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FREE-FREE GAUNT FACTORS:
COMPARISON OF VARIOUS MODELS

by

L. A. Collins and A. L. Merts

ABSTRACT

We develop the general theory of free-free absorption processes in terms of basic
quantum mechanical principles. We perform calculations of the free-free Gaunt factor
for several models of the electron-atom (ion) interaction in a variety of systems
including rare gases, alkali, 2nd aluminum. In addition, we investigate plasma-
screening effects in such models as the Yukawa potential. Our calculations comipare
well with those of other authors, and ¢ur comparative study of various models allows a
more thorough understanding of their range of validity.

I. GENERAL FORMULATION

The free-free absorption or inverse Bremsstrahlung process is described by the following mechanism:

hv+ e E+ A >eE' + A |
where E (E’) is the initial (final) energy of the continuum electron, hv(=hw) is the energy of the photon,
and A represents an atomic or ionic target. This radiative mechanism has been investigated extensively,
and a representative, though by no means exhaustive, survey is given in the first set of references.!3

The process is usuaily characterized in terms of an absorption coefficient a(E,w)**"*, which relates the
number of absorptions by electrons per unit volume per unit time, kg, to the number density of free
electrons (n.) and of atoms (n;), the normalized electron distribution f{E)dE, and the Planck radiation
flux Pd(hv):

kg = nn. a(E,w) f(E)dE Pd—glvl) . N

The Planck radiation flux is related to the radiation energy density U by the speed of light ¢ and is given
by

3
Pd(hv) = 8% 3 [exp(—hv/kT) — 1] d(hv) [ergs/em? sec] . @

For a Maxwell-Boltzmann distribution of the electrons, we have

flE)dE = nl%(k,{l‘)"/2 exp(—E/kgT) EV2 dE , 3

wpere T is the electron temperature in degrees Kelvin (“K), E is the kinetic energy of the electron (amv?)
with v (m) the electron velocity (mass), and kg is the Boltzmann constant,



The absorption coefficient in units of cm® is in turn related to a dimensionless quantity g(E, o), called
the Gaunt factor, through the expression

a(E,0) = ox g(E,0) . 4)

The scaling term cy is the Kramer’s form of the semiclassical free-free absnrpuon coefficient for an
electron interacting with a point charge Ze and is given by'’

4r. Z 2t s
= 2]
% = /3 michvy? [era’] 5)

This construction is simply a convention whereby the absorption coefficient reduces to its proper
semiclassical limit when the Gaunt factor approaches unity (a » ox when g » 1). This convention
prow.s useful in many cases since, even for more detailed quantum mechanical treatments of the free-
fre » prozess, the Gaunt factor remains ciose to one. One additional point is worth noting: we have used
the symbol Z, rather than Z to denote the chzrge that appears in 6k and in g [see Eq. (11)]. We make this
distinction since the resulting absorption coefficient, a, is independent of this choice (a = okg; ogx Z2
and g = Z:2). In fact, for a neutral system, the quantity Z. has no apparent meaning and is irrelevant to
the calculation of a. For comparison among various models within the same calculational scheme, we
generally set Z, = 1, whatever the species under consideraticn. Care must be exercised in comparing
Gaunt factors for ionic systems calculated by different authors since Z, may reflect other conventions.

For most applications, the quantity of greatest interest is the absorption coefficient averaged over a
particular electron distribution:

I “’ a(E,w)flE)dE

TTeeE “

a(T,w)=

where we recall that E is the electron energy, T is the electron temperature, and o is the frequency of the
radiation field.

For a Maxwell-Boltzmann distribution [Eq.(3)], we have!s

a(T,w)=

4n7Z2eb ( 2m

V7
T 5
3\/3 hem®? nkgT) B(1.0) tem @

where the averaged Gaunt factor g is given by

g(T,0) = (ke T)™! f: &(E,w)exp(—E/ksT) dE . (8a)

The averaged Gaunt factor is also related to the absorption coefficient per unit pressure per atom, x,
which is more common in astrophysical models:

k=CsZ3 (A 8% g [cm*/dyn] , (8b)

where Ak? is the photon energy in Rydbergs, 8 = 5040/T (kelvins), and Cs = 2.0991 X 107% (see
Appendix A).

Another common quantity of inter=st is the effective mass absorption coefficient 6.q (cm?/g), which is
related to the absorption coefficient by

Noa .
G =
= e, )]




where N, is Avagadro’s number, and A is the atomic weight of the target (g/mole). The effective
absorption coefficient is important in considering the attenuation of radiation through a material. For
the case of only free-free absorption, the intensity of radiation I, at radial distance X, compared with that
at the origin L, is given by

1=1,exp(—tX) , (10)

where 1 = p oz with p the mass density (g cm™3).

The absorption coefficient can also be employed to determine the real part of the index of refraction,
n, of a medium. In the case of sharp density gradients such as those encountered at the surface of a metal,
the real part of n, or reflectivity, may be more important than the imaginary part related to absorption.
The reflectivity. Re n, can be determined from formulae given by Griem!” {see Eqs.(14-2) and (14-3) and
the discussion on p. 551 in Grieml. In many cases, however, this quantity can be obtained more readily
from direct experimental measurements.

1I. FREE-FREE GAUNT FACTOR

A. General Form

In our case, we calculate the free-free Gaunt factor from quantum mechanica: considerations. For
scattering from a central potential, from a ground-state closed-shell target, or f:om an atom or ion with a
single s-electron outside a closed shell, the free-free Gaunt factor has the form (see Appendices A and B)*

2v/3 o*m?

Ew)=——M, , 11
g(E,») Zimeow M- (11
where

2m
Mu= 2 e b (Y (2

In these equations, k is the wavenumber [k = (2mE/%£?%)'72], ¢ is the orbital angular momentum of the
continuum electron, £p,, is given by max(£,2’), and df is the dipole matrix element. More complicated
coupling schemes are discussed by Sobelman.!® Siiice g is a dimensionless quantity, we may express it
equally well in atomic units(e = h = m, = 1;1a.u. ofenergy = | hartree = 27.212eV):

23 et
g(Ew)= m—; M. . (13)

The dipole matrix element in the length form (L) " given by

b (kIk*) = J fiu(r) e ()dr , (14a)

whers fig(r) 15 the radial wavefunction for the continuum electron [see Eq.(17g)]. Another common
expression for local potentials is the acceleration {A) form

d
dfy (k[k*) = [ fig(r) 5. V) fep(0)dr (14b)

"I'hj§ form can also be used for scattering from z target consisting of a single s-electron outside a closed-shell,
provided that dg is replaced by 1/4 [dyy (S) -~ 3dge{(T)], where S (T) stands for singlet (triplet) scattering.



where V(r), the interaction potential, is in hartrees. These two forms are simply related o,
db=@>2d* (V) . (15a)

Some authors express the acceleration form in terms of the potential U in Rydbergs (U = 2V), giving
the relation

d‘(V)=51d‘(U) . (15b)

A more common representation of the Gaunt factor is

_ \/‘3‘(Ak2)4
g(E,») BZEkK’

M, , (16a)

where the photon energy (Ak?) and wavenumbers are expressed in Rydberg units. Similarly, we can
write

V3

gEo = Z_EETJ(’MA(V) , (16b)
and

V&l
g(E,w)= 7k M), (16c)

where the latter is the expression used by Green. !¢

B. Continuum Solutions and Model Potentials

1. Scattering Formulation. The total-system wavefunction for an electron scattering from an N-
electron atom (ion) solves the following Schrodinger equation!®%

Hy(l .N+1)=Ey(l1..N+1), (17a)
where

H=H;+Vyp+V.+T.

