(R) = G'(R)I2(R)-G2(R)I'(R) , (29a)

where

/^ . (29a)

To effect a propagator solution to Eq. (29a), we introduce a discrete quadrature representation for the
functions and integrals and obtain

fkt(i) = G'(i)I2(i-l)-G2(i)I'(i-l) , (30a)

where

Im(i) = Im(i-l) + Gm(i)Vn_,(i)fks(i)toi ,and (30b)

coi is a quadrature weight. Since the function at step i depends only on the integrals one step back and on
known functions at i, the procedure can be employed to propagate the solution outward from the origin
[fl[0) = 0]. We use a trapezoidal quadrature for this propagation and obtain the K-matrix from the simple
relationship

K = - I ' M / I ' M . (31)

(b) Linear Algebraic Method. The LA approach2024 does not rely on an iterative prescription and treats
the nonlocal term directly. We return to an IE formulation of Eq. (17g) in terms of the free-particle
Green's function [Eqs. (27a)-(27c) and Eq. (28)] and write the solution as

fkj(R) = G'(R) + JjG(R|R')J]W(R'|R") fM(R")dR" dR' . (32)

We now introduce a discrete quadrature for the integrals and functions, and we obtain an equation of
the form

N N
« i ) - G ' ( i ) + 2 G(i|m)o)m .2 W(m| j) fuOuj , (33a)

where, as before, com and COJ are weighting functions. We now rearrange Eq. (33a):

lMuf(j) = G1(i) , (33b)
j

where

MUH=8u-lG(i|m)W(m|j)coj<om) . (33c)
m

Since all the functions in Eq. (33c) are independent of the solution f, we can evaluate My directly.
Equation (33b) is in the form of an LA system and can be solved by straightforward matrix methods.
This matrix is of order np, the number of points in the quadrature mesh. We typically employ a Gauss-
Legendre quadrature scheme.

10



C. Dipole Matrix Elements

Once the continuum functions have been calculated from a prescription in Section II.B, we can
evaluate the dipole matrix elements du- in either the length or the acceleration form. For a local, energy-
independent potential, both forms should give the same result. This fact provides a convenient check on
the numerical prescriptions. For the SE case in which a nonlocal term appears in the potential V, the
formulation of the acceleration case is ambiguous, and calculations are usually performed using the
length expression. Since the acceleration form involves the derivative of a local potential, which is fairly
short-ranged in all of our applications, we employ a straightforward numerical integration of the
moment expression.

On the other hand, the dipole-length form accentuates the long-range form of the wavefunctions. In
addition, the integration of a pair of oscillating functions with a growing radial term is notoriously
unstable. One commonly used procedure is to evaluate the integral as a limit:10

S • (34)
This formulation, although cumbersome, is quite stable. Other procedures based on asymptotic
expansions have also been employed (see Refs. 29,30).

We take a slightly different approach, based on the matricant method of Knirk,29 and divide the
evaluation of the dipole-length integral into two regions:

, (35a)

where

d! s J ' f,(R) R f2(R)dR , (35b)
0

and

dn = fji(K) R f2(R)dR . (35c)

The division i .dius, a, is typically the approximate size of the atomic system. The first, term d1 is
evaluated by a straightforward numerical integration scheme. In the second term dn, we assume that the
division radius is sufficiently large that fi and f2 have reached their proper asymptotic forms as given by
Eq. (17h). We have thus reduced the evaluation of dn to the integration over known analytical forms, the
Ricatti-Bessel and Ricatti-Neamann functions. In Appendix D, we outline the procedure for calculating
dn. Once d«- is known, we may then evaluate the Gaunt factor and related absorption coefficients.

HI. RESULTS AND DISCUSSION

A. Tests of the Programs

We have written two programs, GAUNTBA and GNTLABA, that calculate the averaged Gaunt
factor in the HE and LA methods, respectively. Both programs employ a Gauss-Laguene quadrature of
n̂  points to perform the integral in Eq. (8a). The numerical techniques for solving the scattering
equations and for constructing the dipole matrix elements and Gaunt factors are given in the previous
section (II). We now test these algorithms by comparing them to other calculations.

1. Hydrogen Atom. As a first test, we treat atomic hydrogen at infrared frequencies and at
temperatures of a few thousand kelvins at the SE level. We then compare our findings with other results.
In the determination of the dipole matrix elements, we make one simplifying approximation by
neglecting terms dependent on overlap integrals of the form A(% flu). These terms are usually quite small
compared with the usual dipole form of Eq. (14a). All calculations are performed in the length form; in
addition, five energies are used in the averaging prescription. Other parameters are given in the tables.
In Table i, we compare our absorption coefficient, corrected for stimulated emission [Eq. (A. 16)], to
that of John.8 The agreement is quite good over the whole range of temperatures and frequencies. These

11



TABLE 1.

Ak1

o.os

0.10

0.20

Comparison of Absorption Coefficients for H at the SE Level*-1*

e

0.5
1.0
2.0

0.5
1.0
2.0

0.5
1.0
2.0

g.

