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Abstract

This series of lectures is about the role of particle physics in physical
processes that occurred in the very early stages of the big bang. Of
particular interest is the role of particle physics in determining the
evolution of the early Universe, and the effect of particle physics on
the present structure of the Universe. The use of the big bang as a
laboratory for placing limits on new particle physics theories will also
be discussed. Section 1 reviews the standard cosmology, including pri-
mordial nucleosynthesis. Section 2 reviews the decoupling of weakly
interacting particles in the early Universe, and discusses neutrinc cos-
mology and the resulting limits that may be placed on the mass and
lifetime of massive neutrinos. Section 3 discusses the evolution of the
vacuum through phase transitions in the early Universe and the for-
mation of topological defects in the transitions. Section 4 covers recent
work on the generation of the baryon asymmetry by baryon-number vi-
olating reactions in Grand Unified Theories, and mentions some recent
work on baryon number violation effects at the electroweak transition.
Section 5 is devoted to theories of cosmic inflation. Finally, Section 6
is a discussion of the role of extra spatial dimensions in the evolution

of the early Universe.
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1 THE STANDARD COSMOLOGY

Refore discussing the physical processes that occurred in the firat second of the big
bang, the basic Friedmann-Robertaon-Walker {FRW) cosmology will be discussed.
First, the physical observations that lead to the assumption of a2 homogeneous
and isotropic space will be reviewed. Some implications of the Robertson- Walker
roetric for the red shift and the expansion of the Universe will be decived. With
sitmple assurmnption of a perfect fuid for the stress tensor, the Friedmann equation
will be integrated to express the age of the Universe in terms of the expansion rate.
The implication of the conservation of entropy will be illuatrated by considering the
decoupling of mazsless neutrinos and gravitons. Finelly, the primordial production
of the light alements will be discuased.

1.1 Homogeneity and Isotropy of the Universe

The distribution of matter {at least visible matter) in the Universe seems to be
homogeneous and isotropic on sufficiently large scales. One indication that the
distribution becomes homogenecus on large scales is the behavior of the two-
point correlation function £. The two-point correlation function is defined as the
probebility of inding an object at a distance r from another object in & volume
element §V 11l

6P = nsV[1 + £(r)], {1.1)

where n is the number density of objects in the sample. For a uniform Poisson
distribution £ == 0. The magnitude of £ is thus an indicetion of the departure of the
distribution of galaxies from homogeneity. Several catalogs give a galaxy-galaxy
cortrlation function consistent with s simple power law form of £(r) given by
€(r) = (r/5h '"Mpc)~'*, where h represents the uncertainty in the determination
of Hubble's constant {Hs = 100 A km sec 'Mpe™?), and 4 Mpe=10°pe=10° x 3.1 x
10%m. At distances larger than 5k 'Mpe, the correlation function drops below
unity, suggesting that & uniform distribution becomes » good mpproximation. Of
course this one piece of evidence does not prove that the distribution is uniform.
In the past few years there has been a growing amount of evidence that there iz a
rich structure in clusters, Alament, bubbles, etc., on scales in excess of 54~ Mpe,
which serves to illustrate the fact that the two-point correlation function does
not provide complete informuation on clustering. Nevertheless, the decrense in the
gaulaxy-galaxy correlation function is evidence that on large acales the distribution
of matter is uniform.

The microwave background radiation (MBR) is evidence that the Universe is
spatially isotropic. The obaervations of the spectral nature of the MBR is shown
in Figure 1.)% Obaervations of the temperature of the MBR are consistent with a
blackbody of T = 2,72K. Figure 1a is the MBR apectral flux asa measured by Woody
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Figure 1: The apectrum of the microwave background radiation

and Richards (shaded area), along with mictowave and optical reaults. Deviations
from the Planck spectrum may be real, or they may represent systematic errors
such ns background subtractions. The equivalent blackbody tetnperature over
a large frequency range is shown in Figure 1b (the dashed line is the original
measurement of Penzias and Wilson). The best fif to all the measurements is a
temperature of 2.72K.

A remarkable feature of the MBR is ita high degree of isotropy. This isotropy is
best illustrated by considering temperature differences in the background radiation
as & function of the angular scale of the separation. The results of the observations
are summarized in Figure 2.1 But for a dipole moment to the radiation of AT|T =
1073, the MBR in isotropic on scales as small as 10", The dipole moment can
be understood as the peculiar velocity of the enrth with respect to the MBR.
Thke isotropy on smaller scales indicates that when the MBR Jast scatiered the
distribution of matter was uniform.

It is easy to meke an estimate of the distance to the last scattering surface.
If we assutne that the mean free path of the photons is determined by Compton
scattering off free elecirons, v + ¢ —+ 7 + ¢, the mean free path in given by A =
{n.or)~', where n, is the number density of electrons and or is the Thomson
cross section (or = 6.85 x 10°**t¢m?). The number density of free electrons can
be expressed in terms of the average number of electrons per nucleon, ¥,, und the
eleciron ionization fraction, X,, as n, = X, ¥,ny, whete ny is the nucieon density.
The nucleon density is usually determined by its contribution to the mass density
pn = mynp, where py is the mass density of nucleons, and my is the nucleon
mass. The nucleon mase density in turn is usunlly expressed in terms of its ratio
to a “critical density”, given by
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Figure 2: Limits on the anisotropy of the microwave background radiation

3H}
o = E;g-: = 1.88 x 107®A? g em ™. (1.2)

The fraction of the critical density in any species 1 is defined as {1;
= pifpc. (1.3)

The electron density is then n, = 1.12 % 10-*X,¥,yhlem™>. All observational
evidence givea Myh? < 1. If we sesume X, Y, =1 {the maximal value}, and ignore
for the moment any change in n, due to the expansion of the Universe, then the
mean [ree path (distance to the last ecattering surface) is X > 10° cm. This
caleulation will be improved by taking into account the expansion of the Universe
and by a better calculation of X,. However the estimate made above gerves to
illustrate the main point: the surface of last scattering of the MBR is at a great
distance and the distribution of matter on this large scale was isotropic when the
MBR last scattered.

Finally, there is a strong theoretical prejudice for only considering spaces that
are spatially homogeneous and isotropic. There will be only one undetermined
function in the metric for a homogeneous and isotropic space. This allows for a real
confrontation with the meager observational evidence, The philosophy taken here
is Lo mssume the simplest mode! and confront the data. A successful confrontation
will result in the remarkable achievement of & simple model for the evolution of
the Universe. A failure of thia simple mode! would signal & breskdown either in
the cosmologica! principle (that space is homogeneous and isotrapic) or in the field
equations of gravity.

1.2 The Robertson-Walker Metric

The metric for a space with homogeneous and isotropic spatial sections is given
by Ml

ds? = di* - R(1) {1 f”

2493 L o1 gin? §dd?
krl-t-rdﬂ +r" sin” §d¢ } {1.4)
where (t,r,8,4) are coordinates, R(t) is the cosmic scale factar, and k = +1,-1,
or O for spaces of constant positive curvature, constant negative curvature, or zero
spatial curvature. The coordinate r in Eq. 1.4 is dimensionless and scaled to R(¢),
i.e., r ranges ftom 0 to 1.

The meaning of the cosmic scale factor R{¢} can be illustrated most easily
by considering the space of constant positive curvature (k = +1), and by em-
bedding the three-space into a four-dimensional euclidean space with coordinates
Iy, z3, r3, and x,. Under a coordinate transformation to “four-dimensional®
spherical cootdinates (R, x, 8, ¢) related to the four-dimensional cartesian coor-
dinates by ¥, = Rainxsinfcos ¢, z3 = Rain xsinfsing, 13 = Rsinxcosh, 7, =
R con x, the Robertaon-Walker metric takes the form

ds? = d? — R(t) [dx‘ + sin? x(sin? 8d¢* + de’)] . (1.5)

The nbove form explicitly illustrates the metric for k = +1is that of a three-sphere,
5%, with radius given by R(t). The volume of the 5% is given by

ir @ ¥
. 32 A — i3
v ”/o [n ]n RYsin® x sin ddxdods = 207 R". (1.6)

The radiua of the 5 today is larger than the Hubble radius, Ry = 83! = 9.24 x
10¥h-'cm. The space haa finite volume, but has no boundaries. For the k = --1
choice (space of constant negative curvature), the space is the 3-hyperboleid, @°,
and the metric can be written in the form of Eq. 1.5 with sinx — sinhy. The
volume of the @ is, of course, infinite since the range of x is —oo to + oo. For
the k = O choice, the spatial metric is that of B3, i.e., spatially flat. It nlso has
infinite volume.

It should be noted that the assumption of homogeneity and isotropy only im-
plies that the spatiel metric is locally S7, @*, or R, and the space can have
different global properties. For inatance, for the spatially fat case the global prop-
erties of the space might be that of the three-torus, T2, rather than RY. Such
non-trivial topologies may be relevant in light of recent work on theories with ex-
tra dimensions, such as superstrings. In many such theories the internal space is
compact, but has topological defects such as holes, handles, etc. If the internal
space is not simply connetted, it in likely that the externsl space is also not simply



connected, and the global properties of the space might be much different than
the simple §%, Q°, or R,

Before considering the dynamica of expansicn, it is possible to understand the
effect of expansion on the red shift of light from distant galaxies. Suppose a
photon is emitted from s source at coordinste r = ry at time t; and artives at a
detector at time tp at coordinate r = 0 (for simplicity consider propagation along
d¢? = d§* = 0). The masaless photon will travel on a geodeaic (da? = 0), and the
cootdinate and tirme wil] be related by

o dt o dr _
. R() =-/0 {1 " krr)ia = firy)- (17)

A photon emitted at a time ¢, 4§ will arrive at the detector at s time t5+8¢,. The
equation of motion will be the same as Eq. 1.7 with ¢, — £, + 5y and t) — tg + &tg.
Since f(r;) in constant (the mource in fixed in the coordinate system)

te (it lgtits it
5w e R (1.8)

By simple rearrangement of the limits of integration

[IEY I totita i
L ra L ww 19

If 8t is sufficiently small, then R(t) wiil be constant over the integration time of
Eq. 1.9, and

L1 bty
——— e L.10
Rie] " Rit) (19
If we consider 6ty {§tg) to be the time of successive waves of the cmitted [detected)
light, then 82, (§¢y) ia the wavelength of the emitted (detected) light, and

A1 Rity)

L g s 1.11
o Ritg) (1)
The red shift is usually defined in terms of z, by

Xo — My
=M 1.12
Y (1.12)

In terms of R{t},
142 - Elt) (1.13)

" R

Any increane [decrease) in R(t) leads to a red shift (blue shift) of the light from
distant sources. The fact that today a red shift of light from distant sources is
observed implies that the Universe is expanding.

Hubble's law may be found directly form the FRW metric without knowing
anything about the dynamics of the expansion. Hubble's law relates the “lumi-
nasity distance” d; to the red shift z. If & source has an absolute luminosity L
(the energy per time produced by the source], the luminosity distance is defined
in terma of the measured flux F [the energy per time per area measured by a
detector) by

. K 1.14
h 47(&'1‘ (114)
If a source at co-moving coordinmte r = ry emita light at time t,, and n detector
at co-moving coordinate r = 0 detects the light at ¢ = #5, conservation of energy
(T#, = 0) implies

de = Rta) gois = Rita)ra(d +2). (1.15)

The dependente upon r; must be removed. The first step is to expand R(t) in
a power series

R{e) _ . | Rito) 1{ Rito) R(to) 1
gt R (—E’T‘;jnuuj) Bt -t o ()

or remembering R(ty)/R(t) = 1 + 2z, Eq. 1.18 can be inverted for small Hy(ts - t)
to give {this analysis follows Weinberg [5/)

= Holto —t) + (1+12°) Hifto ~t)* +... (117}
where
_ Rl)
Hy = }—?Ugj (1'18)
_ R
T = H‘[lul Rito}. (119)

Eq. 1.17 can be inverted to yield

fto —t) = H;? [zw(n%") z:+..-]. (1.20)



It is also possible to expand f(r,) of Eq. 1.7 in a power series

fln) = r.+5}+... (k= +1)
=n (k=0)
= rlf%l‘nQ-... (k=—1). {1.21)

Using the expansion of Eq. 1.1¢ in Eq. 1.T gives
1

r = R (to) [(:,. - ) b Holte — ) . ] . {1.22)

Using Lhe expression for {fy — t,) gives
“lpr-1 I ]

r= Rt) Byt o= 30+ w2 +] (1.23)

Substituting this expression into Eq. 1.15 finally yields Hubble's law
i H
Hodr = 2+ i{l —go)s + ... (1.24)

Note that the linear relation between d, and z fails for z — 1 if go # 1. Note that
Hubble's Iaw was derived without explicitly solving the dynamics of the Einstein
equations.

1.3 The Friedmann Equation

Befare solving the Einstein equations for the evolution of the scale factor R{t),
it is necessary to make some assumptions about the dread right hand side of the
Einstein equations. To be consistent with the symmetries of the metric, the atress
tensor T}, should be diagonal, and by isotropy the non-zero spatial parta of the

metric should be equal. The simpleat realization of such a etress tensor is that of
a perfect Buid characterized by an energy density p and a pressure p

T* = diag{p, —p, —P.—P)- {1.25)
The conservation of energy equations (T#%, = 0) givea

d(pR®) = ~pd(R?). (1.26)

For simple equations of atate Eq. 1.26 gives
RADIATION (p= %p) — px R

MATTER (p=0) = pox R
VACUUM ENERGY (p=-9) => px R® {1.27)
The “early” Universe will be rndiation dominated, and in the absence of vacunm
energy, the “late Universe will be matter dominated.
The dynamical equation that describes the evolution of f(t]) is found from
the Einstein field equations, There are two independent equations from the field

equationa, one of them can be taken as Eq. 1.26, and the other in the Friedmann
equation

.. 3
R k 8xG
(E) LA (1.28)
With the definitiona of go and {1 in Eqs. 1.2 and 1.3
k
W = ﬂ - 1. (1.29)

Since HYR? > 0, there is a correspondence between the sign of &, and the sign of
n-1
k=+1 = 021 CLOSED
k=0 = NI=1 FLAT
k=-1 = 0<1 OPEN. (1.30)
A different combination of the Einstein equations yields

IR= —4xG(p+ Ip)R. (1.31)

Since today R > 0, if p + 3p was always positive, then at some finite time in the
past R must have been equal to zero. This time in deflned ma ¢t = 0. At R =0
there is & singularity, extrapolation past the singulerity is not possible.

The Friedmann equation may be integrated to give the age of the Universe in
terma of the expansion rate. Let sub-0 denote the value of quantities today. The
energy density scales as p/ps = (R/Ro)™* for a matter-dominated (MD) Universe,
and p/po = (R/Ro)™* for a radiation-dominated {RD) Universe. The Friedmann
equation becomes

(&) - s oo

- G, (%g)’ (RD). (1.32)
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Using k/ R} = H3{f3g — 1}, the time as a funetion of Ao/ R = 1 + 2 is given by

- e dx
e mt U e (D)
. [1 - M5 + Noz-}

R

H;‘f ——_Jiu—-ﬁ (RD). (1.33)
a 11 ~ g + floz 7]

The age of the Universe is obviously a decreasing function of f1. In the limit

0 -0, H'(14+2)"" = 90.78 x 10°(1 4 2)"'h ! years for both (RD) and (MD).