In these equations, H, is the Hamiltonian of the atom; V, (V..) is the interaction of the incident electron
with the nuclear charge (bound electrons) of the target; T is the kinetic energy of the scattered electron;
and E is the total energy of the system. The notation y(l ... N + 1) stands for the more involved
representation y(T, ... Tn+1), where t; has both spatial ﬁ‘ and spin o; coordinates. The wavefunction for

a particular state, n, of the target atom satisfies the eigenvalue equation

H, ©y(1...N)=E, ®y(1 ... N) ,and

<P D> =By (17b)

Equation (17a) is an (N+1)-body expression and is difficult to solve in this form. We reduce this
equation to an effective one-particle equation by introducing an expansion of the total-system
wavefunction y in terms of a complete set of target states of the fonn

WL N+1) = ZA[@(1 ... N) FuN+1)] (17c)



where F{N+1) represents the continuum function and A is an antisymmetry operator, which
guarantees that the product satisfies the Pauli restriction for fermions. We now substitute Eq. (17c) into
Eq. (17a), multiply through by ®.'(1...N) and the spin functions for the continuum electron, and
integrate over all target coordinates dt,, ... dty and the spin of the scattered electron oy to derive the
following expression for the continuum orbital Fy:

[T+ (Ea — B)} Fa(Raar) = 2 Var (Ravsr) Far(Rave) - (17d)

where
> >
vnn'(R) Fn‘ (R) = <d)nlvne + vmlA(d)n’Fn’)>

Thus, we have reduced the many-body formulation to an effective one-particle equation whose solution
is the wavefunction for the scattered electron. We note that Eq. (17d) involves coupling between all
channels n’. However, in practice, we invoke the close-coupling (CC) approximation by which the
infinite sum in Eq. (17d) is trancated at some small number of channels. We further reduce Eq. (17d) to
a set of coupled, radial integrodifferential equations by (1) making a single-center expansion of the
bound and continuum orbitals

FiR) = 2 R £, (R) YeulR) (17e)

where Y is a sphencal harmonic, (2) multiplying through by Y, um (R) and (3) mtegranng over all
angular coordinates dR. The resulting set of coupled radial equanons can be written in the abbreviated
form

L fR) — Z J Woo(RIR)f(R)dR’ = 0 (179

where
d2
Lu_ — (%L + DR2+K ,and

ki=2(E—E,)

The channel label is given by o = (n £,), where £, is the orbital angular momentum of the incident

electron. The coupling potential W, is a complicated expression that is energy-dependent and nonlocal
and has the general form

JY o' RV ar Yo or(RYR?

2. Static-Exchange (SE) Approximation. In general, we do not treat the full close-coupling equations
[Eq. (17D)], but make some simplifying approximations: (1) that we consider only elastic scattering (n =
n’ = ground state of the target) and (2) that we treat only scattering from a local central potential, from a
closed-shell target, or from an atom with a single s-electron outside a closed shell. The restriction to
elastic scattering does not eliminate multichannel effects since the sum in Eq. (17f) runs over the closed
electronic channels. These virtual excitations give rise to correlation and polarization effects and
represent the distortion of the target atom by the incident electron. While we do not solve the CC
equations for more than one channel, we do include these correlation effects in some cases by model
potentials (see Section I1.B.3).

For most cases, we neglect these virtual excitations and invoke the SE approximation whereby the
target is frozen in its ground state but the Pauli principle is satisfied. Within these simplifying
assumptions, the continuum function solves a single-channel Schrédinger equation of the form

Lie(R) = [ W(RIR) fia (R) dR’ (17g)



where
2

d
= — + )R+ k?
L dR2+9(Q )

2 is the orbital angular momentum, and k? is the energy in rydbergs of the scattered electron.
The continuum orbital behaves asymptotically:

R
fulR) T sin(kR — 5 +Tw) (17h)

where 1y is the phase shift, which describes the distortion of the wavefunction by the target. We have
employed wavefunctions that have the form of Eq. (17h) in all of our deviations of the dipole matrix
elements and Gaunt factors. The scattering programs usually produce a solution that behaves
asympiotically:

FB(R) ~ [(kR) + fi(kR) Kk (171)

where j; (fig) is the Ricatti-Bessel (Ricatti-Neumann) function of order 2 and K is the reactance matrix
[=tan(ng)]. The reactance matrix form can be converted into the behavior 0. Eq. (1 7h) by dividing f*(R)
by [(1 + K2)/k]'

The interaction potential W is in general nonlocal and energy-depender:t and is traditionally divided
into two parts:

W(RIR) = V{(R) R —-R’)+ V(RI|R") . (17))

The first term or static (direct) potential is simply the electrostatic interaction of the target and
continuum electron averaged over the ground state of the atom. The second term, or exchange kernel,
which is a function of the bound orbitals, arises from the enforcement of the Pauli principle on the total-
system wavefunction. For the cases under consideration, the expressions for V, and V. are given in
Appendix C. Generally, we shall use the SE case as the standard against which we evaluate other models,
althougn we shall augment this formation with model polarization-correlation potentials. Since these
potentials mock the virtual transitions to the excited electronic states, they also simulate the distortion
of the target by the incident electron.

3. Model Potentials. We shall also consider various approximations of the interaction potential [Eq.
(17j))- In all of these cases, we neglect the exchange kernel and replace V, by a lccal, model potential. The
following paragraphs present eight medels.

(a) Static Interaction.

Point Charge Model
Z
Ve(R) = ~ R (18)

Yukawa or Screened Coulomb Model

Vy(R)=— I—fexp(—kR) , (19)

Averaged Static Model

Vs®) = + [T pdR—dr - zy R (20a)



where

D= gnilcm(?)lz , (20b)

i is a bound orbital of the target system, Zy is the nuclear charge, n; is the occupation number, and'no is
the number of occupied orbitals. For a closed-shell target or for an atom with a single s-electron outside a
closed shell, the static potential given by Eq. (20a} is exact. For other systems, the average implied in Eq.
(20a) forms an approximation to the actual direct potential. When the orbitals of the neutral system are
used to represent the ion, we term this the frozen-core (FC) approximation.

For an ionic system, we introduce plasma-screening effects into the static potential with the following
construction:

Screened Static (SS) Model

Vs(R) R<R,

Vss(R)= { ~Z, R exp[-AR-R)] R>R, , @

where Ap is the inverse of the Debye length (£p) and Ziis the residual ionic charge. For example, for Al*,
Zx in Eq. (20a) will be 13.0 while Z, will be 1.0. This is a crude model of plasma screening but gives some
indications of the trends.

(b) Exchange. We introduce exchange effects through a local, energy-dependent, free-electron
gas?'# potential:

Free-Electron Gas (FEG) Model
> »> >
Vrea(R) = Vs(R) + V(R) (21a)

where Vs is given by Eq. (20a),

> 20 >l 1 1+
VaR)=% "k (R)[— + 0 m(——“)] , Q1b)
n 2 4n 1

and the plus (minus) sign at the beginning of the right-hand expression indicates singlet (triplet)
scattering. The Fermi momentum has ihe form

ke (R) = [ar?p(R)]3

where p is given by Eq. (20b) and a is 3 (6) dependiny; on whether the target has a closed (oj:=n) valence
shell. The parameter 1 is constructed as

n=(&+1+kp)"¥/kg (21¢)
where k? is the scattering energy of the electron in rydbergs and I is an effective ionization potential of
the target. This form is termed the Hara free-electron gas-exchange (HFEGE) potential.2' Riley and
Truhlar suggest a modification in which the ionization potential is set to zero (I = 0). Because of its
behavior, this modification is designated the asymptotically adjusted free-electron pas-exchange
(AAFEGE) model.

For Eq. (20a) and Eq. (20c) and for Egs. (21a) - (21c}, we have represented the static (S) potentials in
terms of the vector variable ﬁ, which has both radial and angular components [f{ = (R, 6, ¢)]. We
derive a radial equation as in Eq. (17g) from the vector Schrodinger equation by (1) invoking a single-
center expansion of the continuum wavefunction, the bound wavefunction, and the potential in
terms of spherical harmonics Y, (R); (2) multiplying through by Yzm(R); and (3) integrating over all
angular coordinaties [see Egs. (17d) - (171)].



(¢) Polarization—Correlation. The above-mentioned model potentials are approximations to the SE
interaction term W. If we wish to go beyond the SE level for elastic scattering, we must include
correlation-polarization effects. These effects arise from virtual excitations of the target atom and result
in an additional nonlocal, energy-dependent term in Eq. (17f).

We employ two models for the polarization-correlation interaction. The first is simply the asymptotic
form truncated at some small radial value within the charge cloud of the target in order to satisfy the
proper behavior at the origin:

Cut-off Polarization Potential (SEP1a) Model

VeuR)= :,_;;{1 —exp [~(R/R,))} (22a)

where ¢ is the dipole polarizability of the target atom. We adjust the parameter R, to make the phase
shifts agree as closely as possible with those of more elaborate scattering calculations. When the whole
cutoff term is raised to the sixth power with the exponential coefficient reduced to linear dependence, we
term the model SEP1b.