4.828(-2)
3.180(-2)
2.090{-2)

7.115(-2)
5.50K-2)
4.239(-2)

1.222(-1)
1.087(-l)
9.217(-2)

8t

2./73{-2)
1.099(-2)
4.766X-3)

3.839(-2)
1.842(-2)
9.770(-3)

6.408(-2)
5.754(-2)
2.348(-2)

g

3.287(-2)
1.620(-2)
8.799(~3)

4.658(-2)
2.757(-2)
1.792(-2)

7.860(-2)
5.532(-2)
4.065(-2)

K

1.952
2.720
4.179

0.346
0.579
1.064

0.073
0.145
0302

Kit

1.060
2.152
3.997

L-.274
0.554
1.062

0.070
0.14S
0.302

K j

1.04
2.17
4.11

0.271
0.567
1.11

0.073
0.158
0.339

KBKM

2.08
3.54

0.545
0.977

'Nomenclature: Alt2 is the photon energy in rydbergs;
9 = 5040/T(kerrins);
ft, (gt) is the averaged Gaunt factor for singlet (triplet) scattering;

K is the pressure absorption coefficient
KE is this coefficient corrected for stimulated emission, Kj from Ref. 8 (K'S in units of 10"2* em'/dyn) and

KBKM from Ref. 31; and
Z c = l .

kParameter8: Calculations performed in the LA approximation with np = 90 and a mesh /0.0 -1.0/1.0 -
3.0/3.0 -10.0/ with 30 points per regie;

«., = 4;
n. = 5.

results also agree with the single-channel ("IS") calculations of Doughty and Frazer.10 We also compare
our calculations with those of Bell et a!.,31 which are probably the most accurate free-free calculations to
date. These researchers employ both exchange and correlation-polarization effects in the scattering
solutions. However, their results are within 20% of the SE for the range under consideration.

2. Helium Atom. To investigate the validity of our approach for more complicated systems, we also
make comparisons with other calculations for helium and neon. For helium absorption, we invoke the
SE approximation and use the near-Hartree-Fock (near-HF), bound ls-wavefunction of Clementi.32 In
Table 2, we compare our results with those of John33 and Bell et al.30 Both groups of authors employ the
elastic e-Ke phase shifts of LaBahn and Callaway,34 which include both exchange and polarization
effects, but each group uses a different asymptotic approximation to determine the dipole matrix
elements.

In addition, we present the R-matrix results of Bell et al.3S These researchers include multichannel
effects and perform the dipole integrals without resort to any approximations. Their results should be
considered the best to date. The agreement between the extensive coupled-channel calculations and
those at tke SE level is excellent, indicating that polarization effects are not very important in this
regime.

3. Neon Atom, In Table 3, we also compare our results for neon with those of Geltmann36 and John
and Williams.37 John and Williams employ their asymptotic scheme to evaluate the dipole matrix
elements and the elastic e-Ne phase shifts of Thompson.38 Thompson treats exchange exactly and
introduces polarization through a Pople-Schofeld model potential. On the other hand, Geltman36

calculates the continuum wavefunctions from a Hartree-Fock-Slater potential augmented by a cutoff
polarization term but calculates the dipole matrix elements by a direct integration. We report results in
both the SE and the SEP2 approximations for the scattering. Ail of our dipole matrix elements are
calculated from a direct integration of the length form (see Appendix D) with no asymptotic
approximations. Considering the approximations involved, the agreement is quite reasonable.

4. Yukawa Potential. In the above comparisons, we have sought to test the SE procedure since this
case will be used as a standard with which to compare the other models. Unfortunately, most of the
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TABLE 2. Comparison of Free-Free Absorption Coefficients for He" at the SE Level1

Ak2 8 g K K E K J

0.03

0.05

0.10

0.5
1.0
2.0

0.5
1.0
2.0

0.5
A.O
2.0

1.090(-2)
3.541(-3)
1.279(-3)

1.250(-2)
4.481(-3)
1.840(-3)

1.703(-2)
7.276(-3)
3.585(-3)

2.997
2.753
2.811

0.742
0.753
0.874

0.126
0.153
0.213

1.124
1.677
2.382

0.403
0.595
0.836

0.100
0.146
0.212

1.12
1.60
2.19

0.407
0.581
0.808

0.104
0.154
0.238

1.59
2.14

0.559
0.770

0.144
0.209

1.13
1.64
2.34

0.415
0.600
0.842

0.110
0.165
0.242

'Nomenclature and parameters same its Table 1 except KJ from Ref. 33, KBKM from Ref. 30, and K B B C from Ref. 35 (all
K'S in anits of KT2* cm4/dyn); helium wavefnnction of Clementi (Ref. 32).

TABLE 3 . Comparison of Free-Free Absorption Coefficients for Ne~ at the S E and SEP2
Levels*

Ak3 6 g(SEP2) K ( S E ) K ( S E P 2 ) K E ( S E P 2 ) KG K W

0.10
0.10
0.20
0.05

1.008
0.504
1.008
0.504

1.426(-3)
4.096(-3)
2.908(3)
2.938(-3)

0.645
0.538
0.132

—

0.303
0.308
0.077
1.765

0.290
0.244
0.077
0.964

0.452
0.362
0.114
1.47

0.31
0.26
0.061
1.20

•Nomenclature and parameters same as Table 2 except K ( S £ ) and K ( S E P 2 ) are the uncorrecied
absorption coefficients in the SE and SEP2 approximations;

all K'S are in units of 10"27 cm*/dyn;
R, = 2.047;
KJW refers to Ref. 37 and KG refcss to Ref. 36;
near-HF neon wavefnnction of dementi (Ref. 32).

earlier calculations were performed at low temperatures and frequencies. To test the higher energy
regimes, we compare our calculations of the averaged Gaunt factor for a Yukawa potential [Eq. (19)]
with those of Green.16 These results are presented in Table 4 for a variety of temperatures and photon
energies. The agreement is excellent over all regimes, usually better than a few percent. The only case
that violates this observation is for kT = Ak2 = 0.03 Ry and X = 0.25. The two results differ by ~ 10%.
However, this energy regime supports a shape resonance in the electron scattering. In the range of such a
resonance, the continuum wavefunction can be quite sensitive to the choice of scattering parameters.
We have repeated the calculation for a tighter mesh extending to 50a,, and have observed a change in g of
less than 1%.