T — t, then

¢ - g(l-u)"f’m* {MD)

%(1 + 2y rHG ! (RD). {1.34)

The present age for a matter-dominated {t = t Universe ia 6.5 « 10%h ! years.
This age ia consistent with the lower end of estimates of the age of the Universe
on the basis of atellar evolution and nucleocosmochronology if 4 is nat too much
larger than 1/2.

Eq. 1.33 can be integrated to give R as » function of time. For k = +1, R
increases to a maximum, then decreases to zero. For k = O or k - -1, R increases
without limit. The evolution of R is ahown in Fig.3.

For many of the problema of interest in cosmology, it i only necessary to
know the nge of the “early” Universe, when it was radiation dominated and the

curvature term in the Friedmann equation {k/R? « R™?) was negligible compared
to the energy denaity term ({87G/3}p & R~ for radiation). The region of validity
of these eriteria will be quantified shortly. The second condition implies (1 = 1 is
a good approximation in the early Universe, and from Eq. 1.34

t = EH"
2
B e
H? ijpn. (1.38)

where pg is the energy density in radiation. The energy density and number
density of & particle of mass m at temperature T is givea by {for zero chemical
potential)

g (= (E*-m V2 1

B R ey 4"

P = i)y 1resplEME °F
« 2 _ 1y l/?

g (o B - pp

272 Jo 1t exp(E/T)

n —

(L.30)

where g is the number of spin states and the + (-} obtains for Fermi {Boae)
statistics. In the relativistic limit (T" » m)

(r1/30)gT* {(BOSE)
(r/30)(7/8)gT* (FERMI)

{ (s(3)/x*)gT*  (BOSE) (L37)

(s(3)/#7)(3/4)¢T* (FERMI).

In the non-relativistic limit the energy density snd the number density is the same
for Bose and Fermi statistics

p = mn
T2
n o= g(n-;;) exp(~m/T). {1.18)

The total radiation energy density can be expressed in terms of the photon
temperature T as

LT (1.39)
PR o ing' v N
where g, counts the efective maasless degrees of freedom

ORI NN .0

i=dosons iz fermions



The relative factor of 7/8 aceounts for the difference in Fermi and Bose statistics.

In terms of g. and the Planck mans mp; = G171 = 1.2 x 101%GeV, the age and
expansion fate of the early Universe in given by {Tiey = T/1 MeV)

™m

t = O‘GQ:IHT_TZIH':T;"V
T1

H = 1667 =, (L.41)
mp;

1.4 Entropy

Throughout moat of the history of the Universe {in particular the early Universe)
the reaction rates of particles in the thermal bath, [y, were much greater than the
expansion rate, H, and local thermal equilibrivm (LTE) should have been main-
tained. In this case the entropy per comoving volume element remaina constant.
The second law of thermodynamics atates that

TdS = d(pV) + pdV {1.42)

and the energy density and pressure are relnted by

15 88 143)
aTav ~ aveT (.
which implies
dp
T =e+e {(1.44)
Using the conservation of energy equation written in the form
d . _ padp
G Ben] =Ry (148}
in Eq. 1L.44 results in the conserved quantity
d [Ra+p)
— ey =0, 1.48
™% (.40
This conserved quantity is simply the entropy 5.
It is useful to define nn entropy density a
_ ptrp
M
2x?
= T3, 1.47
AL {1.47)
where

3

ie g e (@)L e

s=hasony = farmions

For most of the history of the Universe all particles had a common temperature,
and g’ can be replaced by g..

The conservation of § implies that s oc 2, and that g, 77 R? is conatant in the
expansion. The factor of g, enters because as the temperature of the Universe drops
below the mass of & particle species, that epecies will disappear via annihilations
(assuming it remains in equilibrium) and the entropy that was present in that
speciea will be shared among the particles remaining in equilibrium. If g, changes,
T is not proportional to B~

Massless particles that are decoupled from the heat bath will not share in the
entropy relensed as the temperature drops below the mass threshold of a specien,
but rather the temperature of a maussless decoupled species scales as T R,
As an example consider a massless particle initially in LTE which decouples at
time tp, temperature T, and acale factor Rp. The phase-space distribution at
decoupling in given by the equilibrium distribution

f(E,to) = [exp(E/To} 1|7 (1.49)
After decoupling the energy of the maasless particle is red-shifted by the expansion
of the Universe E(R} = E(Rp)(Rop/R). So at some time after decoupling the phase

upace density of a particle of energy E will be the phase space density of & particle
of energy E{R/Rp} at decoupling (since the phase space density is conserved)

I(ERL;,:D) = [exp (ﬁ%%) + ll

|exp{E/T) + 1. {(1.50)

J(E\1)

#

Thus the distribution for masalesa particles is aelf-aimilar in expansion, with the
temperature red-shifting sa R™!

T= Tg% x R! DECQUPLED, (1.51)

not « R"g.'”’ as for particles remaining in equilibrium.

The effect of decoupling ia beat illustrated by consideting the decoupling of
massless neutrinos. In the early Universe neutrinos are kept in equilibrium via
reactions of the sort 51 « ete” + -+-. The croas section is weak, given by ¢ =
G3T?, where Gy is the Fermi constant. The number denaity of the mansless
particles is n = T?, a0 the interaction rate is

It = nolu] = G3T". {1.52)



The ratio of the interaction rate to the expansion rate is

T G}T* ( T )’

H 1MeV (1.59)

H - T?/mp| N
At temperatures above 1 MeV, the interaction rate is greater than the expansion
rate and the neutrinos are in equilibrium. At temperatures below 1 MeV the
interaction rate is leas than the expansion rate and neutrino interactions are too
weak to keep them in equilibriurn. Below 1 MeV the neutrino temperature T, scales
ns R-!. Subnequent to neutrine decoupling the temperature drops below threshold
for ¢* production and the entropy in the e* is transferred to the photone but not
to the decoupled neutrinos. For T > m,, g, includea v (g = 2) and ¢* (g = 4),
for an effective g, = 11/2. For T < m,, only the photons are in equilibrium for
an effective g, = 2. Since ¢,(RT)? is constant, RT is increased by the third-root
of the ratio of g, before e* snnihilation (11/2) to g, after e* annihilation (2). For
the photons RT i increased by a factor of (11/4)"/*, due to ¢* annihilation, while
RT for the neutrinos is unaffected. Therefore today the ratio of T, and T, should
be

T, 11413
= (T) — 14 (1.54)

which gives T, = 1.9 K. The addition of three two-component mnasleas neutrinon
at the above temperature results in a value of g, today of

7 4
g.ftoday) = 2+ 3" 2x3x (—l—l) =338 (1.55)

This results in & present energy density in massless particles and entrapy density
of

>
oR = ;ag.‘r‘ = 7.56 % 10-Mg cm™
2 1
= T’;—g:T" =~ 2800cm . (1.56)

Another exnmple is the decoupling of gravitons. For particles with only gravita-
tional atrength interactions, the interaction rate should be T = nojvl >~ GIT® =~
T%/m%, . This will become less than the expansion rate, H ~ T?/mp,, at temper-
atures less than mp,. If gravitons decouple at the Planck time, the contribution
to g, from particles we know ' was 90.75. Therefore today the number density
of gravitons should be amaller than the number density of photons by a factor of
roughly (2/90.75).

1The pasticles we "know” are taken to be the three generations of quarke and leptons, the gauge
pasticles of SUy x SUy x Uy, wnd the Higgs doublet of the Weinberg-Salam model.

Before concluding this section it is useful to mention three parameters that de-
seribe the Universe, The first parameter is the time of the decoupling of radiation
and matter. Using the fact that the electron number density scales as {R/ Ro)?, the
temperature scales 83 Ro/ R, and the equilibrium ionization fraction of electrons
found from the Saha equation is ¢

xt y TN
i__:_-}_.:h;rzr:jﬂ‘ exp(—B/T), (1.57)

where m, is the electron mass and B in the ionization potential of hydrogen, the
red shift at decoupling (also referred to as recombination) is 1 + z,,, ~ 1500. This
yields a temperature and time of decoupling of

Tiee = Toll +2z.,)=4100K = 0.35eV
e = to{l+ z..,,)fs'“ =1.1x10° 2! yenra = 3.5 x 10" 7t sec.  (1.58)
If we define par as the total energy density in “mstter” (i.e., in non-relativistic
particles), then today puy = 1.88 x 10-(ly; h? g cm?, where flp is the fraction
of the critical density contributed by pp. Using Eq. 1.56, and the fact that

pr/pm = Ro/R = 1+ z, then the red shift, time, and temperature of equal matter
and radintion energy densities is given by

142, = 25x10* A% Oy
Tee Toll + 2z} = 5.8 A? [lpr eV

1]

ly = fo(l+ 2)7%7 = 1.6 x 10° 474 ;) *years. {1.59)
The baryon number density is defined as
ng=m—ng=112%x 107" {ly h? cm™®, (1.60)

where ny (rg) is the baryon (antibaryon) number density, and it has been assumed
that today ny = 0. The baryon number is defined as

A= -’-';" =4 % 107° iy A (1.81)
As long as the baryon number is conserved in particle interactions and entropy is
conserved in the expansion of the Universe, B will remain constant,
1.5 Primordial Nucleosynthesis
The first step in underatanding primordial nucleosynthesis is the application of

nuclear statistical equilibrium (NSE). In kinetic equilibrium, the number density
of a nucleus of mass number A is given by



AZ B,

H 2.2 MeV
H 8.5 MeV
He | 1.7 MeV
{He { 28.2 MeY

Table 1: The binding energies of some light nuclei.

T3 —
M4 = 0a (mz: ) exp (”_,__u_“ de) - (1.82)

in chemical equilibrium the chemical potential of & nucleus with mass number A
and charge Z is related Lo the neutron and proton chemical potentialn by

pa=Zup + (A - Z)pa. {1.63)

In kinetic equilibrium the neutron and preton number densities (n, and n,) are
given by expressions like Eq, 1.82 with the neutron and proton chemical potentials
and masses replacing p4 and my,. Therefore, in chemical equilibrinm, 1

expluafT| = expi(Zp, + (4~ 2)6a}l/T]

A1
< ngett (25) T 2 henp (Zm, + (4 - Z)ma)/T] (104)

With the definition of the binding energy
Ba=Zm, + (A~ Z)m, —my, {1.85)

Eq. 1.62 becomes

Ha-1)2
—2!;) nZnd~% exp(Ba/T). (1.88)

= g, A4 (
Ry = Qa maT

A list of binding energies are given in Table 1.

Rather than the number density, it is useful to consider the mass fraction,
which is defined aa the fraction of the total baryon mass in any particular apecies
naA

X4 = DAl

ny

Z:X. = 1 (1.87)

[0 the pre-exponentinl fuctor the difference of the neutron and proton masses will not be impor-
tant, and my will denote the nucleon mass.

In NSE the mass [raction of species A4 is given by

. 8 T A=)/
X4 = gad®i274 [ﬁ"(a)m—ﬂl A XIX2 2 exp(Ba/T), (1.68)
where
n= %—’i =28x 107 Oy A%, (1.69)
4

The fact that the Universe is “hot” (r, 3» ny; 1 is small) is crucial in primordial
nucleosynthesis. After considering the “initial conditions” primordial nuclevsyn-
thesis will be considered in three steps.

« Initiol Conditions (T » 1 MeV, t « 1 sec.): The initial conditions for
primordial nuclecaynthesia are no heavy elements (onty protons and neutrons) and
equal numbers of protons and neutrons. The lack of heavy elements is a resutt of
the small value of n. Consider a simple system of *He, neutrons and protons with
n, = n,. In NSE the *He mass fraction {X.} is given by (X = X, = (1 - X.}/2):

8 1, p W
_ gMig-e | T L2 i LI 4
xo = e [See] (D) 0 g - X e (BT

= 8.2 x 107 nd exp(28.2/Thav ) (1 - XY, {1.70)
where n; = 10°n. A graph of X, as a function of T iz shown in in Fig. 4. Until
Twuey drops below 0.3, the abundance of helium is smail because n is small. ?

The initia} condition that n, = n, is a result of the fact that the weak resctiona

that interconvert neutrons and protona are much faster than the expansion rate
at this time. The six reaction that interconvert neutrons and protons are

n+— per, Lne«— pe,  en +— pl. (L.71)

The rate {per nucleon) of the above resctions are found by integrating the square
of the amplitude for a given process, weighted by the available phase-space densi-
ties of particles (other than the initial nucleon), while enforcing four-momentum
conservation. As an example, the rate for pe — vn is given by {745l

§lp+e—v-n)dp dp. d'p,

Moem = [ FAENL = fABAMY, w2

pe-vn (25)* 2E, 1E, 2E,

For all the above reactions

3The small sbundance of *He at high tem perature is sometimes incorrectly blamed on s deuterivm
“hottienech.” But the abundance of ‘He is small in NSE at high temperature, which has nothing
to do with the binding energy of deuterium. The low binding energy of deuterium will be
important only somewhat later.
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IM[* < GE{L + 343). (L.73}

Since this is the same matrix element for neutron decay, it is convenient to write
it in terma of the neutron lifetime r.

The neutron-proton masa difference, @ = m, — m, = 1.293 MeV, and the
electron mass determine the limits of integration in the rates. In terms of the
dimensionless quantities ¢ = Q/m,, ¢ = E,fm,, e =m, /T, z, =m,[T,,

e gt~
[1 + explez}]{1 + exp((g - €}2.}|"

Mo ovm = (r:.o)-'j:” de (1.74)

where g simply represents a numerical factor from the phase space integral for
neuiron decay. In the high temperature and low temperature limits (%

{1.75)

\ 0 T«Q, m,
e a1+ 300)GET ~GIT* T»Q, m,.

In the high temperature limit, the weak rates are much greater than H, and the
neutron proton ratio should obtain the equilibrium value

0.0

MoV
Figure 5: The development of primordial nucleosynthesis. The dashed line is the

baryon density, and the solid lines are the mass fractions. The model is for 3
neutrinos, 7 = 3 x 10°, and 72 = 10.6 minutes,

using (n/p)® = /7.

At this point primordial nucleosynthesis ends when the nuclear rates become
less than H. There are three reasons for the termination of primordial nucleosyn-
thesis. The Coulomb barriers at low temperatures (I' < 8 x 10° K) supprenss the
rates. The baryon density is low {see Fig. 5) which suppresses three-body initial
states. Finally, there are no A = 5 or A = 8 stable nuclei to act as intermediate
steps.

The development of primordial nucleosynthesis (the first day in the life of the
Universe) is shown in Fig. 5. All numerical results presented here were obtained
with aid of & computer program courtesy of Robert Wagoner 1*,

Before discussing the ngreement with the inferred values of the primordial
shundances, it is uneful to conaider the sennitivity of the fina] abundances on the
input parameters.

o r; The weak rates are proportional to (1+ 3g%), which is usunlly determined
by measurement of the neutron lifetime. Since A oc ™!, an increase in r results in
a decrease of A, which meann the weak rates freeze out earlier. From Eq. 1.78, an
increase in Tr leads to and increase of n/p, hence more *He.