The second model is based on an FEG treatment much the same as the exchange term:

FEG Polarization Potential (SEP2) Model

Ve (R)T <R,

(22b)
Ve(R) 1=R, ,

Ve(R) = {

where V., is the FEG coorelation potential?’-® and Vyp, is given by Eq. (22a). The matching point R, is
selected so that the two forms merge smoothly. This polarization potential, unlike SEPI1, has no
adjustable parameters.

We have tested our construction of this potential by comparing our results for the rare-gas systems
with those of O’Connell and Lane.?’ Since we employ the FEG correlation potential of Perdew and
Zunger (see Padial and Norcross?®), we find slight differences with the above authors, who employed a
more attractive form of V. For example, we determine matching radii of 1.773, 2.047, and 2.9177 a,
for helium, neon, and argon, respectively, while O’Connell and Lane give radii of 1.67, 1.95, and 2.87 for
these elements. We have used the following polarizabilities for this calculation: 1.38 (helium), 2.66
(neon), and 11.00 a3 (argon). These slight differences in the V; and R, parameters do not greatly affect '
the scattering results and lead to s- and p-wave phase shifts that are in excellent agreement.

(d) Other Forms. The models described above are completely self-contained and are treated with
computer programs GAUNTBA and GNTLABA. Several other programs, which model the macro-

scopic properties of a medium, use other schemes for determining the absorption coefficients and Gaunt
factors.

MOOP Madel

MOOP, which is a locally written program to determine opacities, employs a scaled point-charge
form for the Gaunt factor as given by Green®
V.

&= (e

[S+em(vu,0—2v'Ap)] 23)

where
= (a8 2)( & (0 + eH(1 + et
5= (' 2N\ ==/ B0 + e + e

Brp is the Gaunt factor for a point charge Ze zveraged over a Fermi-Dirac distribution, Ap is the inverse
Debye length, ¥ = Z*/kT, u=hv/kT, ais the degeneracy parameter, and g, is the asymptotic value of the
point-charge Gaunt factor (E = 0). The Gaunt factor for a point-charge is given by Karzas and Latter,*
and the values of grp and 21,,¥//T (= grp/E) can be obtained from tables by Green.




XSNQ Model

The XSNQ package,'® a nonlocal-thermodynamic-equilibrium emission and absorption coefficient
subroutine, also employs a scaled point-charge form for the Gaunt factor. The scaling is in terms of an
effective charge Z™, which is given by Eq. (3.2) of Ref. 18. For a neutral system, Z™ is zero, clearly
leading to an incorrect representation of the Gaunt factor.

4. Method of Solution. We employ two methods to determine the solution of Eq. (17g): (1) the
iterative integral equations (1IE) method®® and (2) the linear algebraic (LA) method.??* Both methods
provide highly accurate solutions of the Schrodinger equation and give Gaunt factors within a few
percent of each other. In the remainder of this section, we present a brief description of each procedure.

(a) Iterative Integral Equations Method. For the IIE exposition, we rewrite Eq. (17g) as

LAR)=X(R|H . (24a)
where

L=L-V,(R) ,and (24b)
X(RIf) = ] V/(R|R) flR") dR’ . (24c)

To start the iterative process, we solve the homogeneous equation
LER)=0
and term this solution the zeroth iterate. We now substitute f? inio Eq. (24c) and determine X(R|f?).
Since both the exchange kernel and the wavefunction are known, the expression for X behaves like a
local potential. We then use this “potential” to construct the next iterate:
LfYR)=X(RIf?) . (25b)
We continue this scheme by the prescription
Lf*R) = X(RIf* ) (25¢)
until the phase shifts from successive iterations agree to within a specified tolerance.

The actual form of the scattering equation at each iteration involves only a local potential. This can be
seen more readily by making the identification

fRy/f(R)~1 , (26a)

which is valid for a converged function, and by substituting it into Eq. (25c) to obtain

[L+ Ve (R)](R)=0, . (26b)
where

. X(R|f* 1)
Vei(Ry = TR Vi(R)

. We solve Eq. (26b) by an integral equations (IE) algorithm. We first convert the differential form to an
integral equation by employing the free-particle Green’s function Gi(R|R’) such that

fu(R) =Kk™"25(kR) + J” G(R[R") V, -(R)fil(R)dR (27a)

where

LG(R|RY=8R ~R’) ,and (27b)
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Lj(kR)=0 . (27¢c)

The Green’s function in this case has a very simple form:

G'(R)G¥R’) R<FR’
G/(RR)=—] GR)GXR) R=R’ . (28)

where G, is k13, (kR) and G, is k~/2fj, (kR). Substituting Eq. (28) into Eq. (27a) and making several
rearrangements of the resulting expression,? we can write the solution as

fuo(R) = G'R)I*(R) — GARJI'(R) , (29a)
where
I%(R) = 8gy+ . GP(R’) Vot (R) fu(R)AR’ . (29a)

To effect a propagator solution to Eq. (29a), we introduce a discrete quadrature representation for the
functions and integrals and obtain

fix(i) = G'(DHIi—1) — GFI'(G—1) (30a)
where
23) = I*G—1) + G=(1) V- (Ifi(D)w; ,and (30b)

w; is a quadrature weight. Since the function at step i depends only on the integrals one step back and on
known functions at i, the procedure can be employed to propagate the solution outward from the origin
(f(0)=0]. We use a trapezoidal quadrature for this pr~pagation and obtain the K-matrix from the simple
relationship

K=- I‘(on)/lz(m) . (31)
(b) Linear Algebraic Methed. The LA approach??* does not rely on an iterative prescription and treats
the nonlocal term directly. We return to an IE formulation of Eq. (!7g) in terms of the free-particle
Green’s function [Eqgs. (27a)-(27¢) and Eq. (28)] and write the solution as

fu(R) = G'(R) + [ GRIR)f W(R'IR") fio(R")dR" dR’ . (32)

We now introduce a discrete quadrature for the integrals and functions, and we obtain an equation of
the form

N N
ful)=G'i) + 2 Glilm)on 2 Wemlj) e (33a)

where, as before, 0y, and w; are weighting functions. We now rearrange Eq. (33a):

JZMﬁ f§)=G'G) (33b)
where
M; = & — E G(ijm) W(m| j)oy; om) . (33¢c)

Since all the functions in Eq. (33c) are independen: of the solution f, we can evaluate M;; directly.
Equation (33b) is in the form of an LA system and can be solved by straightforward matrix methods.
This matrix is of order n,, the number of points in the quadrature mesh. We typically employ a Gauss-
Legendre quadrature scheme.



C. Dipole Matrix Elements

Once the continuum functions have been calculated from a prescription in Section II.B, we can
evaluatz the dipole matrix elements dy in either the length or the acceleration form. For a local, energy-
independent potential, both forms should give the same result. This fact provides a convenient check on
the numerical prescriptions. For the SE case in which a nonlocal term appears in the potential V, the
formulation of the acceleration case is ambiguous, and calculatiors are usually performed using the
length expression. Since the acceleration form involves the derivative of a local potential, which is fairly
short-ranged in all of our applications, we employ a straightforward numerical integration of the
moment expression.

On the other hand, the dipole-length form accentuates the long-range form of the wavefunctions. In
addition, the integration of a pair of oscillating functions with a growing radial term is notoriously
unstable. One commonly used procedure is to evaluate the integral as a limit:!°

um JlemfRR GRGR (349

This formulation, although cumbersome, is quite stable. Other procedures based on asymptotic
expansions have also been employed (see Refs. 29,30).

We take a slightly different approach, based on the matricant method of Knirk,?”” and divide the
evaluation of the dipole-length integral into two regions:

d=d'+dt , (35a)
where

¢'= [ iR RfR)}R (35b)
and

d® = [Tfi(R)Rf(R)R . {35¢)

The division r-.dius, a, is typically the approximate size of the atornic system. The first term d! is
evaluated by a straightforward numerical integration scheme. In the second term d™, we assume that the
division radius is sufficiently large thai f; and f; have reached their proper asymptotic forms as given by
Eq. (17h). We have thus reduced the evaluation of 3% to the integration over known analytical forms, the
Ricatti-Bessel and Ricatti-Neamann functions. In Appendix D, we outline the procedure for calculating
d". Once dy is known, we may then evaluate the Gaunt factor and related absorption coefficients.