5. Resonances. Resonances can have a profound effect on the absorption coefficient over a restricted
energy range. For electron scattering from an atom or molecule, two basic types of resonances are
important: (1) the Feshbach resonance and (2) the shape resonance. The Feshbach resonance is
associated with a doubly excited state of the compound system of electron and atom. Iliese resonances
are generally very narrow and are therefore usually not important for a neutral system. Of course, the
exception arises when absorption in a distinct spectral line, which lies within the resonance width,
becomes important. On the other hand, ionic systems support rydberg series of such compound
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TABLE 4. Comparison of Averaged Free-Free Gaunt Factors g
for a Yukawa Potential VY.*-k

kT = Ak2 X

0.03

0.10

1.00

3.00

0.10

0.3806
0.3845

0.7452
0.7437

1.191
1.215

1.200
1.242

0.25

0.1292
0.1161

0.4077
0.3971

1.024
1.042

1.155
1.170

0.50

0.0126
0.0125

0.1003
0.0994

0.7407
0.7226

1.006
0.9915

1.00

0.0226
0.0224

0.0926
0.0910

0.5188
0.5230

0.7508
0.7685

"Nomenclature: upper entry is from present calculation;
lower entry is from Ref. 16;
kT and Ak2 are in rydbergs;
X. is defined by Eq. (19);
Z = 1.0;
Z c =1.0 .

"•Parameters: LA solution, np = ISO, mesh /0.0 -1.0/1.0 - 3.0/3.0 -
10./10. - 30./ with 30 points in each region except the last, which
has 60;

n, = 6;
8 . = 6.
For Akz = kT and A < 0.25, we have extended the mesh to 50 a,.

resonance states. While the contribution within a given line remains small, the accumulated effect may
be quite pronounced, as has been demonstrated for impact excitation of ions by electrons.a To date, this
effect has not been studied for free-free processes. We should also note that, owing to the nature of
Feshbach resonances, they will only arise within a multistate or close-coupiing representation of the
scattering equations and thus cannot be extracted from an 3E calculation.

Shape resonances, on the other hand, are produced by simple barrier trapping and can exist for any
form of local, model potential The scattering wavefuuetion and Gauat factor are very sensitive to the
potential parameters in the region of a resonance. The net effect is usually to enhance the Gaunt factor.
In Fig. 1, we present calculations of th; Gaunt factor g(Ej,ai) as a function of the incident electron energy
Ei for a photon energy of 0.30 Ry and for a Yukawa potential with two choices of X. A similar case has
been treated by Green.16 The solid curve represents a potential with X = 0.25 and clearly supports a
pronounced shape resonance at about 0.09 Ry. If we increase the Yukawa potential by about a factor of
2 (X=0.50), we note that the shape resonance disappears (dashed curve). We see the importance of such
structures because the Gaunt factor is enhanced by almost an order of magnitude in the range of the
resonance. However, a note of caution is due: such resonance structures in model potentials may not
exist for more sophisticated treatments of the atomic-scattering process. Thus, if we plan to accurately
model the free-free absorption from a particular atomic system, we must make sure that our models
reproduce the correct scattering profile and do not introduce spurious shape resonances, which could
drastically alter the Gaum factor over a particular energy range. One additional point is worth noting:
averaging over a Boltzmann distribution will usually smooth out the resonance structure to some
degree.

B. Comparison of Models

In this section, we compare the various models discussed in Section II.B for several atomic species.
1. Rare Gases. In Table 5, we present the averaged free-free Gaunt factor for helium as a function of

the photon energy Ak2(Ry) and the electron temperature kET(Ry) for the following models: SE,
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Fig. i . Gaunt factor g(k[,co) as a function of incident electron energy k?(Ry) f«.- •» photon energy of 0.3 Ry and a Yukawa
potential. Solid line ( ). X = 0.25; clashed line ( ), X = 0.50.

TABLE 5.

model

SE

AAFEGE
HFEGE
S

SEP2

Comparison of Var*us Models for the Averaged Free-Free
Gaunt Factor g for He~*-b

0.03

3.215{-3)

2.939(-3)
4.572(-3)

2.796X-3)

Ak2 =

0.10

3.133(-2)

3.187(-2)
3.879(-2)
8.123(-2)

3.183(-2)

= kBT

0.30 1.00

1.957(-1) 8.561(-1)

1.980(-l) 8.697(-l)

2.898(-l) 9.049(-l)

2.132(-1) 9.136X-1)

'Nomenclature: near-HF helinm wavefunctions of Clementi (Ref. 32).
'Parameters: LA solution, n, = 90, mesh /0.0 -1.0/1.0 - 3.0/3.0 - 10./ with

30 points per region;
S.-4;
n« = S;
Ak2 (kBT) in rydbergs;
i = 0.918 hartrees;
a, = 1J8 aj and R, = 1.773 a.;
AE = 19.82 eV, first excitation threshold.
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AAFEGE, HFEGE, S, and SEP2. The calculations were performed with the LA technique and basic
parameters are described in the table. We note that both FEG models give very good agreement with the
SE over the entire energy regime from 0.03 to 1.00 Ry. On the other hand, the S model overestimates the
Gaunt factor by almost a factor of 5 at the lowest energy but agrees to within 10% at the highest energy.
The nonadjustable SEP2 model is slightly lower than the SE case at the low energies and slightly higher
in the upper energy range. As indicated before, the correlation-polarization effects are not very
pronounced for helium below the first excitation threshold of 19.82 eV.

These trends do not hold for neon, as can be seen in Table 6. The HFEGE still gives good agreement
with the SE, as does the AAFEGE at the higher energies. However, at tbr lower energies, the AAFEGE
underestimates the g by almost a factor of 3. As with helium, the S overestimates the Gaunt factor in the
lower range and comes into better agreement at the higher range.