® g.: Since H x g:n, an increase in g, leads to a faster expansion rate, which
results in earlier freeze out and higher *He. This is used to study the effect of



Therefore, at high temperature {T' % @), n, = n,.

o Step I {t = 107%sec., T = 10 MeV}): For step 1, the energy density of the
Universe is radiation dominated, and the e*, 4, and 3 neutrinos give g, = 10.75.
The weak rates are much larger than H, so n, = n,, and T, = T,. The heavy
elements are in NSE, but they have very small abundances due to the lact that n
is small. For example, if 5 = 10°

X

13

%1
57° (L) exp(B,jT) =2 x 107
my

R

12
X, = n (;T;) exp(B3/T) = 1 x 1071 (1.17)

o Step £(¢ = Leec,, T = Ty = 1 MeV): At nbout this tirne the weak rates freeze
out (becorne smaller than H}. When the weak rates freeze out the neutron-proton
ratio is given by the equilibrium value,

i 1
(5);"...‘.‘.' = expl-Q/Ty) > 5 {1.78)

"after freeze-out the neutron-proton ratio is given by (r is the neutron lifetime)

(E) > %exp(—t/r]. (1.79)

After the neutrinoe decouple, the annihilation of the ¢* increases the photon tem-
perature relative to the neutrino temperature by a factor of (11/4)'/%.

e Step § (¢ =1 - 3 minutes, T = 0.3 ~ 0.1 MeV): At this time the effective g,
is 3.38 for 3 neutrinos, and (n/p} has decreased from 1/8 to 1/7 due to neutron
decay. At this time the NSE value of *He starts to rapidly approach one. However
in the big bang the actual amount of ‘He cannot keep up with the NSE values
since there are only trace amounta of H, *H, and YHe present, and these elementa
are intermediate steps in the fusion of *He. Thia two minute delay in the onset of
‘He obtaining the NSE value allows some more of the neutrons to decay. Once *He
does obtain its NSE value, almast all of the available neutrons are procesaed into
‘He ns it has by far the largest binding energy per nucleon of the light elements.
If the densities of neutron and protons at this time are denoted by n% and n: and
all the neutrons are processed to ‘He, then the final amount of *He is given by
n, = n%/2. In terms of the mass fraction of ‘He and the neutron-proton frection

T S 17 ) P,
A +n) (nfp) +1

. (1L.80)

X,

s

Figure 6: The primordial abundances of the light elements as a function of



additionn! light neutrinos, since

T
g. = 2+§(4+2xN,]+~--
= 10754+~ N, =13
- 12504 - N, -4 {181}

s n: In NSE the abundances of the elements increases with 7. An increase in
n allows ‘He to be produced enrlier when there were more neutrons, hence more
‘He will be produced. NSE will be obtnined for a longer time, so there will be less
H and *He.

» Nuclear reaction rates: For the reactions of interest in primordial nucleosyn-
thesis the uncertainties in the nuclear reaction croas sections are not important.

The primordial mass fraction of *He and the rbundances of H=D, *He, and
7Li relative to hydrogen sre given in Fig. 8.8 The effect of the uncertainty in the
neutron lifetime and the number of light neutrinos on X, is indicated, The deter-
mination of the ptimordial abundances from present observations is very difficult.
In order of decreasing relinbility [°!

= 0.22-0.28

> 1t

Ty

D*He
H

Bx 10 % >

TL'
Pkl > —H—' >1x107. (1.82)

All these abundances are consistent if NV, < 4. This consistency is the strongest
evidence that the standard Friedmann-Robertaon-Walker cosmology can be ex-
trapoiated back as far as 1 second after the bang when the temperature was 1
MeV. Having succesafully gone back 15 billion years, the next sections will take us
back the final second.
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2 NEUTRINO COSMOLOGY

Before considering the survival of any particular particle, the general framework
for considering the decoupling of particles will be developed in detail. The general
results will be used to study in detril the decoupling of mansless and massive
neutrinos. * This study will allow a combination of cosmological and astrophysical
limits to be placed on the properties of massive neutrinos. Neutrinoa are only an
example of the application of coamology and satraphysics to limit the properties
of elementary particles. Some brief comments on other particles will be made, and
the possibility of deterting these fossil particles will be discussed.

2.1 Freeze Out

Consider a particle ¢ of masa M that is stable, and present in equal numbers with
its antiparticle ¢. Let f denote the phase-space density of ¢. The evolution of f
is determined by the Boltzmann equation, which can be written in the form

Lfi = clil, (2.1)

where C is the collision operator and L is the Liouville operator. The collision
operator depends on interactions at s point, so it should be independent of the
geometry. The Liouville operator, however, depends on derivatives, and will be
sensitive to the geometry. The non-relativistic form of the Liouville operator is

L=%+¢-V,+ =V, (2:2)

o
E

The general relativistic generalization of this operator is

., .3 . 3 '
L:p ‘a—;:—r’1pﬂp15'p:. (2»3)

For the FRW metric, I, simplifies considerably, and the Boltzmann equation be-
comen

af R _,8
EY - R 5L = ClAE. I (@4

Using the deflnition of the number density in terms of the phase space density

n = (2n)7 [ 1(E)EP, (25)

‘The terms quenching, decoupling, and freese out will be uned interchangeably.

after integration by parts the Boltzmann equation may finally be expressed in the
form

dn R f d’p
I 3;2-11 = (2n7) C[f]?. (2.8)
Consider the contribution to the collision integral from the process ¥ — y7,

where “q9" will represent a generic masasless particle. The right hand side of Eq.
28is®

n) [ entl

= A% (20) 0 [[ (BB IMIE gy — (BN (EDIMI, ] (27)
where

. &£ d’p;  dp,dp
A= ﬁ;iﬁ"'%z—g:ﬁ'(ilﬁpﬁ-°-—p.~p.----). {2.8)

Eq. 2.7 can be written in an extremely useful form with the help of two

assumptions. The first assumption is T (or CP} invariance of the matrix element

Ml = 1My z9)

The second assumption is that the masalesa particles (y'a} are in equilibrium

F{E) = exp(—E/T}. This assumption, together with the conservation of en-

ergy (E,, + E,, = Ey + E;) from &%, sllows the ~ phase space density to be
expressed in terms of the ¢ phase space denaity

FAEL(E,) = “P(_EMJ’T)“I’("ET:-'{T)
= exp{—Ey/T)exp(—E}/T)
= FENT(E), (2.10)
where
[V (E) = exp(-E/T). (211)

Since the phase space depsities depend only upon Ey and Ej, the phase space
integrals over p,, and p,, can be done, yielding {|v]o,y_.,,). The integrala over p,
and p; yield either ry or ng. The Boltzmann equation then becornes

®[n the absence of Bose condensation or Fermi degeneracy, Maxwell-Boltsmann statistica should
be a good spproximation, and will be employed unless otherwise indicaled.



i + 350y = [(35)" = n] Gvlesa ) (2.12)

It ia straightforward to in¢lude other processes in the same manner. Including all
possible final states for ¢ annihilation results in

ny + 3%"‘ = [(n;')1 - nal flvloa), (219

where o4 is the tatal ¢ ennihilation cross section. In most cases the non-
relativistic form of ¢4 will have a simple dependence on the temperature, and
the temperature dependence can be parameterized as

{ltloa} = oo (%) - {2.14)

The terms in Eq. 2.13 have a simple explanation. The term proportional to
- nl represents the decrease of ¢ due to ¥ annihilation. The term proportional
to (n?f)? represents the increase of ¢ due to collisions of the 7's in the thermal
bath. The Boltzmann factor in njf in the NR limit is reflects the fact that at
T <« M, it becomes exponentinlly unlikely that a collision of two v's will have
sufficient energy to create a ¥ pair. Note that if the creation and annihilation
ratea are fast enough (grester than H), ny will be driven to its equilibrium value,

It is convenient to express Eq. 2.13 in terms of the dimensionless quantities
Yy = ngfs, 2= M/T

ay ,
5= ~0.26g ' mp Mz H{Jvloa) (YT - Y2). (2.15)

In the non-relativistic (NR) limit {z > 3) and in the extreme relativistic (ER)
limit (z 4 3) Y,, has the limiting forma

_ { (%4594 /2x%g.) r<3 (2.18)

] (45ge 20t )(n/B) 3 N exp(-z} >3,

where gy is the number of spin degrees of freedom for ¢, and x is ¢(3) (3¢(3)/4)
for Bose (Fermi) statintica.

In general there are no closed-form solutions of Eq. 2.15. However some
approximate solutions may be obtained quite ensily. ¥ will track the equilibrium
value until freeze out. Freeze ont will occur when the density of ¥ becomes no small
that the rate of ¢ annihilation {Twanietes = ny{lv|o4)] becomen less than H,and
the temperature becomes so sruall that the rate of ¢ creation ([ uation = ng{leloal)
becomnen less than H. After this time y's are neither created nor destroyed, and
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Figure 71 The evolution and freeze out of A massive particle

ny o B3 If the entropy is also conserved, s o¢ R™7, so the value of ¥ after
freeze-out, Y., will be constant in the expansion. The typical behavior of V' ia
shown in Fig. 7.1

The value of z at freeze out, Iy, can be found by equating [oeation 2nd H .

45 (my12
xry = In{(n+l]ﬁ (E) 0.25g‘9:1mP|Mﬂu}

1/2
~{n+ ;)ln [ln{[n + 1);—:’—‘ (%) U.Zﬁg‘g:lmleou}l +-42.17)
Substituting x; into the NR expression for Y,, gives’

Y., = J‘U}l—]"l—x;”. (2.18)
0.209. mPgMGn

As an example, consider the annihilstion of nucleans and antinucleons in the

early Universe. For NN, the annihilation croes section can be parameterized aa

og = em}?, where m, is the pion mass and ¢ is a constant. Since the annihilation

®In the following, it will be assumed that decoupling occurs when the ¢ is mon-relativistic.

TThere is of course an wmbiguity in the definition of z;. Freese cut could be defined when
I = sny number x H. The constant has been chosen to give the best Bt 10 the numerical
resulta 9!



is exothermic, n = —1/2. If g, = 15 is used, z; = 40 + Inc and Yo = 6 x 10~ "%c" 1,
Today, Yo = 4 x 10-*154%, 20 the above result i wrong by a factor of 10'%. The
calculation is correct, and in fact agrees quite well with the numerical result. The
discrepancy hetween the prediction and the observation implies that the nucleon
systemn does not matisfy one of the assumptions. If there is an ssymmetry in
the number of nucleons and the number of antinucleons the abeve formalism is
incorrect. The lesaon is that there must have been such an excess of nucleons
relative to antinucleons before NV annihilation. The annihilation shut off when
the antinucleons were used up, and the nucleons we observe today were the anes
that could not find antinucleons to annihilate.

2.2 Light Stable Neutrinos (M <1 MeV)

Light neutrinoa decoupled when the temperature was about 1 MeV. After neutrino
decoupling, e* annihilation incressed the temperature of the photons relative to
the neutrinos by a factor of (11/4)"/?. The present number density of each light
neutrino apecies should he

3¢(3} 5 _3g. 4
P 1 s
" i T n™
= 109%" em®. (2.19)

If the light neuttino has a mans greater than T, =~ 1.9 K =~ 1.6 x 107! eV, then the
present energy denaity of the neutrino would be p, = Mn,, which would contribute
to {1 an amount

N4 = 1.03 x 1077 (g) (22:) . (2.20)

Since there is an observational limit on the maximum value of {], there is a maxi-
mum value of M

M <08.8eV (1) (r.b?)__ - {z.21)

-

This liroit is known aa the Cowsik - McClelland Pl bound. *

"In the origioal paper of Cowsik wnd McClelland, they assumed two four-component neutrinos
with the same mam (5, = 4), A = 1/2, and T, = 2.T K, which gives M < 8 eV for their assumed
upper limit of 1= 3.8,

2.3 Heavy Stable Neutrinos (Mz > M > | MeV)

If neutrinos are NR at decoupling, Eq- 2.18 gives the final abundance. Neu-
trino annihilation proceeds through Z exchange to final states i1, where i =
vy, ¢, 4, t,u, d, 8,--- Here vy denotes n light neutrino. For T < M < A;,
the anaihilation croes section depends upon whether v is a Dirac or a Majorana
particle

(1lo)onee = TR 30— 1 (03, + 0B) + Set(ei, - )] o)

1 3
010N saiorama = et (1 - )7 [(C3, + CR)0B2 /3 + Ch2], (229)

where 2, = m;/M, J is the relative velocity, and €y and C, are given in terma
of the weak iscapin, electric charge, and the Weinberg angle by C4 = 55, Cy =
7y~ 2qain® by

In the Dirae case, og = ¢cG}M? /27, n = 0,p, = 60, and ¢ is a constant =~ 5.
The value of z; and Y is

I}

xy 25+ 3ln Mgy +ine

Ya

R

3
107, M3, (1 t 35 In Mg.v + i% In c) . (2.24)

where Mg,y = (M/1 GeV). If g, = 2, the present neutrino energy density, and
the contribution to (1 would be

R

3
P 3.7 x 10*MGY, (1 + 3 In Mq.v) eV cm™?

.47

I

3 .
5AMZ3, (1 * 3% In Mq.v) . (2.25)

For the Majorans case, 11,h? is similar to Eq. 2.25 with 5.4 — 18. The limit on
M that results from Eq. 2.25 in usually referred to as the “Lee - Weinberg” bound
(although it was discovered simultaneously by several people) .4

The contribution to {1,h? as a function of M is ahown in Fig. 8 for Dirac and
Majorana neutrinos. The exact limits on M depend on the value of [[1,h%) ... If
h=1/2and 1, < 0.9, then M < 21.8 ¢V for light neutrinos, or M > 5 GeV (9
GeV) for hesvy Dirac {Majorana) neutrinos.

The above limits have been found assuming M < M; and the chemical poten-
tial of the neutrinos are zero. It is trivial to find the limit if M > Mj, or if the
chemical potential in large.
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Figure 8: The contribution to 1,h? from & neutrino of mase M

2.4 Heavy Unstable Neutrinos

The above limmits on the mass of neutrinos can be evaded if the neutrinos are
unstable.|¥ The energy density of massive particles decreases in the expansion as
R-3, while the energy denaity of massless particles decreases as B¢, which leads
to pa/or = (1 + z). If & massive neutrino decayed at a redshift zp into massiess
particles, ® the contribution of the mansless decay producta to {th?, denoted (1ph?%
would be smaller than the contribution to f1h? if the neutrino had not decayed
{denoted as 2,h?) by a factor of 1 + zp. In terms of the neutrino mass M

Nph? = A1 +2p)7°
1.03 x 10°?M,y(1 + 2p)~* light neutrinos

= 5AMGL (1 4 2p)" heavy Dirac neutrinos (2.26)
18MG1, {1+ zp) ! heavy Majorana neutrinos.

The requirement that [Igh? is leas than some maximum value places a limit on
1 + zp, of (again picking h = 1/2, N1p < 0.0)

It is assumed that the decay is instantancous. Integrating over an exponential decay probability
does not significantly change the resnlts.
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Figure 9: Limit on the neutrino lifetime from the energy density of the Universe

{M/21.8¢V) 218V < M <1 MeV
1+2p2 1 (5GeV/M) 1 MeV <M <5 CeV (2.27)
(18GeV/M)? MeV < M < 18 GeV.

The limit on zp can be converted to a limit on the age of the Universe at decay
{i.e., the neutrino lifetime). [*| This lifetime is shown in Fig. 9.

The limits in Fig. © obtain for any decay mode of the neutrino, even if the
decay products are “invisible”, e g., light neutrinos. However il the neutrino decay
products include “visible” particles, such as ~y, e¢*, pions, etc., much better limits
can be placed. The limits will depend on the epoch of decay. Decay at five different
epochs will be considered.