ITI. RESULTS AND DISCUSSION

A. Tests of the Programs

We have written two programs, GAUNTBA and GNTLABA, that calculate the averaged Gaunt
factor in the IIE and LA methods, respeciively. Both programs employ a Gauss-Laguerre quadrature of
n, points to perform the integral in Eq. (8a). The numerical techniques for solving the scattering
equations and for constructing the dipole matrix elements and Gaunt factors are given in the previous
section (II). We now test these algorithms by comparing them to other calculations.

1. Hydrogen Atom. As a first test, we treat atomic hydrogen at infrared frequencies and at
temperatures of a few thousand kelvins at the SE level. We then compare our findings with other results.
In the determination of the dipole matrix elements, we make one simplifying approximation by
neglecting terms dependent on overlap integrals of the form A(g; fig). These terms are usually quite small
compared with the usual dipole form of Eq. (14a). All calculations are performed in the length form; in
additioq, five energies are used in the averaging prescription. Other parameters are given in the tables.
In Table i, we compare our absorption coefficient, corrected for stimulated emission [Eq. (A.16)], to
that of John.® The agreement is quite good over the whole range of temperatures and frequesicies. These
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TABLE 1. Comparison of Absorption Coefficients for H™ at the SE Level*®

Ak? 0 £ ) g L Kg Ky KBKM
0.05 05 4.828(—2) 2.173(—2) 3.287(-2) 1.952 1.060 1.04

1.0 3.18(0(—2) 1.099(—2) 1.620(—-2) 2.720 2.152 2.17 2.08

20 2.09¢(—2) 4.766(—3) 8.799(—3) 4,179 3.997 4.11 3.54
0.10 0.5 7.115(=2) 3.839(—-2) 4.658(—2) 0.346 274 0271

1.0 5.501(—2) 1.842(-2) 2.757(—2) 0.579 0.554 0.567 0.545

20 4239(-2) 9.770(=3) 1.792(-2)  1.064 1.062 L1 0977
0.29 0.5 1.222(-1) 6.408(—2) 7.860(—2) 0.073 0.070 0.073

1.0 1.087(—1) 3.754(-2) 5.532(—2) 0.145 0.145 0.158

20 9217(—2) 2348(=2) 4.065(-2) 0302 0.302 0.339

*Nomenclature: Ak? is the photon energy in rydbergs;
0 = 5040/T (kelvins);
&, (&) is the averaged Gaunt factor for singlet (triplet) scattering;
=01+ 8)4
K is the pressure absorption ceefficient;
Kg is this coefficient corrected for stimulated emission, x; from Ref. 8 (x’s in units of 1072 cm*/dyn) and
Xpxp from Ref, 31; and
Z.=1,
SParameters: Calculations performed in the LA approximation with n, =90 and a mesh /0.9 - 1.0/1.0 -
3.0/3.0 - 10.0/ with 30 points per regior;
a=4; and
n,=S5.

resulis also agree with the single-channel (**1S™) calculations of Doughty and Frazer.'® We also compare
our calculations with those of Bell et al.,*! which are probably the most accurate free-free calculations io
date. These researchers employ both exchange and correlation-polarization effects in the scattering
solutions. However, their results are within 20% of the SE for the range under consideration.

2. Helium Atom. To investigate the validity of our approach for more complicated systems, we also
make comparisons with other calculations for helium and neon. For helium absorption, we invoke the
SE approximation and use the near-Hartree-Fock (near-HF), bound 1s-wavefunction of Clementi.?? In
Table 2, we compare our resvlts with those of John* and Bell et al.*® Both groups of authors employ the
elastic e-He phase shifis of LaBakn and Callaway,* which include both exchange and polarization
effects, but each group uses a different asymptotic approximation to determine the dipole matrix
elements.

In addition, we present the R-matrix results of Bell et al.}® These researchers include multichannel
effects and perform the dipole integrals without resort tc any approximations. Their results should be
considered the best to date. The agreement between the extensive coupled-channel calculations and
those at the SE level is excellent, indicating that polarization effects are not very important in this
regime.

3. Neon Atorm. In Table 3, we also compare our results for neon with those of Geltmann® and John
and Williams.”” John and Williams employ their asymptotic scheme to evaluate the dipole matrix
elements and the elastic e-Ne phase shifis of Thompson.?® Thompson treats exchange exactly and
intrcduces polarization through a Pople-Schofeld model potential. On the other hand, Geltman®
calculates the continuum wavefunctions from a Hartree-Fock-Slater potential augmented by a cutoff
polarization term but calcrlates the dipole matrix elements by a direct integration. We report results in
both the SE and the SEP2 approzimations for the scattering. All of our dipole matrix elements are
calculated from a direct integration of the length form (see Appendix D) with no asymptotic
approximations. Considering the approximations involved, the agreement is quite reasonable.

4. Yukawa Potentinl. In the above comparisons, we have sought to test the SE procedure since this
case will be used as a standard with which to compare the other models. Unfortunately, most of the
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TABLE 2. Comparison of Free-Free Absorption Coefficients for He™ at the SE Levei*

Ak? ] 2 X Ke K3 KpkM KppC
0.03 0.5 1.090(—2) 2.997 1.124 1.12 1.13
1.0 3.541(-3) 2.753 1.677 1.60 1.59 1.64
2.0 1.279(—3) 2.811 2.382 2.19 2.14 2.4
0.05 0.5 1.250(—2) 0.742 0.403 0.407 0.415
1.0 4.481(-3) 0.753 0.595 9.581 0.559 0.600
2.0 1.840(—3) 0.874 0.836 0.808 0.770 0.842
0.10 0.5 1.703(—2) 0.126 0.100 0.104 0.110
1.0 7.276(—3) 0.153 0.146 0.154 0.144 0.165
2.0 3.585(—3) 0.213 0.212 0.238 0.209 0.242

*Nomenclature and parameters same a3 Table 1 except x; from Ref. 33, xpgng froi Ref. 30, and xpac from Ref. 35 (all
x’s in anits of 1072% cm?/dyn); helium wavefunction of Clementi (Ref. 32).

TABLE 3. Comparison of Free-Free Absorption Coefficients for Ne™ at the SE and SEP2
Levels*

Ak? 0 gSEP2) «x(SE) «(SEP2) «g(SEP2) K Kyw

610 1.098 1.426(-3) 0.645 0.303 0.290 0452 0.31
0.10 G504 4.096(—3) 0.538 0.308 0.244 0362 0.26
0.20 1008 2.908(-3) 0.132 0.077 0.977 0.114  0.051
0.05 0504 2.938(-3) — 1.765 0.964 147 120

*Nomenclatare and parameiers same as Table 2 except x(SE) and (SEP?) are ithe uncorrecied
absorption coefficients in the SE and SEP2 approximations;

all x’s are in units of 10~7 em*/dyn;

R, =2.047;

Kyw refers to Ref. 37 and xg refrss to Ref. 36;

near-HF neon wavefunction of Clementi (Ref. 32).

earlier calculations were performed ai low temreratures and frequencies. To test the higher energy
regimes, we compare our calculations of the averaged Gaunt factor for a Yukawa potential [Eq. (19)]
with those of Green.'® These results are presented in Table 4 for a variety of temperatures and photon
energies. The agreement is excellent over all regimes, usually better than a few percent. The only case
that violates this observation is for kT = Ak? = 0.03 Ry and A = 0.25. The two results differ by ~ 10%.
However, this energy regime supports a shape resonance in the electron scattering. In the range of such a
resonance, :he continuum wavefunction can be quite sensitive to the choice of scattering parameters.
We have repeated the calculation for a tighter mesh extending to 50a, and have observed a change in § of
less than 1%.

S. Resonances. Resonances can have a profound effect on the absorption coefficient over a restricted
energy range. For electron scattering from an atom or molecule, two basic types of resonances are
important: (1) the Feshbach resonance and (2) the shape resonance. The Feshbach resonance is
associated with a doubly excited state of the compound system of electron and atom. These resonances
are generally very narrow and are therefore usually not important for a neutral system. Of course, the
exception arises when absorption in a distinct spectral line, which lies within the resonance width,
becomes important. On the other hand, ionic systeins support rydberg series of such compound
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TABLE 4. Comparison of Averaged Free-Free Gaunt Factors g
for a Yukawa Potential Vy.**

kT = Ak? A
0.10 0.25 0.50 1.00

0.03 0.3806 0.1292  0.0126 0.0226
0.3845 0.1161 0.0125 0.0224

0.10 0.7452 0.4077  0.1003 0.0926
0.7437 0.3971 0.0994 0.0910
1.00 1.191 1.024 0.7407 0.518¢
1.215 1.042 0.7226 0.5230
3.00 1.200 1.155 1.006 0.7508

1.242 1.170 0.9915 6.7685

A“Nomenclature: upper entry is from present calculation;
lower entry is from Ref. 16;
kT and AX? are in rydbergs;
A is defined by Eq. (19);
Z=1.0;
Z.=10.