We have also performed calculations with »he two model polarization potentials. The cutoff
parameter in the SEPla case was selected to give phase shifts in agreement with those of Thompson,38

while the SEP2 construction contains no adjustable parameters. The results of both models are
considerably smaller than the SE at the U"vest energy, indicating the great sensitivity of the Gaunt factor
to the scattering formulation employed in this regime. As the energy increases, the SEPla and SEP2
models come into better agreement between themselves and with the SE results.

In Table 7, we present a similar study for atomic argon Ar~. In this case, the FEG models bracket the
SE result: the AAFEGE is better at low energies ?.nd the HFEGE is better at higher energies. The S
overestimates for the whole range, whereas the SEPla model gives the smallest values of g for low values
of Ak2 and kBT. The SEPla potential was generated to reproduce the low-energy s- and p-wave phase
shifts for e-Ar scattering given by Thompson.38 Except at the very lowest energy, ihe SE and FEG models
appear to give a reasonable representation of the free-free Gaunt factor.

2. Alkali Systems. In Table 8, we compare several of the models presented in Section II.B for '.he
lithium atom (Li). For an alkali, there are two different spin-states, singlet and triplet, that contribute to
the final Gaunt factor. In the single-channel approximations for the SE and FEG models, these two spin-
states are not coupled, and we may simply add them with an appropriate weight to determine the
averaged Gaunt factor. When compared with the SE, the AAFEGE model underestimates the g at low
energies and overestimates at high energies. The agreement between the SE and FEG approximations is
not as good for the alkalis as for the rare gases.

TABLE 6. Comparison vT Various Models for tk? Averaged Free-Free
Gaunt Factor g for Ne""1*

model 0.03 0.10 0.30 1.00

SE 1.412(-3) 1.33K-2) 1.230(-l) 1.555

AAFEGE 4.723{-4) 8.826(-3) 1.095{-l) 1.434
HFEGE 1.621(-3) 1.535{-2) 1,395(-1) 1.554
S 4.994(-3) 5.376X-2) 3.495(-l) 2.112

SEPla 6.16K-4) 8.980{-3) 1.167(-1) 1.680
SEP2 S.8S6(-4) 8.692(-3) 1.129(-il) 1.662

•Nomenclature same as Table 5 except SEPla and SEP2;
near-HF wavefanction of Oesncnti (Ref. 32).

'Parameters same as Table S except n, = 120, mesh /O.i) -1.0/1.0 - 3.0/3.0 -
20.0/ with 40 points per region;

Co = 2.66 «i Ro = 1.75a,, for SEPla, R, = 2.047 a, for S&P2; and
I = 0.8505 hartrees;
AE = 16.62 eV.
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TABLE 7.

model

SE

AAFEGE
HFEGE
S

SEPla
SEP2

Comparison of Various Models
Gaunt Factor g for Ar~"

0.03

2.277(-3)

2.278{-3)
2.871(-3)
1.156(-2)

6.519(-4)
4.150(-4)

Ak2 =

0.10

3.315(-2)

2.'718(-2)
3.519(-2)
1.129(-1)

3.261(-2)
3.489(-2)

for the Averaged

kBT

0.30

5.250(-l)

S.058(-l)
4.593(-l)
5.600(-l)

6.097(-l)
7.01«(-l)

Free-Free

1.00

4.290

4.764
4.186
3.524

4.373
4.540

•Nomenclature and parameters same as Table 5 except a, = 11 aj, R,, = 3.0 a,, for
SEPla, R. = 2.9177 â  for SEP2;

I = 0.5912 a.u.;
near-HF argon wavefnnction of dementi (Ref. 32);
A E = 11.55 eV.

TABLE 8.

model

SE
sing,
trip,
ave.

AAFEGE
sing,
trip,
ave.

S

Comparison of Various Models
Gaunt Factor g for I r*-b

0.03

2.68(-2)
5.51(-2)
4.80(-2)

1.16X-2)
3.22(-2)
2.71(-2)

2.60(-3)

Ak2 =

0.10

6.38(-2)
2.85(-l)
2.30(-l)

6.59(-2)
2.42(-l)
1.98(-1)

3.95(-2)

for the Averaged Free-Free

kBT

0.30

2.08(-l)
8.10(-l)
6.60(-l)

2.79(-l)
1.17(0)
9.44(-l)

3.12(-1)

1.00

1.121(0)
1.610(0)
1.488(0)

8.54(-l)
2.56(0)
2.13(0)

1.35(0)

"Nomenclature: singlet (sing.), triplet (trip.), spin-averaged (ave.);
near-HF Li wavefunction of Clementi (Ref. 32).

bParameters: LA solution, np = 90, mesh /0.0 -1.0/1.0 - 3.0/3.0 - 10.0/ with 30
points per region;

length form;
A E = 1.848 eV.

The low-energy cross sections are profoundly affected by a 3P-shape-resonance, although this is not
readily apparent from Table 8. In Fig. 2, the 3P-shape-resonance is displayed by its eigenphase sum as a
function of incident electron energy. The abrupt rise of the eigenphase sum by nearly a factor of n is a
characteristic feature of such a resonance. Although the SE and AAFEGE models have a
3P-shape-resonance, the position and width are not correct when compared with the accurate two-state
close-coupling calculation (2CC).20 Both models place the resonance too high in energy. We have
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k2(Ry)
Fig. 2. Eigenphase sum as a function of electron energy for e - Li scattering.

introduced a model cutoff SEPlb potential to lower the position of this feature. We set a,, at 164a3, and Ro
at 4.1 a,,. While this choice does not quite place the 3P-shape-resonance at the correct energy, the resulting
resonance parameters, position and width, are much closer to the 2CC result. In Table 9, we
demonstrate the profound effects of this resonance on the Gaunt factor by presenting the results for g for
ihe SEP case. By comparing with the SE results of Table 8, we immediately discern the sensitivity of the
Gaunt factor to such a resonance.