Before discussing the limita, it ia useful to caleulate the time at which the energy
density of the massive neutrino would dominate the energy density in photona. The
energy density in photons is p, = (x7/15}T*, and if the neutrinos are NR, their
energy density is p, = YuMs. The energy densities are equal at T =~ IY M,



using ¢! = 4. For heavy neutrinoa Y, is given by Eq. 2.24, and for light neutrinos,
Yo = 135¢{3)/44n* = 0.04, agein using ¢}, = 4. Therelore the neutrino energy
density will exceed the photon energy density at T'/M < 0.1 for light neutrinos,
and T/M < 8 x 10 "M;;), for heavy neutrinos. Using ¢ == 1 sec/T y; for the age
of the Universe, the age of maiter domination by the massive neutrinos is given

by
see) = { lD"(A_l/leV)" light neutrirfoc (2.28)
1Mz, heavy neutrinoa.

® ty = 3 x 10'aec. < r: If the lifetime is greater than the age of the Universe,
the decay products will contribute tc the background photon flux. The line will be
narrow, since the cold neutrinos have a amall velocily characterized by the velocity
dinpersion of galaxies, {v¥)!/? = 103, The photon flux from v decay will be

Q¥ = ntpr 10}
33, -1 1 ~ -3
10 r“c_:rg,l’erg cm'sec . n, = 100 em (2.20)
108M 2 7o) ergferg em®sec n, = 107'M33, cm 2

The obaerved photon background is shown in Fig. 10. A very rough limit of

1MeV
o< ( E: )erg/erg cm'aee, (2.30)
can be placed on the contribution of neutrino decay products to the photon back-
ground. Requiring that the contribution of Eq. 2.20 is less than this limit gives
the limit on r in this lifetime range of (M,v = M/eV) ¥

;= { 10°M,y  light neutrinos (2.31)

10%M32, heavy neutrinos.

® L, = 2 x 10"8ec. < r < ty: If the neutrino decays after recombination,
but before ty, the photona will not scatter and should appear in the photon back-
ground. If T > M &t the time of neuttino decay, the Universe would not yet be
dominated by the massive neutrino, and the massleas decay products will have
an energy density less than that in the MBR, and escape detection. Thus, any
lifetime in the range t,,. < r < ip is forbidden if T < M at decay, "

The forbidden region in (r, M) where decay of the neutrino would result in
a photon flux in exceas of the observed limit is indicated as region A in Fig. 11.
Also shown in Fig. 11 is the region marked MDU, which is the disallowed region
from Fig. 9.

& Linerm = 10%ec. < 1 < 4,,.: If the neutrino decays before recombination (and
M > T), the photons from the decay can scatter with electrons, which can, in
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Figure 10: The photon background (graph courteay of M. . Turner)

turn, scatter with the photons in the MBR, leading to unacceptable distortions in
the spectrum. However, if the neutrinos decay enrly enough, the initial distortionn
in the MBR can be re-thermalized. The time for the relaxation to s thermal
specirum is determined by the crosa section for additional photon production
through 4 + ¢ -+ 7 + -y + ¢. The cross section for the double Compton process is
smaller than the cross section for single Compton process, 80 {ip,m = 10%ec. <
t,sc. The forbidden region in (r, M) where distortions of the MBR wil) reault ia
indicated as region B in Fig. 11. ["

® tind aucteo = 3 min. < 7 < tnerm: I the neutrino dominates the Universe and
decays before {j5,rm, the present MBR is due to the photona produced in neutrino
decay. The photons from neutrine decay increase the entropy of the Universe
(the neutrino was “out of equilibrium” at decay). This increase in entropy afler
nuclecaynthesis means that n during nucleosynthesis was larger than n today,
and the success of primordial nucleosynthesis is lost. It is also possible that the
high-energy photons from neutrine decay deatroy the light elements produced in
primordial nuclecsynthenis.I" The forbidden region in (r, M) where the entropy
produced in neutrino decay decreases n below acceptable values is indicated as
tregion C in Fig. 11.M

® Licpn auctes = 188¢. < 1 € Lind nutot If the neutrino lifetime is longer than
about 1 sec., the neutrino can dominate the masa of the Universe during nucleosyn-
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Figure 11; Coamological limits on the mass and lifetime of neutrino decny to visible

modes

thesis, leading to an increase in ‘He production. The forbidden region in {r, M)
which would lead to an overproduction of primordial *He is indicated ns region D
in Fig. 11,00

Neutrino decay into visible modes would nlso have other “astrophysical” effects.
Type !l supernovae are a source of neutzinos. They explode with a frequency of
about fsy = 1 per galaxy per century, releasing nbout 10%%ergs of energy in neu-
trinos of energy E, = 10 MeV [i.e., about N, == 10 neutrinos}. If the neutrine
decays to photons with u lifetime greater than the age of the Universe, they would
contribute to the «4-ray background flux

t t
F, = N,f_g,uncfur—t: = Gﬂgcm” s lar!, (2.32)

where r’ is the lifetime in the rest frame of the Universe, r' = rE/M, and ng ia
the number density of galaxies. If F, from neutrino decay is less than observed
(Fy{observed) < 107% em~? s~! ar~!), the lifetime must satisfy r' > 10% sec., or
T 2 10" M,y sec. This limit has assumed that the neutrino is light enough to be
produced in the explosion (M < 10 MeV), and decays outside of the exploding
star (r' > 10%sec., or r > 1077 M,y sec).V]

The same argument may be used for white dwarfs, ¥l They occur with s fre
quency of about 1 per year per galaxy, releasing about 10" neutrinos of energy 100
keV. In order that the decay products of the neutrino give an X-ray flux smaller
than the observed flux of 107! ¢m~? s~ or !, requires r > 3 x 10M,y sec.. The
forbidden region in (r, M) ia shown in Fig. 12.

The combination of coamological and astrophyaical limits provide information
and limits on neutrino properties that are not accessible to nccelerators.

2.5 Conclusions

The decoupling and survival of neutrinos have been considered in detail, and limits
on the mass and lifetime of massive neutrinos have been derived. Many of the
techniques developed for neutrinos can {and have) been applied to other particles.
There are some quite general comments that can be made. First, £y is pretty
much mode] independent, and is uysually in the range 25-40. The dependence of
z; on the mass, croen section, etc., is only logarithmetic. YV, on the other hand,
is proportional to M~! and 0;'. For ixed M, Y., increases ns oy decreases, This
is obvious, since as the cross section decreases, the particles will be less efficient
in annihilation, The dependence on M, however, can be more complicated. If
oy is independent of M, Y, o M~!, In many cases, however, op will depend on
M. There are examples where oo o« M2, In this case, ¥, x (Mog) ™' =« M.
There are also examples {such as mansive neutrinos) where o5 o M*?. In this
cuse, ¥, o« [Mog) ™' ox M3,
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With the nssumption that oy ia independent of M, thal the fossil particle ia
stable, and that it gives & definite contribution to 1, the value of oy is almost
uniquely determined. Consider a Majorana particle 8 of mass M. If it freezes out
when g, = 75, with g = a x 10~* cm!, then

1 1 _ Va
xy a7 [l+ﬁ|an.v+37lna = 37h

1.8z}
Yo = ?n?nffo_., =8 x 10"M;}a ', (2.33)

The contribution to {1k} from B is

MY Lie—3
Ny = —=2 = 0.225a 1A%, (2.34)
fc

which is independent of M. Ifa = b = 1, h = 1/2, then [13 =~ 0.9. Since we
know from nuclecsynthesis that the contribution to {1 from nucleons is about 0.1,
flzs = 0.9 could be the dark matter necessary if {lyorar = 1. A cross section of
this magnitude is “weak”™, and could be relevant for a variety of proposed particles,
such as the ones from the supersymmetric 200.

Aas shown above, if flg = 0.9 the annihilation cross section is determined.
The annihilation cross section also determines the rate of annihilation of B in the
prescnt Universe. The possibility of present anmihilation of 8's in the galactic
hale, in the aun, and in the earth has been explored. It may be possible to detect
the annihilation products, either as photons from annihilation in the halo, or as
neutrinos from annihilation in the sun ot enrth. The annihilation cross section is
alno related to the scattering cross section of B as it passes through matter. A croas
section of 1073 em? may be large enough to detect coamic-ray B's by bolometric
or other low threshold detectom.
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3 THE EVOLUTION OF THE VACUUM

One of the moet important tools in building particle physics models is the use of
spontanecus symmetry breaking (558). The propoea! that there are underlying
symmetries of nature that are not manifest in the vacuurm is a crucial link in
the unification of forces. Of particular interest for cosmology is the expectation
that at the high temperatures of the big bang, & symmetry that ia broken todnay,
wil] be restored, and that there is a phase transition to the broken state. The
posaibility that topological defects will be produced in the transition is the subject
of this section. The possibility that the Universe will undergo inflation in a phase
transition will be the subject of section 5.

Before discussing the creation of topological defects in the phase transition,
some general aspects of high-temperature restoration of symmetry and the devel-
opment of the phase transition will be reviewed.

3.1 High Temperature Symmetry Restoration

To study temperature effects, consider a real scalar fleld described by the La-
grangian

£= 3(2,8)24) - V()

Vig) = —;M'&’ + iw. (3.1)

This potentisl is shown in Fig. 13. The minima of the potential {(determined by
the condition 8V /34 = D), and the value of the potential at the minima are given
by

@ =y ™
4
Vi) - - (3.2)

Presumably, the ground state of the system ia either +{¢} or —{¢} and the reflec-
tion symmetry ¢ «— —¢ present in the Lagrangian is not respected by the vacuum
state. When a symmetry of the Lagrangian is not reapected by the vacuum, the
symmetry is said to be spontaneous!y broken.

From the deflnition of the streas tensor in terms of the Lagrangian

T = 8.6, — Lgu, (3.3)
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Figure 13: An example of the potential for & model with S8B

the energy density of the vacuum is

M‘

Ty = py = ~L =V (9) = - 202 (3.4)
The contribution of the vacuum energy to the total energy density today muast be
smaller than the critical density pc = 1.88 x 10-2*A? g cm™? =~ 10~ ** GeV*. Since
this number is 80 small, it is tempting to require py = 0. This can be accomplished
by adding to the Lagrangian a constant factor of -+M*/4). This constant term
will not affect the equations of motion, and the sole effect will be Lo cancel the
present vacuum energy.

Thete are several ways to understand the phenomena of high-temperature
symmnetry restoration. The most physical way is to express the effective finite-
temperature maas of ¢ 23 the zero-temperature mass, —AM?, and a plasma mass,
Miissme = aAT?, where o is & constant of ordet unity. If M3 = MM e £ 0,
the minimum of the potential will be at ¢ # 0 {SSB), while if M} = —M? +
M} ma 2 0, the effective masa term will be positive and the minimum of the

potential will be at ¢ = O (symmetry restored). There is a critical temperature,
T, = M/(ax)"/* above which (#) = o1

A more rigorous approach to symmetry restoration is to account for the effect
of the ambient background gas in the calculation of the higher-order quantum
corrections to the classical potential. The finite temperature potential will inciude
a temperature-dependent term that represents the free energy of ¢ particles at
temperature T. To one loop, the full potential isl

T>>To Tz2T. T=T, TgT, Txe<T,

V ()

¢

Figure 14; The temperature dependence of Vr{d}

VT[¢) - V{¢} + i!;i[nm dzz*in [1 Lexpi"(x' + Fl‘frill.’ll] , (3.5)

where V() is the zero-temperature one-loop potential, and u* = —M? + 3047 At
high temperature, Eq. 3.5 has the expansion

! Ay
Vr(9) = Vi(#) + 5T + gT¢" + - (3.8)

The term proportionnl to T* ia minus the presaure of & spinless boson, which
should be the leading contribution to the free energy, and the second term ia the
“plasma” masa term for ¢ Eq. 3.5 has a critical temperature, T. = ZM/A!2,
above which the symmetry is restored.

The temperature dependence of Vy(¢) is shown in Fig. 14. The phase transition
from the symmetric to the broken phase can be either first order or higher order. If
at T, there is a barrier between ¢ = 0 and the SSB minimum ¢ = o, the change in
¢ will be discontinuous, signalling & first order transition. If no barrier is present
at T, the change in ¢ will be continuous, signalling & higher order transition.

In general, at some temperature T < T., the ¢ = 0 phase is a metastable phase,
and this phase will be terminated by the decay of the false vacuum by quantum or
thermal tunneling. Here, quantum tunneling will refer the zero-temperature part
of the tunneling rate.



The quantum tunneling occurs by the nucleation of bubbles of the new phase.
The probability for bubble nucleation is calculated I3 by solving the Euclidean
equation of motion

. ' d'¢ 1 :
Dpd - V(d) = pr +VH-V'(e) =0 (3.7)

{where V' = dV/dg) with boundary conditions ¢ = 0 at ¥ +1t' = co. The
probability of bubble nucleation pet unit volume per unit time is

[ = Aexp(-5k) (3.8)

where Sg is the Euclidean action for the solution of Eq. 3.7

Se(#) = [ d'z [; (%?) + ;(Vé)’+V(¢)]- {3.9)

The calculation of the constant A is quite complicated, but for moat applications
a gness of A on dimensional grounds will suffice.

Of the many possible solutions to Eq. 3.7, the one with lenst action is the
mont important. The least action solution has O(4) symmetry, and the Euclidean
equation of motion becomes

d¢  3d¢ '

R V'(d) =0, {3.10}
with boundary conditions ¢ = 0 at ' = 77 + ¢ = oo and dep/dr = O nt r = 0.
In general solutions to this equation can not be found. However in the “thin-
wall” approximation, where the difference in energy between the metastable and
true vacua are small compared to the height of the barrier, the “demping” term
proportional to d¢/dr can be neglected. The solution for Sz is then simply

Sp = f:dé W{d). (a.11)

The tunneling rate st finite temperature!!! can be found following the above
procedure, remembering that fleld theory st finite temperature is equivalent to Fu-
clidean field theory with the time periodic with period T-*. The finite-temperature
tunneling rate is found by solving the equation of motion {only considering the
teast-action solution, which in this case has O(3) saymmetry)

19The tupneling rate is associsted with a clamical motion in imaginary time because the decay
rate s relsted to the imaginary part of the smergy. This is becanss the wave function oscillstes
in the clussically sllowed region, but is exponentially dumped in the clussically forbidden region.

it ad VM4) =0, (312)

where 8 = 7. The Bnite-temperature tunneling rate is
8
I'r= Afexp[fsgj'T]. (3.13)

where Sy is the three-dimensional action of the solution of Eq. 3.12

S =[d31[%(vw+v,(¢) . (3.14)

3.2 Domain Walls

The simple model of the previous section can be used to demonstrate domain
walls/¥ The Lagrangian can be written in the form

Ml
=5
The Z; symmetry of the Lagrangian is broken when ¢ obtains a vacuum expec-
tation value ¢ = +o or ¢ = —¢. Imagine that space is divided into two regions.
In one region of space ¢ = +a, and in the other region of space ¢ = —o. The
transition region between the two vacus is called & domain wall. Domain walls
should be produced, for inatance, in the nucleation of bubbles. The bubbles of
true vacuum will be either ¢ = +o or ¢ = — 0o, with equal probability.