YParameters: LA solation, n, = 150, mesh /0.0 -1.0/1.0 - 3.0/3.0 -
10./10. - 30./ with 30 points in each region except the last, which
has 60;

n,==6;
=6
For Ak*=LkT and A < 0.25, we have extended the mesh to 50 8.

resonance states. While the contribution within a given line remains small, the accumulated effeci may
be quitz pronounced, as has been demorstrated for impact excitation of ions by electrons.?® To date, ihis
effect has not been studied for free-free proccsses. We should 2lso note that, owing to the nature of
Feshbach resonances, they will only arise within a multistate or close-coupling representation of the
scattering equations and thus cannot be extracted from an 3L calculation.

Shape resonances, on the other hand, are produced by simpic barrier trapping and can exist for any
form of local, model potential. The scattering wavefunction and Gauat factor are very sensitive o the
potential parameters in the region of a resonance. The net effect is usually to enhance the Gaunt factor.
In Fig. 1, we present calculations of th: Gaunt facter g(E,,w) as a function of the incident electron energy
E; for a photon energy of 0.30 Ry and for a Yukawa potential with two choices of A. A similar case has
been treated by Green.'® The solid curve represents a potential with A = (.25 and clearly supports a
pronounced shape resonance at about 0.09 Ry. If we increase the Yukawa potential by about a factor of
2(A=0.50), we note that the shape resonance disappears (dashed curve). We see the importance of such
structures because the Gaunt factor is enhanced by aimost an order of magnitude in the range of the
resonance. However, a note of caution is due: such resonance structures in model potentials may not
exist for more sophisticated treatments of the atomic-scattering process. Thus, :f we plan to accurately
model the free-free absorption from a particular atomic system, we must make sure that our models
reproduce the correct scattering profile and do not introduce spurious shape resonances, which could
drastically alter the Gaumt factor over a particular enerzy range. One additional point is worth noting;

averaging over a Boltzmann distribution will usually smooth out the resonance structure to some
degree.

B. Comparison of Models

In this section, we compare the various models discussed in Section I1.B for several atomic species.
1. Rare Gases. In Table 5, we present the averaged free-free Gaunt factor for helium as a function of
the photon energy Ak*Ry) and the electron temperature kpT{Ry) for the following models: SE,
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TABLE 5. Comparison of Var' ,us Models for th= Averaged Free-Free
Gaunt Factor g for He ™

A= kBT
model 0.03 0.10 0.30 .00
SE 3.215(—3) 3.133(—2) 1.957(—1) 8.561(-1)
AAFEGE  2939(—3) 3.187(—2) '1.980(—1) 8.697(-1)
HFEGE 4.572(-3) 3.879(-2) 2.107(—1) 8.710(-1)
S 1.618(—2)  8.123(—2) 2.898(—1) 9.049(—1)
SEP2 2.796(—3)  3.183-2) 2.132(—1) 9.136(—1)

*Nomenclature: near-HF helinom wavefunctions of Clementi (Ref. 32).
*Parameters: LA solution, n, = 90, mesh /0.0 - 1.0/1.0 - 3.0/3.0 - 10./ with
30 points per region;

L &

n,=5;

Ak? (kgT) in rydbergs;

1=0.918 harirees;

=138 and R,=1.773 a,;

AE = 19.82 eV, first excitation threshold.
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AAFEGE, HFEGE, S, and SEP2. The calculationis were performed with the LA technique and basic
parameters are described in the table. We note that both FEG models give very good agreement with the
SE over the entire energy regime from 0.03 to 1.00 Ry. On the other hand, the S model overestimates the
Gaunt factor by almost a factor of 5 at the lowest energy but agrees to within 10% at the highest erergy.
The nonadjustable SEP2 model is slightly lower than the SE case at ihe low energies and slightly higher
in the upper energy range. As indicated before, the correlation-polarization effects are not very
pronounced for heliuin below the first excitation threshold of 19.82 eV.

These trends do not hold for neon, as can be seen in Table 6. The HFEGE still gives good agreement
with the SE, as does the AAFEGE at the higher enerpies. However, at thr lower energies, the AAFEGE
underestimates the § by almost a factor of 3. As with helium, the S overestimates the Gaunt factor in the
lower range and comes into better agreement at the higher range.

We have also performed calculations -ith rhe two model polarization potentials. The cutoff
parameter in the SEPla case was selected to give phase shifts in agreement with those of Thompson,®
while the SEP2 construction contains no adjustable parameters. The resuits of both models are
considerably smaller than the SE at the lc-vest energy, indicating the great sensitivity of the Gaunt factor
to the scattering formulation employed in ihis regime. As the energy increases, the SEP1a and SEP2
models come into betier agreement between themselves and wita the SE results.

In Table 7, we present a similar study for atomic argon Ar™. In this case, the FEG miodels bracket the
SE result: the AAFEGE is better at low energies and the HFEGE is better at higher energies. The §
overestimates for the whole range, whereas the SEP1a model gives the smallest vaiues of g for low values
of Ak? and kgT. The SEPla potential was generated to reproduce the low-energy s- and p-wave phase
shifts for e-Ar scattering given by Thompson.*® Fxcept at the very low=st energy, :he SE and FEG models
appear 1o give a rcasonable representation of the free-free Gaunt factor.

2. Alkali Systems. In Table 8, we compare several of the models presented in Section II.B for :he
lithinm atom (Li). For an alkali, there are two different spin-states, singlet and triplet, that contribute to
the final Gaunt factor. In the single-channel approximations for the SE and FEG models, these two spin-
states are not coupled, and we may simply add them with an appropriate weight to determine ihe
averaged Gaunt factor. When compared with the SE, the AAFEGE model underestimates the g at low
energies and overestimates at high energies. The agreement between the SE and FEG approximations is
not as gocd for the alkalis as for the rare gases.

TABLE 6. Comparison 7 Various Models for 152 Averaged Free-Free
Gaunt Factor & for Ne™®

AK?=kpT
model 0.03 0.10 0.30 1.00
SE 1.412(-3) 1.331(-2) 1.230(—1) 1.558
AAFEGE 4.723(—4) 8.826(—3) 1.095(—1) 1.434
HFEGE 1.621(—3) 1.535(—2) 1.395{—1) 1.554
S 4.994(—3} 5.376(—2) 3.495(—1) 2.112
SEPila 6.161(—4) 8.980(—3) 1.167(-1) 1.680
SEP2 5.856(—4) 8.692(-3) 1.128(—1) 1.662

“Nomenclature same as Table 5 except SEP1a and SEP2;
near-HF wavefunction of Clementi (Ref. 32).
SParameters same as Table § except n, = 120, mesh /0.) - 1.0/1.0 - 3.0/3.0 -
20.0/ with 40 points per region;
o = 2.66 83, R, = 1.75a, for SEP1a, R, = 2.047 a, for SEP2; and
1 = 0.8505 hartrces;
AE = 16.62 ¢V,




TABLE 7. Comparison of Various Models for the Averaged Free-Free
Gaunt Factor g for Ar™

Al? = kgT
mode!l 0.03 6.10 0.30 1.00
SE 2.277(-3)  3.315(-2) 5.250(—1) 4.290
AAFEGE 2.278(—3)  2.718(-2)  5.058(—1) 4.764
HFEGE 2871(-3) 3519(-2) 4.593(—1) 4.186
S 1.156(—2) 1.129(-1)  5.600(—1) 3.524
SEPla 6.519(—4)  3.261(-2) 6.097(—1) 4.373
SEP2 4.150(—4)  3.489(-2) 7.014(—1) 4.540

*Nomenclature and parameters same as Table 5 except ¢, = 11 a3 R, = 3.0 a, for
SEP1a, R, = 2.9177 a, for SEP2;
1=0.5912 a.u;
neay-HF argon wavefonction of Clementi (Ref. 32);
AE =11.55eV.

TABLE 8. Comparison of Variovs Models for the Averaged Free-Free
Gaunt Factor g for Li™?