Finally, in Table i 0, we present a similar demonstration for Na~. The trends are similar to those
found for lithium with the AAFEGE slightly underestimating the | at both low and high energies. The
sodium system also supports a 3P-shape-resonance in electron scattering at low energies. As in the
lithium case, this feature causes the Gaunt factor to be quite sensitive to the model potentials in the
energy regime spanned by this resonance.

In the two preceding subsections, we have compared various models of the interaction potential for
both rare-gas and alkali systems. We have seen that the averaged Gaunt factor for low photon and
electron energies is particularly sensitive to the approxi-nation invoked. This sensitivity is further
enhanced by the appearance of a shape resonance in the 3P channel for both lithium and sodium. These
low-energy regimes require very accurate scattering calculations from sophisticated multichannel
methods.19-20 On the other hand, as the electron and photon energies rise, the SE model, the FEG model,
and even the S model become appropriate. We should caution, however, that even in these regimes,
multichannel, correlation, and resonant effects can be important.

3. Aluminum and Its Ions. We have employed a spherically averaged static potential and an FEG
potential to represent the elastic scattering of an electron from neutral aluminum. Since All consists of a
single p-electron outside a closed-shell, more than one orbital angular momentum of the continuum
electron (B) contributes to a total-system state of LS [L = fi+1, S = 0,1] symmetry. Thus, even in the
elastic case, we must solve a set of coupled, radiaf differential equations. These equations will be
nonlocal if exchange and correlation effects are included. In fact, a detailed examination of this system
would require the inclusion of excited target states in the solution of the scattering equations. The errors
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TABLE 9. Averaged Free-Free Gaunt Factor for Li~ in the SEPlb
Approximation*

Ak2 = kBT

sing,
trip,
ave.

0.03

2.002(-2)
1.47K-1)

0.10

3.650(-2)
3.677(-l)
2.849(-l)

0.30

2.378(-l)
6.980(-l)
S.830(-l)

1.00

1.236
1.750
1.622

'Nomenclature and parameters same as Table 8 except the SEPlb model with
a. = 164 a? and 1^ = 4.18..

TABLE 10. Comparison of Models of the Averaged Free-Free Gaunt
Factor g for Na~*

Ak2 = kBT

model

SE
sing,
trip,
ave.

AAFEGE
sing,
trip,
ave.

0.03

2.756(-2)
4.903(-2)
4.366X-2)

1.422(-2)
4.799(-2)
3.955<-2)

0.10

6.601(-2)
1.982(-1)
1.652(-1)

7.592(-2)
2.696(-l)
2.212(-1)

0.30

1.155(-1)
4.099(-l)
3.363{-l)

2.887(-l)
8.354(-l)
6.987(-l)

1.00

1.487(0)
1.685(0)
1.636(0)

9.744(-l)
1.788(0)
1.585(0)

S- 3.500(-3) 2.155(-2) 2.414(-1) 2.529(0)

'Nomenclature and parameters same as Table 8; near-HF Na wavefunction of
Clementi (Ref. 32); AE = 2.10 eV.

introduced by considering the simple spherically averaged potential are difficult to gauge. However,
John and coworkers5 have found that the inclusion of excited states generated changes in the free-free
absorption coefficient of about 30% for infrared frequencies and for temperatures of 500 to 1000 K (0.05
to leV). Such a detailed calculation will have to be consigned to a full-scale research project and would
have to be addressed with the atomic R-matrix19 or linear algebraic programs.20

In Tables 11-13, we report Maxwell-Boltzmann-averaged free-free Gaunt factors gff at several electron
temperatures and photon frequencies for the various models discussed in Section II. We use gB as a
comparative and set Zc equal to one since all other quantities, such as a and 5 & are directly related to
Zc. These results are valid for a frequency co above the plasma cut-off oop. For aluminum at densities of
10~3 to 10"4 g/cm3, cop is a few an tenths of an electron volt.

In Table 11, we consider neutral aluminum (Al). The upper part of the table presents a compavison
among the Yukawa (Z= 1), point charge, S-FC, and AAFEGE models. We feel that the S-FC and
AAFEGE results are the most realistic since they employ a more reasonable representation of the target
system. The Yukawa results for Z = 1 show a marked increase as the scaling parameter k is decreased.
This behavior arises from the introduction of a d-wave (£ = 2) shape resonance in the electron
scattering. From comparison with the S-FC and AAFEGE results, we are safe in concluding that such
resonance enhancement does not exist for neutral aluminum. However, such resonances can arise for
other systems and charge states and can produce rather dramatic changes over a restricted energy region
(see Section III.B.2).
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TABLE 11. Boltzmann-Averaged Gaunt Factor gBfor A\**

kT(eV)
ftoi(eV)

model

Yukawa ( Z = l )
X = 0.25

G.SO
1.00

S-FC

AAFEGEC

Point Ch.(Z=l)*

MOOP

Yukawa ( Z = 13)
X = 0.25

0.50
1.00

1.00
1.17

0.4108
0.0691
0.0719

0.0618

0.0678

1.2503

1.161

1.6955
0.5170
0.0622

1.00
5.00

0.9441
0.2108
0.2498

0.0707

0.2064

1.1593

1.115

12.151
3.350
0.1288

5.00
1.17

0.4968
0.2630
0.1782

0.1802

0.4969

1.3265

1.20

7.4564
2.2278
0.4111

5.00
5.00

0.7750
0.3966
0.2918

0.2276

0.7250

1.2930

1.132

30.4094
4.6718
0.5619

10.00
1.17

0.6345
0.3955
0.2583

0.6124

1.0742

1.3508

15.359
6.2007
1.5035

10.00
5.00

0.8385
0.S045
0.3391

0.7278

1.3239

1.3410

36.946
12.009

1.8873

'Since the absorption coefficient is independent of the choice of the charge Zc in the Kramer's formula
(see Sec I for a discussion), we calculate all models for Zc = 1. The "charge" in the Yukawa model is a
scaling parameter, which is selected to represent either the long-range (Z = 1) or short-range (Z = 13)
nature of the aluminum potential end is not a measure of the state of ionization of the medium.