L=y - u - @ = (3.15)

Imagine s wall in the z —y plane at 2 = 0. At z = —c0, ¢ = —o, and at
z = +00, ¢ = +0. The equation of motion for ¢ is

Oé+ r(¢* - o’} =0. {1.16)

The minimum energy solution to the equation of motion, subject to the boundary
conditions above, is

dw(2) = otanh(z/4) (3.17)

where A is the “thickness” of the wall, given by A = {1/2}//%¢~!, This sclution
is illustrated in Fig. 15.

The finite, but non-zero, thickness of the wall is easy to understand. The
terms contributing to the energy include s gradient term and a potentinl energy
term. The gradient term is minimized by making the wall as thick es poasible,
and the potential term is minimized by making the wall as thin as possible, i.e.,
by minimizing the distance over which ¢ is away from to. The belance between
these terms reaults in a wall of thickness 4.

The atress tensor of Eq. 3.3 with ¢ = ¢w is
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Figure 15: The solution for an infinits wall in the z — y plane

T* = %o" coah™*(z/A)diag(1,1,1,0). (3.18)

The energy density in the wall aa » function of ¢ is shown in Fig. 18.

From the stress tensor it is possible to deflne & surface tension for the wall,
n = J T,%z = (4/3)(A/2)"12°. 1t is also obvious from the stress tensor that since
the (ii) component is equal to the (00) component, the gravitational interaction of
the infinite wall will be non-Newtonian. This can lead to some strange interactions.
For instance, two infinite walls in the = — y plane will repel each other. This
strange gravitational behavior only obtains for infnite and straight walls. The
gravitational field at large distances from a spherical wall of radius R, would be
that of s massive particle of masa m ~ Rlo.

The existence of domain walls can be ruled out today simply on the grounds
of their contribution to the total mass of the Universe. A domain wa]] with R =~
Ruodeon = Hy' = 10*%m would contribute a mass of Mu. = nR1,, = 10%grams.
This would be about a factor of 10* larger than the total mass within Ryorieen-

The aimple model of this section had domain walls because of the existence of
disconnected vacuum states. The general condition for the existence of domain
walls in the symmetry breaking G — ¥ is that ITo(M) 5£ I, where M is the manifold
of equivalent vacuum states M = G/}, and T1g is the homotopy group that counts
disconnected components. In the above example, § = 23, ¥ = I, M = Z;, and
To(M) = Z3 # I

Figure 18: The energy density in the wall as a function of 2

3.3 Coamic Strings

A simple mode] that demonstrates the existence of cosmic strings is a gauge version
of the model of the previous section. For a review of atrings, see Refs. 7. The
Lagrangian of the model contains a U, gauge fleld, A,, in addition to the complex
Higgs field, ¢,

L= DugD*¢ ~ (FuF™ — M#$— &) (¢ =oexplis)  (3.19)

Again, ¢* = M/, and
Fu = 3,A, 3.4,
Dy = B,p—ieA,d. (3.20)

Since there is & local gauge symmetry, § = 8{%), can be position dependent,
Since ¢ is single valued, the total A# around any closed path must be an integer
multiple of 2. Imagine such a closed path with A# = 2x. As the path is shrunk
to a point (and no singularities are encountered}, A# cannot change from A# = 2x
to A# = (. There must therefore be one point contained within the path where the
phase # is undefined, i.e., {#) = 0. The region of false vacuum within the path is
part of a tube of false vacuum. These tubes of false vacuum either must be closed
or inflnite in length, otherwise it would be possible to deform the path around the
tube, and coatract it to & point without encountering the tube of false vacuum,



1t will turn out that these tubes of false vacuum have » characteristic transverse
dimension far amaller than its length, so they appear as one-dimensional objects
called “strings.” !

The string solution to the Lagrangian in Eq. 3.19 was first found by Nielsen
and Olesen.!®l At large distances from an infinite string in the z-direction,

¢ -—+ oexplinf}
A, — —ie”'3,(In(¢/o)], (3.21)

where 0 ia the angle in the x — y plane. Note this choice of A, and ¢, is a finite
energy solution, since at large distances from the atring, D¢ —+ 0 and F,, -+ 0.

For an infinite string in the z-direction, the stress tensor takes the form
T," = u6(z)6(y)ding(1,0,0,1), (3.22)

where j1 is the mass per unit length of the atring (string tension) given by g = o7

Far from a string loop of radiua R, the gravitational field of the string is that
of a particle of mass Miag = #Rudeg. For a string that stretches across the
present horizon, the mass would be Myaq = 10'*(0/GeV)? grams. Cosmic string
networks may have very interesting astrophysical consequences, including acting
as seeds for the formation of large-scale structure.

Siring molutions will be present in the aymmetry breaking § — ¥, if the man-
ifold of degenerate vacuum states M = G/ coniains unshrinkable loops, ie., if
the mapping of M onto the circle is non-trivial, This is formally expressed by the
staternent that string solutions exiat if IT; (M)} # I. In the above example § = U}
wns broken, M is n circle, and T3 (M} = Z, the net of integers.

3.4 Magnetic Monopoles

Domain walls are two-dimensionaltopological defects, and strings are one-dimensional
defects. Zero-dimenaional defects appear in theoriea with SSB as magnetic monopoles [

For a simple model that illustrates the exiatence of magnetic monopoles, consider
an S0, gauge theory with a Higgs triplet fleld ¢*

L= %Du¢“D“¢' - iF:.,Flpu _ 51\[¢-¢- . (d’)!)!; (@)’ = of, (3-23)

where o is an isovector in the §0; space of magnitude o and direction & (& ia a
unit isovector). Here
Fo, = 3,40 - 3,A% — erg AL AL,

D" = 3.4 —eea, ALg" {3.24)

1 There should be no confusion between the [cosmic) stringe considered here, and superstrings.

Since the theory has a local gauge symmetry, ¢ is & constant, but & can be
a function of £. Imagine a configuration in which at one point ¢* = ¢(0,0,1),
at another point ¢* = 2(0,1,0), at another point ¢* = ¢(1,0,0), and sc forth.
The lowest-energy configuration has ¢* = constant, and the z-dependence of ¢*
can in general be gauged away. Howevet there are configurations that cannot be
deformed into & configuration of constant & by a Anite-energy transformation. An
example of such a configuration is the “hedgehog™ configuration, in which & = f,
where 7 is the unit vector in the radial direction. But for the obvious angular
dependence, the solution is spherically symmetric at r — oo

&’r.t) — of
AS(r,2) = cuufsfer. (3.25)
The magnetic field at r —+ co corresponding to the hedgehog solution is

L1 X
Bf = zeiis = ;';,-. (3.26}

which is the magnetic field of & magnetic charge of g = 1/e. The mnss of the field
configuration is Mponapet =2 0/ €.

There have heen many experiments to look for magnetic monopoles. The limit
on the average number density of magnetic monopoles in the Universe depends
upon the properties of the monopoles [mass, charge, proton decay catalysis, etc.}.
If magnetic monopoles exiat, they would have a multitude of astrophysical conse-
quentes.

Monopoles will be present in the symmetry breaking § — ¥, if the manifold of
degenerate yacuum states contains unshrinkable surfaces, i.e., il the mapping of M
onto the two-sphere is non-trivial. This ia formally expressed by the statement that
monopole solutions exist if TT3(M) # I. In the above example § = 505, ¥ = U,
and TT3(M) is the set of even integers.

3.5 The Kibble Mechaniam

The existence of the above topological defects in a prediction of many gauge theo-
ries with SSB. They are inherently non-perturbative, and cannot be produced in
high energy collisions. The only place they can be produced is in phase tranai-
tions in the early Universe. Although monopoles, strings, and domain walls are
topolagically stable, they are, of course, not the minimum energy solution. How-
ever the production of the defects in the phase transition seems unavoideble. The
mechanism for the production of the defects is known aa the Kibble mechanism ¥l

The Kibble mechanism is based upon the fact that in the phase transition the
correlation length is limited by the particle horizon. The particle horizon is the
maximum distance over which a massless particle could propagate from the time



of the bang. Imagine that a particle is emitted at coordinatea (t =0, r=rg, # =
0, ¢ = 0) and ia detected at the origin of the coardinate system at coordinates
(¢=t,r=0,48=0, ¢ =0). Ans before, rg is given by

vy W dr
[ 56 :/n Tk = (3.27)

The coordinate rg by itsell ia just & label. The proper distance to the hotizon is
given by dy = R(t)rg, so

dy = Rit) j: ;ML,\. (3.28)

If R o t™ (r > 1), then dg = (1 - n)7 L.

The correlation length in the phase transition sets the maximum distance over
which the Higgs fleld can be correlated, In genernl, the calculation of the corre-
lation length depends upon the details of the transition. However, the fact that
the horizon is finite in the standard cosmology implies that at the phase transition
{t =t,, T =T,), the Higgs fleld must be uncorreisted on scales grester than the
horizen, so the horizon acts aa an effective correlation length.

Imagine that at the phase transition the Higgn fleld is uncorrelated on scales
greater than § = dg. The initial random nature of (¢) is damped (remember
Eqip occurs for (¢} = conatant). However there are Higgs configurations that are
topologically stable and will be frozen in as topological defects.

Consider monopoles as an example of the freeaing in of topological defecta 't
The direction of the isovector Higgs field is random on scales greater than £, The
probability that a random orientation of {$)} will have & hedgehog structure is
sbout 0.1, so there should be about one monopole (or antimonopole) per 10 hori-
zon volumes, npy = 0.1d% = 0.1(mp,/T3)?, using the age of a radintion-dominated
Universe t = mp;/T?. The entropy density at T, is o == T2, so the monopole-
entropy ratio is nyfa = 0.1(T,/mp)®. Since monopole-antimonopole annihilation
is not important, if entropy is not created after monopole production, the above
monopole-entropy ratio should obtain today. For T. = 10%GeV, my = 10"
GeV an expected in grand unified theories, ny, /s =~ 10713, which givea the present
energy density in magnetic monopoles pugsopoies = 10" pc. Obviously some mech-
anism must suppress monopole production, enhance monopole annihilation, or in-
crense entropy. An increase in entropy would also dilute the abundance of strings
and domain walls. It is posaible that monopoles were diluted to a level accessi-
ble to observation, or that strings were produced after the dilution of monopoles.
Detection of monopoles or strings would provide unique information about both
particle physics and cosmelogy. In complicated gauge theories with several sym-
metry breaking steps there are often interesting hybrid creatures, such s domain
walls bounded by strings, strings terminated by monopoles, monopoles with strings
through them, ete. They nll have unique signatures, and observation of them would
provide information about the ateps of symmetry breaking.
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4 BARYOGENESIS

One of the most succesaful applications of particle phynies to cosmology is the use
of grand unifled theoriea (GUTs} to explain the origin of the baryon asymmetry.
Before making some general comments on the generation of the asymmetry, the ev-
idence for a baryon asymmetry will be treviewed. Finally, some new developmenta
in baryogenesis concerning non-pertucbative electrowerk eflects will be discussed

4.1 Evidence for a Baryon Asymmetry

Antimatter is rare on earth. It exiats in “large” quantities only in the antiproton
accumulators at Fermilab and CERN. Antimatter is also rare in the solar system,
The fact that MNeil Armstrong survived his “one small step” is evidence that the
moon is matter. Planetery probes have visited seven of the nine (ten?) planets,
and have shown that the solar system is metter.

Cosmic rays provide a sample of the entire galaxy (at least). Antiprotons are
seen in cosmic rays at about the 1074 level compared to protons. These commic
rays are usually assumed to be secondary particles, and not primary particles from
an antimatter source. The flux of antimatter nuclei is also below the 107 Jevel
compared to nuclei, and there is no clean event that signals detection of an antin-
ucleus. Cosmic rays are solid evidence that there is a galactic asymmetry between
baryons and antibaryons, and that this asymmetry is maximal, i.e., everything is
baryons, and there aren’t any antibaryons in the galaxy.

Qur evidence on larger scales is somewhat more uncertain. There are clusters
of galaxies containing intercluster gas. If both matter galaxies and antimatter
galaxies exist in the same cluster there would result a large amount of annihilation
which would contribute a large y-ray flux. The absence of such a large 4-ray flux
in evidence that clusters of galaxies are either all baryons or all antibaryone. There
in basically no information on scales lerger than clusters of galaxies (~ 10'* AMg).

If antimatter exists in nppreciable quantities, it must be aeparated on scalea
larger than ahout 10'* M. However this separation must be done before T =~ 1
GeV, or an shown in Sec.2, the nuclecna and antinucleons would have annihilated
below acceptable limits. The existence of horizons in the standard model make
such a separation imponsible, since the mase in baryons contained within the hori-
zon is less than a solar mass at T =1 GeV.

The most reasonable conclusion ia that at T > 1 GeV, there was an asymmetry
between the number of baryone and the number of antibaryona.!" This asymemnetry
is charscterized by the baryon number discussed in Sec. 1, B = 4 x 10~ 1yh%,
Although the baryon asymmetry is maximal today (i.e., no antimatter) at T 2> 1
GeV, the temperature was high enough to create NN pairs, and B =~ 10°* means
that for every billion antibaryons there were a billion and one baryons. The goal
of this section is to explain how such a curious (but crucial) number could nrise

particle final state branching ratic B
X — q9 r 2/3
X - L1 L-r -1/3
X - T r -2/3
X - gl 1 -7 1/3

Table 2: Final atates and branching ration

in a Univerae with aymmetric, B = 0, or even better, random, initial conditions.

4.2 The Basic Picture

There are three basic ingredients necessary to generate a non-zero 5 from an
initial symmetric state.?) « Baryon Number Violation: There must obviously be
a violation of baryon number. If baryon number Is conserved in all interactions,
the present baryon ssymumetry must simply reflect the initial conditions. » C
and CP Viplation: Since B is odd under ¢ and CP, they both muet be violated to
generate & non-zero B. e Non-Equilibrium Conditions: In chemical equilibrium the
entropy is maximal when the chemical potentials associated with all non-conserved
quantum numbers vanish. If baryon number is not conserved, if the Universe ever
obtains chemical equilibtium, B must be zero.

Toillustrate the simnple model, consider a particle X which decays to final ataten
with different baryon number (hence violating baryon number) with branching
ratios given in Table 21348 Note that CP is violated if r # 7, but CPT ia conserved,
sinice the total rate for X decay is the same as the totnl rate for X decay.

Imagine a box containing equal amounts of X and X. The baryon number
produced by the decay of the X' is proportional to Bx = r(2/3) + {1 — r}(-1/3),
and the baryon number produced by the X's is proportional to By = F(-2/3) +
{1 — r}(1/3). The net asymmetry produced by an equal amount of X and X's is
propertional to € = By + By = r - 7. The baryon number vanishes, of course,
if CP is conserved [r = F}. If there are no further baryon number violating
reactions {equilibrium is not maintained) a net baryon asymmetry will resuit.
This extremely simple picture illustrates the basic idea. The remainder of this
section involves various refinements on this picture.

First, consider the possibility of B, C, and C P violation, and non-equilibrivm
conditions in the early Universe.

» B Violation: The existence of baryon number violation seems to be a generic
feature of GUTs. If strong and electroweak interactions are unified, quarks and



leptuns typically appear as elernents of & common irreduciable representation of
the gauge group, and gauge bosons can medinte intersctions that violate B, The
limit on the atability of the proton, r 2 10* years, implies that these bosons should
have masses in excess of 10'GeV or so. The weaker coupling allows Higgs bosona
that mediste baryon-number violation to have u somewhat smaller mass. In both
crses the large mass of the intermediate bosons is responsible for the feebleness
of baryon-number violation today. This suppression should have been overcome
at the extremely high temperatures in the big bang, and interactions that violate
baryon number should be just as common sa other interactions. The requitement
of B violation is easy to arrange in GUTs. A gsuge or Higge boson that violates
baryon number in its decay will be generically denoted as X.