Akl = kBT
model 0.03 0.10 0.30 1.00
SE '
sing. 2.68(—2) 6.38(—2) 2.08(—1) 1.121(0)
trip. 5.81(—2) 2.85(—1) 8.10(—1) 1.610(0)
ave. 4.80(—2) 2.30(—1) 6.60(—1) 1.488(0)
AAFEGE
sing. 1.16(—2) 6.59(—2) 2.79(—1) 8.54(—1)
irip. 3.22(-2) 2.42(-1) L17(0) 2.56(0)
ave, 2.71(—2) 1.98(—1) 9.44(—1) 2.13(0)
S 2.60(—3) 3.95(—2) 3.12(-1) 1.35(0)

*Nomenclature: singlet (sing.), triplet (trip.), spin-averaged (ave.);
near-HF Li wavefunction of Clementi (Ref. 32).
®Parameters: LA selution, n, = 990, mesh /0.0 - 1.0/1.0 - 3.0/3.0 - 10.0/ with 30
points per region;
n.=5;
L =4
length form;
AE = 1848 eV,

The low-energy cross sections are profoundly affected by a *P-shape-resonance, although this is not
readily apparent from Table 8. In Fig.2, the *P-shape-resonance is displayed by its eigenphase sum as a
function of incident electron energy. The abrupt rise of the eigenphase sum by nearly a factor of 7 is a
characteristic feature of such a resonance. Although the SE and AAFEGE models have a
3P-shape-resonance, the position and width are not correct when compared with the accurate two-state
close-coupling calcuiation (2CC).?® Both models place the resonance too high in energy. We have
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Fig. 2. Eigenphase sum as a function of electron energy for e - Li scattering.

introduced a model cutoff SEPIb potential to lower the position of this feature. We set a, at 164a2and R,
at4.1a,. "While this choice does not quite place the *P-shape-resonance at the correct energy, the resulting
resonance parameters, position and width, are much closer to the 2CC result. In Table 9, we
demonstrate the profound effects of this resonance on the Gaunt factor by presenting the results for g for
ihe SEP case. By comparing with the SE results of Table 8, we immediately discern the sensitivity of the
Gaunt factor to such a resonance.

Finally, in Table i 0, we present a similar demonstration for Na~, The trends are similar to those
found for lithium with the AAFEGE slightly underestimating the g at both low and high energies. The
sodium system also supports a >P-shape-resonance in electron scattering at low energies. As in the
lithium case, this feature causes the Gaunt factor to be quite sensitive to the model potentials in the
energy regime spanned by this resonance.

In the two preceding subsections, we have compared various models of the interaction potential for
both rare-gas and alkali systems. We have seen that the averaged Gaunt factor for low photon and
electron energies is particularly sensitive to the approxi-uation invoked. This sensitivity is further
enhanced by the appearance of a shape resonance in the *P channel for both lithjum and sodium. These
low-energy regimes require very accurate scaitering calculations from sophisticated multichannel
methods.'*? On the other hand, as the electron and photon energies rise, the SE model, the FEG model,
and even the S model become appropriate. We should caution, however, that even in these regimes,
multichannel, correlation, and resonani effects can be important.

3. Aluminum and Its Ions, We have employed a spherically averaged static potential and an FEG
potential to represent the elastic scattering of an electron from neutral aluminum. Since All consists of a
single p-electron outside a closed-shell, more than one orbital angular momentum of the continuum
electron (£) contributes to a total-system state of LS [L=£+1,8=0, 1] symmetry. Thus, even in the
elastic case, we must solve a set of coupled, radial differential equations. These equations will be
nonlocal if exchange and correlation effects are included. In fact, a detailed examination of this system
would require the inclusion of excited target states in the solution of the scattering equations. The errors



TABLE 9. Averaged Free-Free Gaunt Factor for Li~ in the SEP1b

Approximation*
Akz = knT
0.03 0.10 0.30 1.00
sing. 2.002(—2) 3.650(—2) 2.378(-1) 1.236
trip. 1.471(-1) 3.677(—1)  6.980(—1) 1.750
ave. 1.153(-1) 2.849(—1) 5.830(—1) 1.622

*MNomenclature and parameters same as Table 8 except the SEP1b model with
0 =164 aJand R,=4.1 a,.

TABLE 10. Comparison of Models of the Averaged Free-Free Gaunt

Factor g for Na™
Ak? = kgT

model 0.03 0.10 0.20 1.00
SE
sing. 2.756(—2)  6.601(—-2) 1.155(-1) 1.487(0)
trip. 4.903(—2) 1.982(—-1) 4.099(-—1) 1.685(0)
ave. 4.366(—2) 1.652(—1) 3.363(—1) 1.626(0)
AAFEGE
sing. 1.422(-2) 7.592(-2) 2.887(—1) 9.744(—1)
trip. 4.799(—2) 2.696(—1) 8.354(—1) 1.788(0)
ave, 39558(—2)  2.212(-1) 6.987(—1) 1.585(0)
S: 35003y 2.155(-2) 2414—1)  2.529(9)

*Nomenclature and parameters same as Table 8; near-HF Nz wavefunction of
Clementi (Ref. 32); AE = 2.10 eV.

introduced by considering the simple spherically averaged potential are difficult to gauge. However,
John and coworkers® have found that the inclusion of excited states generated changes in the free-free
absorption coefficient of about 30% for infrared frequencies and for temperatures of 500 to 1000 K (0.05
to leV). Such a detailed calculation will have to be consigned to a full-scale research project and would
have to be addressed with the atomic R-matrix'® or linear algebraic programs.2

In Tables 11-13, we report Maxwell-Boltzmann-averaged free-free Gaunt factors grat several electron
temperatures and photon frequencies for the various models discussed in Section II. We use gg as a
comparative and set Z. equal to one since all other quantities, such as 4 and & .g, are directly related to
Z.. These results are valid for a frequency w above the plasma cut-off ,. For aluminum at densities of
1073 to 107* g/cm?, @, is a few an tenths of an electron volt.

In Table 11, we consider neutral aluminum (Al). The upper part of the table presents a comparison
among the Yukawa (Z = 1), point charge, S-FC, and AAFEGE models. We feel thai ihe S-FC and
AAFEGE results are the most realistic since they employ a more reasonable representation of the target
system. The Yukawa results for Z= 1 show a marked increase as the scaling parameter A is decreased.
This behavior arises from the introduction of a d-wave (2 =2) shape resonance in the electron
scattering. From comparison with the S-FC and AAFEGE results, we are safe in concluding that such
resonance enhancement does not exist for neutral aluminum. However, such resonances can arise for

other systems and charge states and can produce rather dramatic changes over a restricted energy region
(see Section II1.B.2).
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TABLE 11. Boltzmann-Averaged Gaunt Factor gy for AI*®

kT(eV)
ha(eV)

model

Yukawa (Z=1)
A= 028
0.50
1.00
S-FC
AAFEGE*
Point Ch.(Z =1)*

MOOP

Yukawa (Z =13)
A =025

0.50

1.00

1.00
1.17

0.4108
0.0691
0.0719

0.0618
0.0678
1.2503
1.167

1.6955
0.5170
0.0622

1.00
5.00

0.9441
0.7108
0.2498

0.0707
0.2064
1.1593
1.115

12,151
3.350
0.1288

5.00

1.17

0.4968
0.2630
0.1782

0.1802
0.4969
1.3265
1.20

7.4564
2.2278
0.4111

5.00
5.00

0.7750
0.3966
0.2918

0.2276
0.7250
1.2630
1.132

30.4094
4.6718
0.5619

10.00
117

0.6345
0.3955
0.2583

0.6124
1.9742
1.3508

15.359
6.2007
1.5035

10.00
5.30

0.8385
0.5045
0.3391

0.7278
1.3239
1.3410

36.946
12.009
1.8873

*Since the absorption coefficient is independent of the choice of the charge Z in the Kramer’s formula
(see Sec. I for a discussion), we calculate all models for Z. = 1. The “charge” in the Yokawa model is a
scaiing parameter, which is selected to represent either the long-range (Z = 1) or short-range (Z. = 13)
nature of the alaminum potential and is not a measure of the state of ionization of the medium,

*Numerial integration (IIE): n, = 282, ry = 29.8, 2, = 10, n, = 10.
°All HF ¢.bitals of Clementi (Ref. 32).

{Coulomib-Born: £ = 10, ngq = 10.