kNumerial integration (HE): n, = 282, rm = 29.8, C. = 10, n, = 10.
CA1IHF c/bitals of Clementi (Ret. 32).
'Coulomb-Born: Sm = 10, n^, = 10.

TABLE 12. Boltzmann-Averaged Gaunt Factor &, for AT*

kT(eV)
MeV)

mcdel

Point Cb.(Z=l)»

S-FC

SS-FC(R.=10)
XD=0.10

0.25

1.00
1.17

1.2503

1.0024

1.4262
1.7683

1.00
5.00

1.1593

0.8570

0.8882

5.00
1.17

1.3265

1.4669

1.7719

'Numerical integration (IIE): n, = 282, rH = 29.8a.,£. = 10, n, =
kCoulomb-Born.
c All HF orbitals of Clementi.

5.00
5.00

1.2930

1.5060

1.5031
1.6845

= 10,Zc=l.

10.00
1.17

1.3508

1.9698

2.2323

10.00
5.00

1.3410

2.. 095

2.3226
2.4755
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TABLE 13. Boltzmann-Averaged Gaunt Factor gnfor Al+3*

kT(eV)
MeV)

model

Point Ch.(Z = 3)b

S-FC*

SS-Fe(Ro=10)
XD=0.10

0.25

1.00
1.17

8.6497

8.350

10.066

'Numerical integration (HE): np = 282,
'Coulomb-Born.
CA13 HF orbitals of Clementi.

1.00
5.00

9.4858

8.3074

9.7536

r.-2r

5.00
1.17

8.2718

8.3839

10.412
13.742

?m = 10,11,

5.00
5.00

9.9883

9.8281

10.753

,= 10 ,^=1 .

10.00
1.17

8.783

8.5021

10.355
8.597

10.00
5.00

9.6435

11.455

In the latter part of Table 11, we compare these models with the results of MOOP and the results of a
Yukawa potential with Z = 13, the nuclear charge of alumiuum. We note that MOOP and the point-
charge results can be in error by as much as an order of magnitude. The results for the Yukawa potential
with Z = 13 are clearly unrealistic because the model leads to an overly strong potential in the
intermediate radial range from R ~ 3a,, to R ~ 20a,,. The main point to draw from Table 11 is that for
neutral systems the Gaunt factors for low temperatures and photon energies are very sensitive to the
model employed. If neutral species are present and low-energy regimes are important, then considerably
more sophisticated models must be employed to treat these cases.

In Tables 12 and 13, we make similar comparisons for Al+ and Al+3. For the ion cases, the differences
among the various models are less pronounced than for the neutral case. The models differ by
approximately a factor of 2, even when plasma-screening effects are invoked. From MOOP we derive a
Debye length of approximately 10a, for th^ temperatures, densities, and radiation fields considered in
the tables. Thus, we conclude that if a system has a reasonable population of neutrals, the free-free
absorption within a specific line could be in error by a factor of 10 over the standard treatment in current
opacity programs. However, for ionic species the absorption is in error by a factor of 2. We emphasize
that these differences arise at a particular frequency for a specific line; the mean opacities are probably
much less in error.
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APPENDIX A
NOTES ON CONVENTIONS

1) Sobelman
Sobelman15 defines a quantity called an effective cross section OE^E- for free-free absorption:

r MEE' [cm4s] , (A.1)
3c k2

where

I 2 f [(2L + 1) (2L' +1) (2S, + I)"1 (2L, + I)"1 (2S + 1)]

( A I 2 )

The target atom is described by an (LiSi) state. The total system (atom + e—) is characterized by LS
(L'S') for the initial (final) state:

- » • • - >

L = L, + fi

• » • » - »

U = L, + V

where £ (£') is the orbital angular momentum of the incoming (outgoing) electron. The 5-j symbol is
given by {} above and the dipole m atrix element by

d*.(E|E') = f R ^ r ) r REr(r;dr ,

such that

2m

Placing this expression in terms of a dipole matrix element for continuum functions that go
asymptotically to sin(8), we have

Sobelman defines this quantity in terms of the effective semiclassical cross section of Kramer by

24



Equating Eqs. (A.3) and (A.4), we can derive an expression for the Gaunt factor as:

lu,. (A.5)

For potential scattering, scattering from a ground-state closed shell, or scattering from a closed shell with
one additional s-electron target, we have the relation

where M is given by Eqs.( 11) and (12). Thus, the two definitions of g are consistent.
Sobelman also defines a continuum absorption coefficient k^ with units of cm"1:

km = i^ni < v i

which is related to the averaged absorption coefficient, a, by

k.
a ( T » == — [cm5] . (A.7)

2) Chandrasekhar-Breen and Geltman
In their 1946 paper,3 Chandrasekhar and Breen define an absorption coefficient a(k2; Ak2) in units of

cm5 but with most quantities expressed in atomic units. We demonstrate that the absorption coefficient
defined in Eqs. (4), (5), and (11) is consistent with that of Chandrasekhar and Breen.