¢ C and CP Violation: C ia maximally violated in the weak interactiona, so C
violation in the decay of the X bosons should not be a fundamental problem, 12
CP viclstion ia observed in the kaon system, with typical dimensionless strength
of 107, Since ita origin is not well underatood, it ia easy to say it should slso
appear in the X-hoson aystem an well.

To explicitly see how C P violation enters, conaider o system with two massive

particles, X and ¥, with baryon number violating decays. The generalization of ¢
defined above is

ex = ZBfr_[iff_:g.r___ HxX-1
1 X

0 = ZBIE(Y__.‘”L}'I-:—F‘Q’_'ﬂv {4.1)
F] ¥

where the sum is over all nal atates f with baryon number By, and I'y (Ty) is
the total X (Y) decay width. For simplicity, assume there are but two final states
for X and V decay, and that the interaction Lagrangian is given by

L=qXiii + aXeliy + ga¥iliy + g, Yiliy + hee. (4.2)
The loweat order processes for X and Y de ay are shown in Fig. 17. The lowest
order processes cannot contribute ta ¢, as T(X -+ §yiz) = |qu[* [y = T(X — f113) =
lgil*Ix where Ix = Iy represents the phnse space factors. The Hrst non-zero
contribution to ¢ comes from the interference of the lowest order contribution in

Fig. 17, and the one-loop contributions shown in Fig. 18, The interference terms
contribute to X decay terms given by

DX =) = agieilvy + {G19i00widxy )"
NX —ih) = elmaigdxy + (9]9:93000xr)", (43)

'3There is however Lhe powsibility that during some intermediate stage of yymmetry breaking C is
& good symmetry. For instance in the pastern Qg — SU % SUpr x SUs -+ SUy x SUsp x [y,
C invarinhce obining during the Grat two stages of symmetry, and baryogenesis must await Lhe
final stage of eymmetry breaking.

where f4p now includes kinematic factors from integration over t.he in‘temal mo-
mentum loop due to B exchange in A decay. If intermediate particles in the loop
are kinematically allowed to propagate on shell, I1p will be complex.

The difference between X — 5112 and X — 1,0, is given by
C{X — ni) - (X =~ iy} = 20lxylmigigienss) + 201y, Im{gig29394)
4Im/yyIm{g;g10394)- {44)

With a similar calculation for the other decay mode

x= o Imlxyl(gigngiod (B = Bu) = (B - B,)]. (4.5)
x
For Y decay ¢y = —ex, with X « ¥ everywhere.

There are several lessons to be learned from this tedious exercise. There must
be fwo baryon number viclating bosons, with masses greater than the aum of
the masses in the internal loaps. CP violation is manifest as complex coupling
constants. The X and ¥ particles in the above example must not be degenerate, or
the baryon number produced in X decay will cancel the baryon nuinber produced
in Y decay.

e Non.Equilitnum Conditions: The non-equilibrium cc?nditions are provit.ied
by the expansion of the Universe. If the expansion rate is {aster than p.uucle
interaction rates, non-equilibrium can result, Assume that at the planck time X
and X are present in equilibrium, nx = ny = n,. In LTE nx = Mg TN, for
T > my, snd « n, for T < mx. However LTE will b? o‘bltnmed on\y‘ if the X
interaction rates are greater than A. If LTE is not mmntnu:le.d,.nx will retoain
equal to n,, and there will be an excess of X relative to the equilibrium abundance.
This ia illustrated in Fig. 19.

The conditions necessary for & departure from equilibrium can be quantified.
The decay tate of the X, denoted by ['p, the i.m.reme decay rate {ie., X pr(:ldul:,—
tion), dencted as I';p, and the two-body scattering rate, denoted as ['s, and the
expansion rate, denoted sa H, are given by

mx/T mx<T
To = emx) ) T
I = Tpexp(-mx/T)
T
_ U O DR
Pg = ﬂd“TG[T’i-m})'
H ~ gi*'T*/mp. (4.6)

A comparison of the rates are given in Fig. 20. Note f:hnt all the reaction rates
depend upon my, while H is independent of mx. [t is necessary to determine
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Figure 19: Departure from equilibrium denoted as the arrow between equilibrium
{solid) and actunal {dashed} ratic of nx/n,
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Figure 20: Rates in the early Universe

what sets the scale of H relative to the other rates. As shown in Fig. 20, H can
be either large or amall compared to the rates at T' = my.

The relevant quantity to determine if X will be over nbundant is the ratio of
the decay rate to the expansion rate at T = my, given by

antp

K= (Tp/Hromy = {4.7)

9!“"’”

If K <« 1, equilibrium will not be maintained and the X will become over
asbundant. In this limit the X just drifts along and then decays. In the limit of
pure drift and decay (the British limit) B = g;'e. If X > 1, the X will be in good
causal! contact, there will be no departure {from equilibrium, and baryogenesia will
be thwarted. Exactly what is meant by “»" and “4” can be found by a simple
model. If X is n gauge boson, then a = gdyr/47 = 1/45, and K = 7x10'5GeV/M.
If X is not s gauge boson, the effective o may be smaller, and the corresponding
K may be smaller.

4.3 A Simple Model

The simple model of thie section is constructed to study the dynamics of baryoge-
nesin. The simple model consiata of a massive boson X = X, light particles & and
b with baryon numbers +1/2 and —1/2, and light particles 4 with baryon number
zero. The amplitudes for X decay nre taken to be '*

IM{X — )7 = MBS — X)P

1
5[1 + ¢)|Mp|?

IMX — bo)f? = |M(bb — X)|*

1 2
i(1 — )| Me]. {4.8)

If the interactions with the “photons™ -+ are rapid enough, kinetic equilibrium will
be maintained, and the phase space densities will be given as

HIEY = exp[-(E—u)/T|
HilE) = exp[-(E+u)/T|
Ix(E} = exp[-E/T], (4.9)

whete p is the baryon chemical potential. The assumption has been made that the
reactions establishing hinetic equilibrium (baryon number conserving reactions like
bb « ~'s) are rapid compared to H. Kinetic equilibrium implies g = p; = - pq.
Chemical equilibrium depends upon baryon number violating reactions, and would
imply g = 0. The baryon to photon ratio is given by

YWCPT invarinnce relates M{i ~+ 5] and M(7 1)



18 _ (m) = 2sinh (:—‘;,-) = 2% +oy {4.10)

n, ny

where Maxwell-Doltzmann statistics have been used for alj particles.

A Boltzmann equation for the decay and inverse decay of X can be developed
along the anme linea as for annihilation and freeze out. The equation for the
evolution of the X number density is

Ax +3lnx = A% [ fxlox) + 30+ M) filpa)

+2(0~ QIMol ) i)

AG = fx(px) + ST (px) {Ma]? + O(e) + O(u/T)
= -Tp(nx —n3). (4.11)

The equation for the evolution of n, also includes terms involving exchange of
an intermediate X in 34 — BB, !* The equation for i, is

A+ 3Hnm = AN [~(1- dfilp) filpa} + (1 - € fx (px)] 1Mo]
+243 [~ folpa) Hlpa)| M (0 — BBY?

+ilpa)fi(po)| M (88 — bB)[?] . (4.12)

The corresponding equation for ny is obtained from Eq. 4.12 by the interchange
b ke —e

The baryon number denaity is deflned as g = (n) — n;}/2, and is given by
itp + 3Hng = Lp{nx — n¥) ~ (na/nIn¥To - na2ny(|vle) + O(%). (4.13)

Eqgs. 4.11 and 4.13 form a coupled system of equations that can be sclved to yield
np(t). Eq. 4.13 illustrates the three ingredienta for baryogenesis. The first term
on the right-hand side is the production term. It vanishes unless CFP is violated
(¢ #0), B is violated (Cp # 0), and non-equilibrium is obtained {nx # n¥). The
laat two terms desacribe damping of the baryon ssymmetry due to inverse decays
and two-body scattering processes.

The two-body scattering term in Rpg is osly important for K > K¢, where
K¢ = 10°/ Aa, if the low-energy cross section is 0 = Aa?T?/m}.

The numerical solution of the system of equations is shown if Fig. 21. As
expected, for K < 1, B = ¢/g., while for K > 1, the baryon number is damped.
The baryon number as a function of X is shown in Fig. 22. For K < K¢ the

140f courss the contribution due to an on-shell s-channel X exchange is already accounted for by
vequentinl X inverse decay and decay. The t superscript on the amplitudes and crom section
indicates that this contribution is to be removed.
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Figure 21: The developmeat of the baryon number B = ng/n,
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the different vacua are accompanied by a change in the baryon number. This
process is usually associated with instantons that describe the tunneling between
different f-vacua. Since the process is inherently non-perturbative, the rate for
baryon number non-conservation is proportional to exp(—4x/aw). This quan-
tumn tunneling ia unimportant today, and was certainly unimportant in the early
Universe.

At finite temperature the transitions between different vacus can be driven
by finite tempersture effects. Kuzmin, Rubakov, and Shaposhnikov (KRS) have
recently shown that the tunneling at finite temperature may be appteciable.®! In
their analysis they considered an SU/; gauge theoty, which is a good approximation
to the Weinberg-Salam mode) in the limit win' @y — 0, aw fixed. The Lagrangian
for the SU; model with gauge coupling gw is given by

L= ;D,.:;S‘D"q,‘a' - %r;,rw- - ;,\(w- — 2 4 Loowmtons. (4.14)

The basic point is that fluctuations in A, and ¢ caused by finite temperature
effects caune transitions between different #-vacua, with associated baryon number
violation. The calculation of the transition rate is related to the calculation of the
fate of the false vacuum at finite tempersture. However, in this case the calculation
is much more complicated. The Arst approximation made is to ignore the effect
of the fermion flelds, and to only consider 4, and ¢ ns the dynamical flelds. The
validity of this approximation will be discussed later. The second approximation
is to replace the finite temperature “bounce” action (Sy) in Eq. 3.14 by the free
energy at the maximum of the barrier between adjacent é-vacua.

The maximum free energy in the transition is dominated by a atatic configu-
ration, given in the Ag = 0 gauge by (r! = )

) = fmanngg
o if-T|0
¢ = iR [ ' ] R{8), (4.15)
where 7 are the Pauli spin matrices, and
(0} = h(0} =0, floo) = ko) =1 (4.18)

are functions of the dimensionless parameter £ = rfry = rgwo. The free energy of
this configuration is given by
F=~ 2—551, {(4.17)
aw
where My = gwe /2.

With the KRS assumption that the action for the tunneling rate at finite
temperature is given by F, the change in the baryon number is

B = —-CBTexp{-F/T), (4.18)

where C is a dimensionless constant of order unity, and the oversll factor of T
appears on dimensional grounda. Since CP is conserved, B cannot be generated
by the transitions. In the early Universe g, X, and o are a function of temperature.
The temperature dependence of g and A is only proportional to (nT and will be
ignored. The temperature dependence of ¢ around the critical temperature is
much more important. At T > T,, o = 0, end as the temperature passes through
the critical temperature, ¢ — op = 250 GeV.

The rate for baryon number non-conservation, as seen from Eq. 4.18, is given by
Tas = €T exp(-F/T), which is greater than the expansion rate for T > T* =~ 200
GeV. Thia would be a long enough period to eradicate any baryon number. Since
there is no anomaly in B — L.the transitions conserve B — L, so more precisely,
it would eradicate any baryon number with zero projection on B — L. The two
possible solutions would be either to generate an asymmetry in B — L in the same
manner an aaymmetry in B is generated, ' or to generate the baryon asymmetry
after the electrowenk Lransition.

The potential impact of the KRS calculation certainly warrants more detailed
calculations of the finite-temperature induced tunneling between #-vacus. In par-
ticular, one approximation made by KRS that might be questioned is the neglect
of the plasma effects on the transition. The classical fleld conflguration of Eq.
4.15 are apatially large. The characteristic size of the configurations are several rg.
Within this size nre 10" - 10* particles with weak charge. Since the configuration of
A, is pure magnetic and the plasma is 8 magnetic conductor, there are no plasma
screening effects in the static configuration. However in the evolution to and from
the atatic configuration there are time-dependent gauge fields and A, must have
an electric component which unll be affected by screening. The problem of screen-
ing can be addressed in a U/; theory by calculating how long it takes to establish
17, field configuration with a characteristic size of several ro. By detailed balance
the time it takes to establish this unstable field configuration is the same as the
time it takes for the fleld conflguration to decay. In the limit that the conductivity
of the Universe in inflnite, the time is infinite, i.e., in & perfect conductor currents
in the plasms are induced to oppose the establishment of the fleld. Of course,
the Universe is not a perfect conductor, and the time for the establishment of the
coherent field, I'4, will be proportional to the conductivity.

It is possible to map the problem at hand into one treated before. Consider
the field configuration in Eq. 4.15 as u particle (called the Sphaleron) with mass
m = F and decay width T = ['s. Since baryon number is violated in the decay
(and C P is conserved), the change in the baryon number can be found from Eq.
4.13:

ng + 3Hng = —ngn’s'l‘,, {4.10)

110 many GUTs (in particular §O)q) this is easy to accomplish.



where as usual ngd =~ (mT)¥?exp(-m/T). Determination of 'y will allow a
determination of the efliciency of the process in damping the baryon asymmetry.
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5 INFLATION

The cosmology developed in the firat four sections (augmented with a model for
the growth of siructure as discussed elsewhere in this bock) provides a remarkably
simple and beautiful model to describe the Universe. Nevertheless, there are some
sapects of the standard picture that strongly suggests that the model ia not a
complete one. After discussing the problems of the cosmology developed so far,
a possible solution to the problems will be presented. This solution goes by the
name of “inflation.”!)

5.1 Loose Ends of the Standard Cosmology

s Large-Seale Smoothness: The Robertson-Walker metric describes a space that is
homogenecus and isotropic. Why is space homogeneous and isotropic? There are
other possibilities, including homogeneous but anisotropic apaces, and inhomoge-
neous spaces. The mosl precise indication of the smoothness of the Universe is
provided by the microwave background radiation. If the entire observable Universe
was jn causal contact when the radiation last scattered, it might be imagined that
microphysical procesaes would have damped any fluctuations and a single temper-
ature would have obtasined. However in the standard coamology the distance to
the horizon increases with time. The size of the horizon is conveniently expressed
in terms of the entropy within the horizon

4
Sy = a-sld}, o T, (5.1)

The entropy within the horizon today ia §4(0) = 10M. In & matter-dominated
Universe, Sg = Sg(0)(1 + z)~*?, while in a radiation-dominated Universe, 5y =
Sg{0)(t + z}-3. The entropy in the horizon at recombination when the radia-
tion last scattered was Sp(i = t.,,) = 10%. The Universe as presently observed
consisted of about 10% causally disconnected regions at recombination, so causal
processes could not have led to smoothneas. At the time of primordial nucleosyn-
thesis, the entropy within the horizon volume was Sy(faui,.) = 10, or about
1073 of the present Universe.

The first untidy fact about the standard coamology in that there is no physical
explenation for why the Universe is smooth.