TABLE 12, Boltzmann-Averaged Gaunt Factor gy for Al™*

kT(eV) 1.00 1.90 5.00 5.00 10.00 10.0¢

hw(eV) 117 5.00 1.17 5.00 1.17 5.00

medel

Point Ch. (Z=1)" 1.2503 1.1593 1.3265 1.2930 1.3508 1.3410

S-FC* 1.0024 0.8570 1.4669 1.5060 1.9698 2..095

SS-FC* (R,=10)

Ap=0.10 1.4262 0.8882 1.7719 1.5031 2.2323 2.3226
0.25 1.7683 1.6845 2.4755

*Numericel integration (IIE): n, = 282, ry, = 29.82,,%a = 10,0, = 10, Z, = 1.

*Coulomb-Born.

¢ All HF orbitals of Clementi.




TABLE 13. Boltzmann-Averaged Gaunt Factor g for AI2*

kT(eV) 1.00 1.00 500 5.00 10.00 10.00

ho(eV) 1.17 5.00 1.17 5.00 1.17 5.00

model

Point Ch. (Z = 3)* 8.6497 9.4858 8.2718 9.9883 8.783

S-FC* 8.350 8.3074 8.3839 98281 8.5021 9.6435

SS-FC* (R,=10)

Ap=0.10 10.066 9.7536 10.412 10.753 10.355 11.455
0.25 13.742 8.597

*Numcrical integration (IIE): n, = 282, rp, = 27 Ww=10,n,=10,Z.=1.

®Coulomb-Born.

€AlX HF orbitals of Clementi.

In the latter part of Table 11, we compare these models with the results of MOOP and the results of a
Yukawa potential with Z = 13, the nuclear charge of alumizum. We note that MOOP and the point-
charge results can be in error by as much as an order of magnitude. The resulis for the Yukawa potential
with Z = 13 are clearly unrealistic because the model leads to an overly strong potential in the
intermediate radial range from R ~ 3a, to R ~ 20a,. The main point to draw from Table 11 is hat for
neutral systems the Gaunt factors for low temperatures and photonr energies are very sensitive to the
model employed. If neutral species are present and low-energy regimes are important, then considerably
more sophisticated models must be employed to treat these cases.

In Tables 12 and 13, we make similar comparisons for Al* and Al*3. For the ion cases, the differences
arnong the various models are less pronounced than for the neutral case. The models differ by
approximately a factor of 2, even when plasma-screening effects are invoked. From MOOP we derive a
Debye length of approximately 10a, for the temperatures, densities, and radiation fields considered in
the tables. Thus, we conclude that i a system has a reasonable popilation of neutrals, the free-free
absorption within a specific line could b¢ in error by a factor of 10 over the standard treatment in current
opacity programs. However, for icnic species the absorption is in error by a factor of 2. We emphasize

that these differences arise at a particular frequency for a specific line; the mean opacities are probably
much less in error.
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APPENDIX A

NOTES ON CONVENTIONS
1) Sobelman
Sobelman!® defines a quantity called an effective cross section og, g for free-free absorption:
Opop' = f%f:—m Mg [cmis] , (A.1)
where

=3 Szl QL+ 1) 2L +1) (28, + 1) (2L, + 171 (28 + 1))

TS

2 LL .
{L, 1 ‘} max Qe (E[E’)? . (A.2)

The target atom is described by an (L,S,) state. The total system (atom + e—) is characterized by LS
(L’S’) for the initial (final) state:

> >
L= Ll + 2
> > >
=L+

where 2 (/) is the orbital angular momentum of the incoming (outgcing) electron. The 5-j symbol is
given by { } above and the dipole matrix element by

e (E[E) = J_ Re(r) 1 Reglrydr |

such that
2m \i2 . n
Rm(r) Pa-X ;k—f—l—z sin { kr— '2— +T|u .

Placing this expression in terms of a dipole matrix element for continuum functions that go
asymptotically to sin(0), we have

_ 16m®m2e?w - A3
K (A-3)

Sobelman defines this quantity in terms of the effective semiclassical cross section of Kramer by

16 n°Z%*

e — AL.4
33 wichmlv? & a4



Equating Egs. (A.3) and (A.4), we can derive an expression for the Gaunt factor as:

_ V3e*m? _

=2 M A5
BT T & (A-5)

For potential scattering, scattering from a ground-state closed shell, or scattering from a closed shell with
one additional s-electron target, we have the relation

Mul=2M y

where M is given by Egs.(11) and (12). Thus, the two definitions of g are consistent.
Sobeiman alse defines a continuum absorption coefficient k,, with units of cm™:

ko = nen; <V Opp > .

which is related to the averaged absorption coefficient, a, by

a(T,w) = *o fcm?] . (A7)
1,

2) Chandrasekhar-Breen and Geltman

In their 1946 paper,® Chandrasekhar and Breen define an absorption coefficient a(k?;, Ak?) in units of
cm’ but with most quantities expressed in atomic units. We demonstrate that the absorption coefficient
defined in Egs. (4), (5), and (11) is consiztent with that of Chandrasekhar and Breen.

We first address the Gaunt factor in Eq. (11). Using the relationship implied in Eqs. (14a) and (14b),
we write the length form of M in terms of the acceleration form as

ML=(D‘4MA .

(Chandrasekhar and Breen use the acceleration form in terins of the potential V in hartrees).
We *herefore have the following form for g

2\/3
g= Tirkake Ma(V) , (A.8)

where we have appended an R to the wavenumber k to indicate rydberg units [if k? is in rydbergs then
kg = (k»)?]. We now express the Kramer's form Ok in atomic units by employing the relationships

k=mv A

k(cm™) =kg a;', and (A.9)
4

ho (ergs) = (Ak?) —
g 2h2 7

where Ak? is the photon energy in rydbergs and a, is the Bohr radius (42/me? = 5.291771 X 10~%cm):
128 n* & Z2a3

@ 10
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where a is the fine structure constant (€?/#.¢).
The absorption coefficient is then given by

Sén2aal

2
a(kh; Ak?) = 3Ti‘k—,R———(Akl),MA(\/') , (A.11)

which agrees with [Eq. (6)] of Chandrasekhar and Breen.
According to Egs. (6) and (3), we now derive a Maxwell-Boltzmann-averaged absorption coefficient
in terms of the effective temperature 8 = 5040/ T (kelvins). We first note the following relations:

E ki A

_=——_—=Cek N
KT 2mkg2T(K) k

and
2) h3ag? kg
REME =\ 7 )\ i Tw) exp (—E/ksT) d(kf)
= C; 032 kg exp (—C,0kh) d(kd) .

where C; = 31.32625, C; = 197.841, and kj is the Boltzmann constant. Using these relations together
with Eqgs. (A.11) and (6), we find

- 256 82

Ap= — “zﬂao(‘A'k‘g)‘;,Czl
and
- f(kf)M
=/ ﬂk;‘l)( 2 dak) (A12)

where flkk) = 100 kg exp(—C,6kg) and {2 = C/100.
Chandrasekhar and Breen also define an absorption coefficient per unit pressure (P) per atom as

x=maP! [cm*dyn] . (A.13)

Using the expression for the pressure of an ideal gas,

P=n;kT , (A.14)
and the relation (kpTY ! = 1.43704 X 10120 | we have

o5
-G (a15)



where C; = 7.251 X 1072, This form also agrees with that of Geltman® if we explicitly represent f{k?),
employ the length form [M, = (Ak?)* M,/16], and note that his asymptotic form is (1/mk)"2 sin (kr +...).
In addition, this expression conforms with that of John.? This absorption coefficient can be related to
the averaged Gaunt factor g [Eq. (7) of John] through the expression
x=Cs 2262 (Ak) g , (A.16)
where Cs = 2.099 X 1072, This coefficient is sometimes corrected for stimulated emission by
multiplying by a factor [1 — exp(—C, 8Ak?)].