We first address the Gaunt factor in Eq. (11). Using the relationship implied in Eqs. (14a) and (14b),
we write the length form of M in terms of the acceleration form as

ML=co-4MA .

(Chandrasekhar and Breen use the acceleration form in terms of the potential V in hartrees).
We 'herefore have the following form for g:

U(V) , (A.8)

where we have appended an R to the wavenumber k to indicate rydberg units [if k2 is in rydbergs then
kR = (k2)"2]. We now express the Kramer's form cK in atomic units by employing the relationships

k = mv ft"1

k(cm-1) = kRa^',and (A.9)

me4

ftto(ergs) = (Ak2)— ,

where Ak2 is the photon energy in rydbergs and a,, is the Bohr radius (ft2/me2 = 5.291771 X lO^cm):

<A10>
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where a is the fine structure constant te2/ftc).
The absorption coefficient is then given by

256jt2aa|
a(k|;Ak2) - MA(V) , (A. 11)

3kRkR(Ak2)3

which agrees with [Eq. (6)] of Chandrasekhar and Breen.
According to Eqs. (6) and (3), we now derive a Maxwell-Boltzmann-averaged absorption coefficient

in terms of the effective temperature 9 = 5040/T (kelvins). We first note the following relations:

kBT 2mkBa2T(°K)

and

where C( = 31.32625, C2 = 197.841, and kB is the Boltzmann constant. Using these relations together
with Eqs. (A.I 1) and (6), we find

256

and

J | * < A 1 2 )

where f(kfe) = 100 kR exr^-CBkl) and C2 = C2/IOO.
Chandrasekhar and Breen also define an absorption coefficient per unit pressure (P) per atom as

[cm4/dyn] . (A. 13)

Using the expression for the pressure of an ideal gas,

P=nikBT , (A. 14)

and the relation (ksT)"1 = 1.43704 X 10129 , we have

K = C3 —— I {A 1 SI
(Ak)
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where C3 = 7.251 X 10~29. This form also agrees with that of Geltman6 if we explicitly represent f(k2),
employ the length form [MA = (Ak2)4

 ML/16], and note that his asymptotic form is (l/7tk)1/2 sin (kr +...).
In addition, this expression conforms with that of John.8 This absorption coefficient can be related to
the averaged Gaunt factor g [Eq. (7) of John] through the expression

K = C5Z283/2(Ak2r3g , (A. 16)

where C5 = 2.099 X 1O~28. This coefficient is sometimes corrected for stimulated emission by
multiplying by a factor [ 1 - exp(-Ci 9Ak2)].

APPENDIX B
FORMSOFM

We consider the general form of the dipole element given by Sobelman13 [see Eq. (A.2)]:

= I X (2L + 1) (21/ + 1) (2S + 1) [2L, + 1)(2S, + I)]"1

W S'LL'

I L' 8' 1 J

where riW is given by Eqs. (14a) and (14b). We consider several simple cases:
1) Scattering from a ground-state closed-shell atom: Li = 0, Si = O.We have

ffiLOj = fB fiMl = [88L88-L- (-irg'+1]
j l / 8 ' l j j l /LOJ [(28 + 1)(2B' + 1)]1/2 ,

and therefore

However, for Si = 0, S must be equal to 1/2 and

Mkr = 2 2 8 ^ du-(k|k')2 = 2M . (B.2)

This same expression also arises for scattering from a central potential.
2) Scattering from a ground-state target with a single s-electron outside a closed shell. The target

quantum numbers are Li = 0 and Si = 1/2, and the values for the total system become

L = 8 ,
1/ = 8' , and
S = Oorl .

For this case, we have

» \ I «m» [d2,' (S) + 3 dfrCDl , (B.3)

where d(S) [d(T)] is the .aoial dipole element for singlet [triplet] scattering.
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APPENDIX C
SE EQUATIONS

For the case of scattering from a closed-shell target or from a target with a single s-electron outside a
closed shell (alkali), the SE-direct and exchange terms have the form

^ + 2 So, 2 fc W {'fi!L)y* (<Pn*i<P»*;|R) . (Cl)
K 1 A

o,
— 1 A.

and

VJ»(R|R') = 2(- l ) ' - s I ((2Ei - k2)68i,
1-0 I

where fij (6) is the orbital angular momentum of the bound (continuum) electron, Z is the nuclear charge,
(Pnij is the i-th bound orbital with energy Ej, k2 is the energy of the continuum electron, r> (r<) is the
maximum (minimum) of (R,R'), and & and g>. are angular coefficients given by Percival and Seaton.26

The yx term is defined by

yx(ABR) = fo A(R') B(R')-^dR' . (C.3)

We have assumed LS coupling by which the orbital angular momenta and spins of the bound and
scattered electrons are coupled according to

L = fii + C , and
• • - » - »

S = Sj + S .

The summation over the variable i extends over all occupied orbitals with occupation number Oj.

APPENDIX D
EVALUATION OF dn

We seek a convenient procedure for evaluating dn given by

dn = JTfw(R) R fw(R) dR , (D. 1)

where fu and W are solutions to the Schrodinger Eq. (17g). Our approach is similar to the matricant
technique of Knirk.29 We assume that the division radius, a, is large enough so that the continuum
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functions have achieved their asymptotic form given by Eq. (17i). Substituting this asymptotic
expression into Eq. (D.I), we have

dn = [M21(PHf'k') + K,- M22(Bk|8'k')

+ K* M23(fik|fi'k') + K5K5-M24(fik|C'k')] , (D.2)

where

M21(Sk|fi'k') - ;Ij,(kR)R>(k'R)dR ,

M22(«k|fi'k') =J^j8(kR)Rfi8.(k'R)dR ,

M23(Jk|8'k') =Jl fj,(kR)RjV(k'R)dR , and

M24(fik|B'k') = J 7

where j (n) is the Ricatti-Bessel (Ricatti-Neuman) function.
We evaluate the M elements by expanding the Ricatii functions in terms of sines and cosines and

evaluating the resulting multipolar integrals by simple recursion relations. The Ricatti functions can be
expanded as