¢ Density Perturbations; Although the Universe is smooth on large scales,
there is a rich structure on small scales. It is usually assumed that the structures
observed today were once small perturbations on a amooth background, and have
grown a8 the result of the gravitational instabilities in an expanding Universe. The
relic photons did not take part in the gravitational collapee, and remain as fossil
evidence of the once-smooth Universe.

Denaity inhomogeneities are usuailly expressed in a Fourier expansion



(‘5;3) - (2z}"[6.exp{—il_:'~i')d’k. (5.2)

Here k is n co-moving Jabel. The physical wavenumberand wavelength are related
to k by ko = k/R(t}, An = (2n/K)R(t). It is also convenient to expresa the
scale of the perturbation in terma of the mass in baryons contained within the
perturbation. For constant B, the baryon mass on scale X is proportional to
A%, The baryon mass within the horizon st time t is Mg(t} ~ m,Bsd} « Sy.
The quantity usually referred to as (5p/p) on a given scale i the rm.s. mass
fluctuntions on that scale

(*’:) — (20) KL, (5.3)

The exact nature of the perturbations required for galaxy formation is un-
known. A promising choice for denaity perturbations in that as every distance scale
comes within the horizon, the r.m.s. fluctuations in the density are 1074 — 10~
independent of the scole. Thia is usuaily expressed ss

('5-"-) ~107*. (54)
L

Here {6p/p)p in (6p/p) on the scale A = dg =1 at Llime ¢ = dy.

The evolution of the perturbations within the horizon ia determined by local
physica, e.g., the Jeans criterin. The behavior of the perturbations outside of
the hotizon is complicated by the fact that there is a “gauge dependence™ that
reflects the freedom of the choice for a reference spacetirae. Nevertheleas, the
growth of metric perturbationa on scales larger than the horizon can be studied
by using the uniform Hubble flow gauge (time slices chosen to give constant H).
From the Friedmann equation with [ constant, Suctuations in p are equivalent to
fluctuations in the spatial curvature k/R?

5 (%) = (E’gﬁp) . (5.5)

In a radistion-dominated (matter-dominated) Universe, p o B4 (R-?), 50

RI/R*~(1+2)"7 (RD)

R-YRY ~ (142" (MD). (5.8)

(6p/p) x {

Since Sg & (1+2)~% for (RD) and Sy o {1+2)"? for (MD), ($p/p)  S¥° o« M}*
for both (RD) and (MD). So ns any scale comes within the horizon, the growth that
scale has experienced while outside the hotizon depends upon the mass contained
in the scale as it enters the horizon
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whete ty is some arbitrary initial time. If {§p/p)o is proportionnal to M~ as
each scale comes within the horizon, (§5/0) will be u constant. Larger scales have
smaller initial amplitudes, but they have a longer time to grow outside the horizon.
If (55/p)o is characterized by a steeper spectrum, the first scales that come within
the horizon would have been non-linear. If (6p/p)o is characterized by a flatter
spectrum, larger scales would have larger (6p/p) at horizon crossing.

The standard model can shed no light on the origin of the density perturbations.
It must simply assume that at ¢ = O there are perturbations of the approprinte
magnitade and spectrum impreased upon the metric.

¢ Spatial Flatness - Age: In the standard Ftledmann cosmolegy, 11 - 1 =
k/RIH?. In the past, H? o p, which for a matter-dominated Universe gives
H? o B3, and for s radiation-dominated Universe gives H? x R4, Since today
|1 ~ 1] is of order unity, at previous epochs

'n_”:[ R/Ro=(1+2)"' (MD) (5.8)
(R/Ro)'=(142)"! (RD).

At the time of primordial nuclecsynthesia, {1 — 1| < 10-'*, and at the planck
time [T — 1| < 10-%°, Obviously 11 was very close to one at early times, i.e., the
curvature term was small compared to H? and 87 Gp/3.

The smaliness of the curvature term ia necessary for the Universe to survive
aa long as it has without either re-collapsing (for & = +1) or becoming turvature
dominated (for k = —1). The natursl time acale in the Friedmann equation is the
planck time tp; = 2 x 107+ sec. The difference between the kinetic term (H?) and
the potential term (BxGp/3) is the curvature term. This must be small in order
for the Universe to expand for 107 pec. ~ 10%1p,.

The standard Friedmann model has no explanation for the present apatisl
fiatness of the Universe.

¢ Cosmological Constanl: The most general form of Einatein’s equations in-
cludes & coamological constant

R, — %guvﬂ = SWGT,,.. + Ag#"' [SAD)

With the stress-tensor in the perfect-fluid form (U7, is the fluid velocity vector,
U, = (1,0,0,0) in the Auid rest frame)

T = =P + (p + PV, (5.10)



the effect of the cosmological constant ia to add to the fluid contributions to p and
p, terma py = —py = A/8xG. The generalized energy and pressure are given by
p* = p+pa, p" = p+ pa, and the Einstein equations can be written in terms of

T}, which is Eq. 5.10 with p ~+ p*, p — p*,
1 .
Ruw = 39, R = 87GT},. (5.11)

If p* and p* are dominated by p, and p,, the conservation and Friedmann
equations become

" « R°=constant
BrGy A

3 3
which hea solution R o exp{H1?).

Hl

(512}

Today the contribution of a cosmological constant to the energy density of the
Universe must be less than pc. In useful units, po = B.07 x 1074TA? GeV*. Among
the contributions to A are contributions from the condensates of Higge particles
due to 88B. During cosmological phase transitions, the vacuum energy density
changea by o*, where o is the zero-temperature vacuum expectation value of the
Higgs Beld. This change in the vacuum energy is 10*GeV* for the electroweak
transition, and 10%°GeV* for the GUT transition. A cosmological constant of this
order must be present before the transition to ensure that after all transitions are
complete the energy density of the vacoum is less than sbout 10-7GeV?,

The standard cosmology cannot explain why the present vacuum energy density
is a0 amall.

o Unwonted Relics: There are a variety of particles that are expected to survive
annihilation and contribute to the present energy density. Particles with very
large manses typically have very small annihilation cross sections and should be
abundant. This is rather unfortunate, sa their contribution to the mass density
typically is many ordera of magnitude larger than pc. The magnetic monopoles
produced in the GUT phase transition are an example of such an unwanted relic.

The standard coamology has no mechaniam of ridding the Universe of unwanted
particles.

The problems mentioned here do not invalidate the standard cosmology. They
are accommaodated by the standard cosmology, but they are not explained. The
goal of cosmology is to explain the present structure of the Universe on the basis
of physicel law, and one hopes that physical law will one day explain the above
points. Inflation is & model for such an explanation.

5.2 [New Inflation - The Basic Picture

Consider as a model for new infation/®*! n phase transition associated with SSB
with a scalar potential given by

Vig) = A4 - o) (5.15)

At temperaturea T > T, = 20, {¢) = 0, and V({¢}) = Ao'/4 = pv. At temper-
atures T < T, (¢} = o, and V({$}) = pv = 0. New inflation will occur as ¢
makes the transition from the high temperature minimum of the potential to the
low temperature minimum of the potential.

At some temperature T < T, in some region of the Universe, the Higgs field
will make the transition from ¢ = 0 to ¢ # 0. Assume that in this region of
the Universe ¢ ia spatially uniform. The evolution of ¢ to the low-temperature
ground state is not instantaneous, but requires  time determined by the dynamica
of the theory. The equation of motion for ¢ can be found from T*, = 0, where
Tuv = —0udpd, ¢ — Lg,.. With the assumption that ¢ is spatiatly homogeneous

¢+ 3Hp+V'(¢) =0, {5.14)

where V' = 8V /3¢, and H* = BxGp/3. The contributions to p include » radiation
term pg, & kinetic term for ¢, and a potential term for ¢:

2= PR +%@'+V(¢)- (5.15)

If there is & “fat™ region in V ($), the evolution of ¢ will be “slow™ and the ¢
term can be neglected in the equation of motion. In thia fiat region ¢ will change
very slowly and V(#) will be roughly constant. Therefore the contribution to p
from V{¢) will be roughly conatant and will rapidly come to dominate pg which
decreases in proportion to R'. When p is dominated by potential energy the scale
factor increases exponentially. If this flat region in the potential extends from ¢,
to ¢,, R will increase by an amount

Ri(¢.) = R(¢.) exp({H &t), {5.16)

where At is the time it takea to make the transition from ¢, to ¢, and H? ~
V(¢$)/m}, = 0*/m},. For a concrete example, assume for the moment that At =
100H -4,

Now assume that after traversing the flat region in the potential,at ¢ > ¢, = ¢
there is a “steep” region in the potential. In this steep region the oscillations in the
zero momentum mode of ¢ will rapidly convert the patential energy to radiation.
If this conversion is efficient, the Universe will be reheated to a termperature Try



found by equating the potential energy density to the radiation energy density:
V{¢) = T, or Tru =~ 0.

This is the basis scenario for new inflation. To illustrate the scenario, take
a = 10"GeV, and the initial sige of the reglon to be the size of the horizon at
T., Bi = H™! =~ mpy/o? = 107Pem. * The initial entropy in this region is §; ~
{R.T:)* =~ 10'. The final size of the region in the example where At = 100H ™! ia
Ry = exp(100)R; ~ 3 x 10%m. With efficient reheating Th = ¢, and the final
entropy contained in the region is S; = (R;Taxr)® = 10",

This large creation of entropy has helped with three out of four preblema.
Large-Scale Smoothness: At T = 10''GeV, the presently cbservable Universe
(§ = 10") was contained in n size of 10cm, and easily fit within the smooth
region after infistion. Density Perturbations: To see how inflation generates den-
sity perturbations it is necessary to treat the dynamics of the scalas field in greater
detuil than done so far. This will be done shortly. Spatial Flatness - Age: After
inflation R has incressed by exp(100) but the fnal temperature is close to the
initial temperature. Thus, immediately after infiation the spatial curvature term
k/R? is a factor of exp(—200) smaller, while the energy density term is unchanged.
Cosmological Constant: Inflation does not help the cosmological constant prob-
lem. Unwanted Relics: The number density of particles present before inflation
is decrensed by a factor of R}/R} ~ exp( 200}. This is true also for the original
photons. It is crucinl to create entropy in the termination of inflation.

In this example it was assumed that the slow-roll period lested for 100 e-folds.
The minimum number of e-folds is the pumber required to it the observed entropy
of 10* into a single inflation region. The final entropy in the inflation region is
Sy = T3y R}. The rize of the Enal region is related to the number of e-folda by R} =
exp(3N) R}, assuming little or no growth during the oscillstion phase. The largest
possible smooth initial region is the size of the horison at the phase trmition,
R, = H-Y{T.) =~ mp;/c?, sssuming T, = 5. The maximum reheat temperature is
Tay = o, so the final entropy is 5; = o exp(3N)m}, /o = exp{3N}m}, /e The
requirement Sy > 10* gives

N > 58 + In{o/10"GeV). (5.17)

5.3 Dynamics of Inflation

The evolution of the spatially homogeneous scalar fleld {zero momentum mode of
the scalar fleld) is crucial for inflation. If the coupling of the scalar field to other
fieldn are included, the equation of motion for the zero-momentum mode of ¢ is
{# will denote the gero-momentum mode unless otherwise indicated)

d+3HG+ T+ V'($) =0, (5.18)

19]¢ i» teasonable to expect ¢ to be wniform on scales that are in cansal contact.

where T, is the ¢ decay width. The decay width is typically Iy = A?my, where
h is & coupling constant, and m, is the mass of . !" The energy density and
pressure of ¢ are given by

b = 3H V()

1-
pe = 367 -V(4). (5.19)
The “slow roll” regime is when the é and Ty terms in Eq. 5.18 can be neglected,

and V(¢) is the dominant term in Eq. 515. The equation of motion during slow
roil is

3H$ = —V'(4). {5.20)
Neglecling ¢ is consistent if
V() < oH?
[V'{$)mp/V($) < [(480)'7 (5.21)

These conditions will determine the duration of alow roll.

The number of e-folds of inflation while ¢ rolls from ¢, to ¢; during slow roil
is given by

N{gy — ¢2) = [: Hdt = —:'.f ' ﬂ.{:;d.t. (5.22)

where dt = p~'dd = —3H/V'ds.

With g, given by Eq. 5.19, g, = ¢¢ + $V'{¢), and using Eq. 5.18, gy =
—3H$ — [4¢?. The two terms in the equation for g, represent the change due to
the redshift of the kinetic energy in the ¢ feld {proportional to H) and the change
due to decay of the ¢ fleld (proportional to I'y). When ¢ starts oscillating about
the minimumn of the potentinl, the energy tranafers between kinetic and potentinl
energy until ¢ decays. Over an oscillation eycle (#%) = py, und 7 can be replaced
by py in the equation for gy. The energy from ¢ decay is transferred into radiation,
and the equation for the evolution of pg becomes gp == —4Hpp + [4p,.

The equations for gg and g, can be integrated to study reheating. If oscillation
sbout the minimumbegins at ¢ = ty and R = Ry with p, = o*, the ¢ energy density
will decrease as

-3
pg = ot (%) exp[~T{t — ta)]. (5.23)

1714 in crucial to remember that my = 37V (#)/847 is u function of ¢, and will be small in the fat
region of 1the potential.



Until decay, the ¢ energy density decreases in expansion as the energy density for
massive particles, When ¢ decays, the remaining energy is converted to radiation
(04 — (7?/30)gq.Tdy). Obviously, the longer ¢ oscillates befare decay, the less
energy will be available for conversion into radistion, and the lower will be the
reheat tempersture. If the decay width is large compared to the expansion rate
at the start of oacillation, Hy = ¢*/mp, reheating will accur before damping
of gy, and Thy = 9- /%, If the decay width is small compared to Hy, ¢ will
oacillate until the age of the Universe is equal to the ¢ lifetime, i.e., until T, =
H= p:’u/mpg. Then when p4 — g,Tity, the reheat temperature will be Try =
9. Mpy = gV (Cymp)1.

Now consider the generation of fuctuations in p. In the FRW radiation-
dominated Universe ' o ¢, while during the slow-rollepoch, H' 2 mp/V (#)? =
constant. If H is constant, the Universe in approximately in a de Sitter phase.
H ! sets the scale over which microphysical processes can act. H ! will be called
the “physica horizon.” " During the slow roll phase the physics horizon is con-
atant and physical scales inerease exponentisily. Eventually, physical scales once
smaller than the horizon, will become larger than the horizon. After termination of
the slow-roll phase the Universe reheats, behavea like » FRW radiation-dominated
Universe, and scales outaide the horizon will eventually come {back) within the
horizon. This double-cross of the phynica horizon in illustrated in Fig. 24.

Notice that the last scales to go outside H-' during the de Sitter phase ure
the first acales to come back inside H-' during the FRW phase. Ignoring the
o dependence in Eq. 5.17, the Hubble radius today (~ 3000 Mpc) crossed the
horizon 58 e-folds before the end of inflation. Any scale amaller than the Hubble
redius today crossed the horizon 58 + In{g/10'*GeV) + In{A/3000Mpc) e-folds
before the end of inflation. Using B = 10~'"?, the mass in baryons inside the
horizon today is 10" M. Since B « A?, any baryon manss scale crossed the hotizan
58+In(2/16"GeV) +(1/3) In{M /109 M) e-folds before the end of inAation. Scales
that will eventually contain & galaxy mass (M = 10"'M;) crossed the horizon
50 e-folds before the end of inflation, while acales that will eventually contain a
galaxy cluster mass (M = 10'*M,) crossed the horizon 53 e-folds before the end
of inflation.