APPENDIX B

FORMS OF M

We consider the general form of the dipole element given by Sobelman'’ [see Eq. (A.2)]:

Mo =2 2 QL+ 1)QU+1D)ES+ 1) [RL+ 1S + DY

20

2 L L2
X {L, ¢ 1'} Rax dur (kK'Y (B.1)

where dg is given by Egs. (14a) and (14b). We consider several simple cases:
1) Scattering from a ground-state closed-shell atom: L, = 0, §; = 0. We have

RLO) _ [eer) _ [Buber ()]
L'l Lol ~ [+ Hw + D)7

and therefore

M = n>n:>s: Rmax dee(k[X)?(2S + 1)

However, for §, = 0, S mustbe equalto 1/2 and

M = 2 2 fowe depklK'? = 2M (B.2)

This same expression also arises for scattering from a central potential.
2) Scattering from a ground-state target with a single s-eiectron outside a closed shell. The target
quantum numbers are L; = Oand S, = 1/2, and the values for the total system become

L =2¢,
L’ = ¢, and
S = 0Oorl

For this case, we have

. 1
My = > g Lmax [dir (S) + 3 d&d(T)] , (B.3)

where d(S) [d(T)] is the . nial dipole element for singlet [triplet] scattering.
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APPENDIXC
SE EQUATIONS

For the case of scattering from a closed-shell target or from a target with a single s-electron outside a
closed shell (alkali), the SE-direct and exchange terms have the form

- 8y
VER) = _li—z +2 Eloi % fi (R 2RL)yr (Qoz; PuzR) , (0%

and

.Y
VERR) = 21" 2 (28 ~ KBy Bu@us, (R)

T a2 < :
+ 1 80 ML) e ®) S, O R )} : (C2)

where &; (R) is the orbital angular momentum of the bound (continvum) electron, Z is the nuclear charge,
Quy, is the i-th bound orbital with energy &, k? is the energy of the continuum electron, r> (r¢) is the
maximum (minimum) of (R,R’), and f; and g, are angular coefficients given by Percival and Seaton.*
The y, term is defined by

&
(ABR) = [7 A(R’) BR)~ dR’ . (€3)

i+l

We have assumed LS coupling by which the orbital angular momenta and spins of the bound and
scattered electrons are coupled according to

-+3,and

=
[
o

+ 8

wd
il
wnd

The summation over the variable i extends over all occupied orbitals with occupation number o;.

APPENDIX D
EVALUATION OF 4"

We seek a convenient procedure for evaluating d™ given by

d" = [Fu(R)R fie(R)dR , (D.1)

where fiy and fiy are solutions to the Schrédinger Eq. (17g). Our approach is similar to the matricant
technique of Knirk.”? We assume that the division radius, a, is large enough so that the continuum



functions have achieved their asymptotic form given by Eq. (17i). Substituting this asymptotic
expression into Eq. (D.1), we have

dl = [My(O¥10'k") + Ko Map(Rk|2’K")
+ K¢ Mu(Rk|271c) + KKoMaq(2k[07k’)] (D.2)
where

Mu@k|2'K’) = fo jfkR) R ju(k'R)AR ,
My(Rk[2’k’) =], §i(lkR) R fie(k’R)dR |
Myy(2kj2’k’) =/ A(kR) R jp(k’R)dR , and

Mas(@k2’K") =], Ae(kR) R fiz('R)IR | (D.3)

where ] (1)) is the Ricatti-Bessel (Ricatti-Neuman) function.
We evaluate the M elements by expanding the Ricatii functions in terms of sines and cosines and

evaluating the resulting multipolar integrals by simple recursion relations. The Ricatti functions can be
expanded as

2

(kR) = .,Eo [R(2m) sin(kR) + S(2m) cos(kR)]R™ ,

and

2

Ae(kR) = m§0 [R(2m) cos(kR) — S(2m) sin(kR)]JR™ (D.4)

where R(2m) and S(fm) are known constants. We now substitute Eq. (D.4) into Eq.(D.3) and derive

2 '
My = 2 2 [R@m) R@'m’) Ew(id’la) + R@m)S@'m’) Fu(kk'la)

+ S(2m) R('m’) Gu(kk'la) + S(m) S(2m’) Hy(kk’|a)]

2 '
Mz = X 2 [R@m) R@m) Fukkla) — R@m)S@m) Eu(kk'a)

+ S(2m) R(2’m’) Hy(kk’|a) — S(tm) S@'m’) Gy(kx’|a)]
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My

mi_o m%o[R(Qm) R(®'m’) Gu(kk’ja) + R(2m) S('m’) Hy(kk’|a)

S(tm) R(2’m’) Em(kk’la) — S(2m) S(2'm’) Fy(kk’|a)]

[

2
My = 2 2 [R(tm) R@m) Hy(kk’la) — R@m)S#'m’) Gu(kk'|a)

— S(2m) R(2'm’) Fu(kk’la) + S(2m) S(#'‘m’) Eu(kk’ja)] , (D.5)

where

Ew = J, R™sin(kR) sin(’'R)dR ,
Fu = [, R"™* gin(kR) cos(k’'R)dR ,
Gu = J, R"™* cos(kR) sin(k’R)dR ,

Hy = [, R™™*" cos(kR) cos(k’R)dR , and

M =m+m . (D.6)

We determine the latter expressions by writing the product trigonometric functions in terms of the
summed-angle relationships. Thus, we have

Em = < [Cu(h —K’|2) — Cu(k + K']2)] ,

to| —

Fu = 5 [Smk—K’|a) + Suk + K’|a)] ,

[ 5.Y g

1
Gy = 5 [~ Swk—Kla) + Sulk + Kfa)] , and

Hy = 51 [Cm(k — k’|a) + Cuk + k’ja)] , D.7)

where

Cu(Kla)

J. R"™*1 cog(KR)dR , and



Su(Kja) = [ R"™M*!sin(KR)dR . (D.8)

By writing out several of these terms explicitly, we can derive a set of recursion relations of the form

—sin(Ka) (M—-1D)

Cu(Kla) = KoM + K

Sy (Kla)

Sw(Kla) = cz:(mli?) - (MK— 2 Cun (Kla) . .9

We start the sequence at a large value of M(> £ + £/), where C, ~ Sn ~ 0, and recur downwards
until we have generated all values of M needed in the expansion. To finally place d" in the proper form,
we must divide by [(1 + K3) (1 + K} )/(kk)]V.

We compare this procedure with the more standard asyraptotic limit forin. We select a local potential
formulation to compare the length and acceleration forms. The asymptotic limit form is given by

d=dt+ q, (D.10)

where

dl = lim [T e™ fig(n)r fiu(r) dr . (D.11)
a0

Fora given choice of a, we directly integrate Eq. (D.11) by standard numerical procedures. We have used
the Common Los Alamos Mathematical Software suuroutine DQAGIE, which partitions the interval
and performs a Gauss-Laguerre integration within each subregion. We take three values of d and fit the
integrals d2 to a simple quadratic form — a,a? + a,a + a,, where a, gives the zero limit of the partial
moment.

In Table D.1, we compare the above two methods for the length form with the acceleration expression
for e-Li scattering from the static potential [Eq. (20a)]. The first column lists the values of & while the
second column presents the dY integral for this particular value of ¢. The third column displays the a,
coefficient (d%) of the quadratic fit to the present moment value and two preceding moment values. We
compare this result with the value of the matricant calculation in column four. The inner integration of
d! is given in the fifth column. Finally, we compare the total length expressions (d! + dT) with the
acceleration form (multiplied by 2/Ak? to give the same units), We note very good agreement among all
the methods; the largest difference is 7% between the acceleration and matricant length. We should also

note that Eq. (D.11) is very difficult to accurately integrate from the origin (a = 0), requiring very small
values of a to obtain precise results.
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TABLE D-1. Comparison of Various Methods to Determine the Dipole Matrix Elements: e-Li Scattering in the

Static Potential

a au () an d! d d dr
a) k;2=0.10Ry, &, = 1;k;,2=0.20 Ry, 5, =0
0.0200 145.905
0.0100 181.959
0.0050 201.896 223.107
0.0025 212.325 223.060 233.355 —~229.635 —6.575 —6.300 —6.764
b) k}=0.10,2,=0; k,2=0.20, 3, =1
0.0100 —106.756
0.0050 —111.001
0.0025 —112.598 —113.845 —113.756 89.428 —24.813 —24.328 —24.697
¢) k,2=0.10,2,=2;k,2=0.20,2,=1
0.0200 94.939
0.0100 109.326
0.0050 115.860 121,953
0.0025 118.869 121.707 121.638 —-103.418 18.289 18.220 18.256
d) k|2= 1.0, Ql = 1; k22= 2.0, 92= 0
0.2000 14.1750
0.0100 17.9452
0.0050 20.155% 22.584
0.0025 21.3515 27.607 22.748 26.597 —3.9897 —3.8496 —3.9989