8

jj(kR) = 2 [R(8m) sin(kR) + S(Bm) cos(kR)]R-'n ,
m-0

and

f\,(XR) = *• [R(Bm) cos(kR) - S(8m) sin(kR)]R-m , (D.4)

where R(Bm) and S(Bm) are known constants. We now substitute Eq. (D.4) into Eq.(D.3) and derive

8 8'

M21 = 2 2 [R(Bm) R(B'm') EM(kk'|a) + R(8m) S(8'm') FM(kk'|a)

+ S(Bm) R(8'm') GM(kk'|a) + S(6m) S(fi'm') HM(kk'|a)]

= I 2 [R(Bm) R(B'm') FM(kk'|a) - R(Bm) S(B'm') EM(kk'|a)

+ S(fim) R(P.'m') HM(kk'|a) - S(fim) S(fi'm') GM(kic'|a)]
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M23 = i £ [R(£m) R(fi'm') GM(kk'ia) + R(8m) S(8'm') HM<kk'|a)
m-0 mM)

- S(«m) R(C'm') EM(kk'|a) - S(Cm) S(8'm') FM(kk'|a)]

8 B'

M24 = 1 2 [R(£m) R(fi'm') HM(kk'|a) - R(8m) S(«'m') GM(kk'|a)
m-0 m'-O

- S(Cm) R(8'm') FM(kk'|a) + S(fim) S(8'm') EM(kk'|a)] , (D.5)

where

EM = ft R"M+1 sin(kR) sin(k'R)dR ,

FM = II R~M+1 sin(kR) cos(k'R)dR ,

GM = J7 R~M+1 cos(kR) sin(k'R)dR ,

HM = / I R"M+1 cos(kR) cos(k'R)dR , and

M = m + m' . (D.6)

We determine the latter expressions by writing the product trigonometric functions in terms of the
summed-angle relationships. Thus, we have

EM = - [CM(k-k'|a) - CM(k + k'|a)] ,

FM = j [SM<k-k'|a) + S^k + k'|a)] ,

GK = -r [- SM<k-k'|a) + S^k + k'|a)] , and

HM = 2 [CM<k-k'|a) + CM(k + k'|a)] , (D.7)

where

CM(K|a) = J7 R-M+1 cos(KR)dR , and
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n R"M+1 sin(KR)dR . (D.8)

By writing out several of these terms explicitly, we can derive a set of recursion relations of the form

CM(K|a) = "°M_, + — l — SM+i (K|a)

- {^-] CM+1 (Kla) . (D.9)

We start the sequence at a large value of M(> 9. + £'), where Cm ~ Sm ~ 0, and recur downwards
until we have generated all values of M needed in the expansion. To finally place dn in the proper form,
we must divide by [(1 + K2

e)(l + Ki )/(kk')]1/2.
We compare this procedure with the more standard asymptotic limit form. We select a local potential

formulation to compare the length and acceleration forms. The asymptotic limit form is given by

d - a; + d1 , (D.10)

where

lim J~ e"« fM(r)r W(r) dr . (D.ll)
a->0

For a given choice of a, we directly integrate Eq. (D.ll) by standard numerical procedures. We have used
the Common Los Alamos Mathematical Software subroutine DQAGIE, which partitions the interval
and performs a Gauss-Laguerre integration within each subregion. We take three values of d and fit the
integrals dS to a simple quadratic form — a2a

2 + aid + a,,, where a,, gives the zero limit of the partial
moment.

In Table D. 1, we compare the above two methods for the length form with the acceleration expression
for e-Li scattering from the static potential [Eq. (20a)]. The first column lists the values of a while the
second column presents the dj integral for this particular value of a. The third column displays the ao
coefficient (d?) of the quadratic fit to the present moment value and two preceding moment values. We
compare this result with the value of the matricant calculation in column four. The inner integration of
d! is given in the fifth column. Finally, we compare the total length expressions (d1 + dn) with the
acceleration form (multiplied by 2/Ak2 to give the same units). We note very good agreement among all
the methods; the largest difference is 7% between the acceleration and matricant length. We should also
note that Eq. (D. 11) is very difficult to accurately integrate from the origin (a = o), requiring very small
values of a to obtain precise results.
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TABLE D-1. Comparison of Various Methods to Determine the Dipole Matrix Elements: e-Li Scattering in the
Static Potential

d11 d1 dA

a) k,2 =

0.0200
0.0100
0.0050
0.0025

b)k2 =

0.0100
0.0050
0.0025

c) k,2 =

0.0200
0.0100
0.0050
0.0025

d) k,2 =

0.2000
0.0100
0.0050
0.0025

= 0.10Ry,8, = l;

145.905
181.959
201.896
212.325

0.10, fi, = 0; k 2
2

-106.756
-111.001
-112.598

= 0.10, fi, = 2; k2
3

94.939
109.326
115.860
118.869

= 1.0,C, = l;k2
2

14.1750
17.9452
20.1559
21.3515

k2
J = 0.20 Ry, 82 = 0

223.107
223.060 233.355

= 0.20, S2 = 1

-113.845 -113.756
1 = 0.20, 82 = 1

121.953
121.707 121.638

= 2.0,B2 = 0

22.584
2?.6O7 22.748

-229.635

89.428

-103.418

26.597

-6.575

-24.813

18.289

-6.300

-24.328

18.220

-6."64

-24.697

18.256

-3.9897 -3.8496 -3.9989
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