So far it has been assumed that the ¢ field is constant. However there are
quantum fluctuations in ¢ due to the fact that during the slow-roll epoch the
Univerae is approximately in s de Sitter phase. If the Auctuations §¢ are expressed
as a Fourier expansion

59 = (2:]"/d’k5¢.up(—if-f), (5.24)

18Note the diffsrence beiween the "physics horison” [H") and the particle horison, which is the
distance s mussless particle propagates from the Limw of the bang. The physics horiscn is the
relevant quantity in calculation of perturbations.
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Figure 24: Physical scales cross the physics horizon twice

then the de Sitter fuctuations result in (note: A¢ = A,

1
(84)F = (27) 2|6 = (%) . (5.25)
These fluctuations obtain on scales leas than the physics horizon during the de
Sitter phase. Asx each scale goes outside the horizon during slow roll, it has fine-
tuations {A#)? = (H/2x)®. Since the energy density depends upon ¢, the fuctu-
ations in ¢ lead to fuctuations in p of ép = (FV/34)A¢. Using p = V = ¢* and
avidp = —~3H¢, fluctuations in & lead to ‘

8 pH?
(—’f) = (97) . {5.26)
e ), o
Once the acale is larger than H~*, it can no longer be affected by microphysics.

The behavior of the perturbation outside the horizon is gauge-dependent. However
the behavior outside the horizon can be characterized by a parameter ¢, given by

i

(5.27)

code { ia/p FRW

p+p | —3HPAS/E? de Sitter.

When a scale comea back within the horizon during the FRW phase, ¢ in the
same aa when it first went outside the horizon during inflation, Therefore, (55/p}



relevant for galaxy formation is given by *

(.- (5),-(3),

With the approximation that H and ¢ are constant during the slow-toll phase,
(50/p) na it re-enters the horizon will be acale free . In the slow-roll period,
@ = ~V'($)/3H, and the equation for (6p/p) becomes

§ —3H*
(#), - (%),

5.4 Specific Models

The first example considered is the original attempt to implement new inflation.
The model is based upon & SUy GUT with symmetry breaking via the Coleman-
Weinberg mechanism.*¥ The scalar field responsible for inflation (hereafter re-
ferred to ms the inflaton) is in the 24-dimensionsl representation of SUs and is
responsible for the symmetry breaking SUy — SUy x SU; x Uy, Let ¢ denote
the magnitude of the Higgs field in the SUy x SU; x U7y direction. The one-loop,
zero-temperature Coleman- Weinberg potential is

V{$) = Bo*/2 + Bg* [In(¢?/0?) ~ 1/2], (5.30)

where B = 250d,p/16 =~ 1073, and 0 = 2 x 10'*GeV. Because of the absence of
a mass term, the potential is very flat near the origin (SSB arises due to one-loop
radiative corrections). For ¢4 <« o, the potential may be approximated in the
slow-toll regime by

V(g) = Be'/2-ap'/4
A =~ [MBIn{¢?/e)| ~0.1. {5.31)
Forg € o
Vi$) ~ Bo'fz
v 91Ge  4rBot
H 3 T E b {5.32)

The critical temperature for this potential is about 10'*GeV. The finite tem-
perature potential has a small temperature-dependent barrier near the origin, and

19T here should be mo confusion between the sub-H which indicates the quantity is to be evalunted
at the time of borisen crossing, and the expunsion rate H.

it in not until T = 10°GeV or so that this barrier is low enough that the action
for bubble nucleation drope to order unity. At this time the Universe will undergo
“spinodal decomposition® and break up into lrregularly shaped Auctuation regions
within which ¢ is approximately constant.

Consider the evolution of ¢ in the slow-roll regime. Slow roll commences at ¢,
and ends at $,. The end of slow roll is determined by the condition |[V*(4,)| = 9H?,

or 3 = 3H*/). For any ¢ in the region ¢, < ¢ < &,, the number of efolds from
¢'to @, (time t to time t,) is given by

N o) = [“Hae= ("R, (5.33)

Using 3IH$ = —dV/d¢ during slow roll,

1
N —~d)= % (d% - -;—,) . (5.34}

The total number of e-folds in slow roll depends upon ¢,. To have enough infla-
tion, N(#, — #.) must be greater than 58. Since X is 10-*, ¢, must be smaller
than M in order to have sufficient e-folds. However de Sitter space Suctuations
introduce uncertainties in ¢ of this order. The quantum Auctuations may prema-
turely terminate inflation. At the very least they suggest that the semiclassical
equationa of motion may be invalid.

A more serious problem is the magnitude of the density fluctuations. '3
Duting alow roll for the Coleman-Weinberg potential V*{$) == A¢?, and Eq. 5.20

6 AL N
(f) o~ ;F ~ (5) [2N(¢ — ¢.]l!n \ {5.35)
H

where Eq. 5.34 has been used to express ¢ in terma of the number of e-folds
before the end of inflation. Although (§¢/p) depends upon N to a power, ¥
depends upon the logarithm of the length or mass scale, 5o the scale dependence
of (6p/5) is only logarithmic. The problem with the Coleman-Weinberg potential
in not the spectrum, but the magnitude of the perturbations. Using A = 0.1 and
N(¢ — ¢ = 58 + (1/3} In[M/10"' M), (55/p)5 on the scale of galaxies is 182,
and on the scale of clusters is 199. The spectrum is very flat, but about 10* too
large. Notice that a smaller A cures both problems.

Although the original model for new inflation was a failure, it pointed the way
for the construction of somewhat more successful models. The potential of the
original Coleman-Weinberg model was not flat enough, i.e., X was too large. If
¢ couples to gauge flelds, A will be of order alyy, which is too large. If ¢ is &
weakly-coupled gauge singlet, the effective A can be small, and will remain small



after radiative corrections. If X < 107'?, the density perturbations from Eq. 5.35
will be small enough. However a weakly-coupled inflaton will have a small decay
width, and the reheat temperature will be low. If ) is also the magnitude for the
coupling of the infinton to other flelds, the decay width at the minimum will be
T, = A'm, ~ A%, and the reheat temperature will be Tay = ([ymp)!/? = 10%GeV
for A = 10717 and ¢ = 10'*GeV. A more careful ¢alculation may give one or two
orders of magnitude larger value of Thy, but it is clear that & weakly-coupled feld
will have a low reheat temperature. Thia presents a problem for baryogenesia. Any
baryon asymmetry present before inflation will be diluted due to the crention of the
large amount of entropy, ac it is necessary to create the baryon asymmetry either
during or after the reheating epoch. Many inflation models are aqueezed between
the requirement of a weakly coupled inflaton for a flat potential and an inflaton
that has a large enough decay width to give Tau large enough for baryogenesis.

Supersymmetric models have been proposed as & mechanism to stabilize small
couplings in the inflaton potential agninst radiative corrections. Supersymmetric
models introduce several additional potential problems. The high-temperature
minimum of the potential is generally not at ¢ = 0, and {¢} may smoothly evolve
to the zero-temperature minimum. There are two posasible solutions. If the high-
tempernture minimum is at ¢ < 0, there will always be a barrier between the high-
temperature and the low-temperature minimum. The other solution is to ignore
the problem. Since the inflaton must be weakly coupled, it may never be in LTE,
and the initiaf value of ¢ may be random. Another problem with supersymmetric
models is the gravitino problem. Gravitinos are weakly-interacting, long-lived
particles present in supersymmetric models. They will be produced in reheating
in embarrassingly large numbers unless the reheat temperature ia less than about
10°GeV. Finally, in supersymmetric models where supersymmetry breaking is done
with a Polonyi field, the Polonyi field can be set into oscillations that will not decny
because the Polonyi fleld is “hidden.® Since the energy denaity in the oscillating
fleld behaves like non-relativiatic matter, it will eventually come to dominate the
Universe.

For succenaful new inflation, several requirements must be fulfilled. The re-
quirements occur during different periods of inflation.l*l

s Start Inflation: The scalar Beld must be smooth in a region such that the
energy densily and pressure sssociated with spatial gradients in ¢ are smaller than
the potential energy. If the average value of ¢ is ¢y and the region has typical
spatial dimension L, this requirement implies

(V4)? = O(do/L) < V(o) = O(a*). (5.38)

If this requirement is not met and the (V¢)? term dominates, R(f) will expand
as t to a power and inflation will not occur. However ance V($) does dominate,
the gradient terms rapidly become small in the exponential expansion and can be
tgnored.

In aupersymmetric models where LTE is obtained, the high-temnperature min-
imum of V(¢) should be at ¢ < 0 to prevent ¢ from smoothly evolving to the
zero-temperature minimum without inflating.

» Start Slow Roll: If ¢ is not & gauge singlet it may roll in the “wrong™ direction.
For instance for the Coleman-Weinberg SUs model, the steepest direction for ¢
near the otigin is toward a minimum where SU, x I/, is the unbroken symmetry.
If ¢ is a gauge singlet there is no problem with ending up in the wrong phase.

In order to have slow roll, the potential must have a flat region in which
[V"(¢)| < 0H? and |V'[$)mp/V($)| < (487)'7%,

e Roll Far Enough: The interval of slow roll, [da,,do,], must be large enough
that quantum Buctuations do not terminate slow roll. This condition will be met
f¢.— ¢, > H.

The number of e-folds, N = [ Hd! from ¢, to ¢,, must be greater than 58 |
ln(o /10" GeV}.

+ Small Perturbations: The magnitude of the perturbations must be less than of
order 1074 on the acale of galaxies to clusters in order to avoid large fluctuations
in the MBR. If the fluctuations produced in inBation are to Jead to structure
formation, they should be greater than of order 10~%. Therefore during slow roll
HY/$ < 1071,

In addition to the scalar perturbations discussed so far, inflation will produce
tensor perturbations. These tensor perturbations can be thought of as gravity
waves. As each scale leaves the horizon during inflation the energy density of
gravity waves on that scale is pgw = H'. In termm of a dimensionless amplitude
h = H{mp, and wavelength A, pew = [m},h?/3")azp-i. These gravity waves will
re-enter the horizon during the FRW phase with the same dimensionlesa amplitude
h, and induce an enisotropy in the MBR of order h. For §T/T < 1074, h =
H/mp <1074, Since H =~ o7 /mp,, o must be less than about 10'7GeV.

¢ Enit Properly: The reheat temperature must be high encugh so the Universe is
radiation dominated during primordial nucleosynthesia. Using Try = (Tymper}'/3,
Tru 2 1 MeV requires [, > 10-*®GeV. If baryogenesis proceeds in the standard
way, then Thy > 10°GeV, which implies I'y > 10-'GeV. In order to ameliorate the
problem of low reheat temperature and baryogenesis, it has been proposed that a
baryon asymmetry is created by the decay of the inflaton. The energy density in
the coherent oacillations can be thought of as due to a collection of zero momenturn
inflatons with number density n, = p,/my,. In reheating, oy — g.Tdy, 20 ny =
g. Ty /m, at reheating. Suppose the inflaton decays into a particle, §, which,
in turn, decays out of equilibrium with baryon number violation. The number
density of §'s that decay is the same as the number denaity of parent infatons.
If the CP parameter in the decay of the S is ¢, then the asymmetry in baryons
produced by the § is np = eny = g, T}y /my. The entropy density produced afler
thermalization of the inflaton decay productsis s = ¢,T3y. Therefore B = ng/a =
eTap/my. IEB > 1071° then Tay > 1079m, f¢.



EPOCH PROBLEM PC3SIBLE SOLUTION
Start ¢ Smooth (Ve « V(g)
Inflation Thertoal Constraint (¢) <0
“Execute Roll in Right Direction | ¢ is gauge singlet
Slow Roll Flat Region in V{¢) V*(¢)] < 94, and
[V'($}me/V (¢} < (48x)112
Roll Far ‘Quantum Fluctuations | ¢, — ¢, > H
Enough Sufficient e-folds N=JHdt>58
Small Scalar Perturbations | (H?/¢) < 104
Perturbations | Tensor Perturbations | H/mp < 104
“Exit Properly | Nucleoaynthesis Ten > 1| MeV
Baryogeneais Tan 2 1079%'m,
Gravitinos Tan € 10°GeV

Table 3: Possible problema and solutions in new infation

There in & model-dependent upper limit on Try to avoid making unwanted
relics. For example, in supersymmetric models, Try < 10*GeV to avoid overpro-
ducing gravitinos.

The above problems and some possible solutions are given in Table 3. Although
there are models that satisfy all the above requirements, none of them seem so
compelling that they must be the final anawer. In fact, in the past few years there
has been increasing effort in the generalization of inflation ma & phenomena that
ia decoupled from a cosmological phase transition.

5.5 Present Status and Future Directions

Although the general scenario of inflation presents an very attractive means to
ameliorate at least some of the untidiness of the standard model, it is by no means
clear that all (or even any) problems are solved or understood. It is now clear
that there are models, both supersymmetric and non-supersymmetric, which can
successfully implement the program of new inflation s outlined above. It is useful
to normalize the more non-atandard models of infiation by comparing them to
these two “standsrd” models of inflation.

The non-supersymmetric model is & GUT model based upon SU;. The model
was firat proposed by Shaf and Vilenkin,¥ and refined by Pil'"! In the latest
veraion of the model the inflaton in the real part of a complex gauge-singlet feld

with & Colemean-Weinberg potential of the form In Eq. 5.30, with ¢ representing
the magnitude of the complex field, and B = O(107"'). It must be ansymed that
the couplings of the ¢ to all other flelds in the theory are leas than about 1077 to
prevent quantum corrections from spoiling the smaliness of B. The rea! part of
¢ will be the inflaton, and the imaginary part of ¢ will be the axion. ¢ couplea
to the adjoint Higgs, and induces SUy breaking when it receives a VEV, This
requires o = 10'*GeV. Since B is so small (and will remain amall after radiative
cprrections), the prablems with the original Coleman-Weinberg §U; mode! vanish.
The reheat temperature is barely high enough to produce a baryon asymmetry
through the decey of the inflaton as discussed nbove. At the expense of introducing
a sl number, the model is simple and it works.

An example of a supersymmetric model that worka wes proposed by Holman,
Ramond, and Rosa.!"!l The superpotential in their mode! han & “inflation sector”
with superpotential I = [AT/M}{¢ — M)?, where M = mp;/(8r)'/*. The scalar
potential in supersymmetric models is typically an expansion in $/M, given in
this case by

V(g) = AM1 ~ 49’ /M + 8.54 /ML — Bt /Mt - ). (5.37)

For A/M = 1074, (A = 2 x 101%GeV), density fluctuations are small enough and
sufficient e-folds obtain. The decay width of the ¢ {which has only gravitationel
coupling to other flelds) is T'y =« A%/M®, which for A small enough to satisfy the
perturbations constreint, leada to Try = (Tymp)/? = 10°GeV. With the baryon
asymmetry produced ris inflaton decay, this is large enough. AL the expense of
the introduction of a sector whose sole purpose is inflation, the model is simple
and it works.

Both the above models have two potential problems. The first problem is
that to this point the calculations of the evolution of the scalar 8eld have been
semi-classical. ]t may be that a true quantum calculation of the evolution of ¢,
including production of density perturbations, will give a result much different
than the semi-classical result. Preliminary work on this problem suggests that
the semj-clasaical approximations are reasonable. The second potential problem
has to do with the initisl value of ¢. Both fielda are extremely weakly coupled
and are unlikely ever to be in LTE. There is no reason to assume ¢ =~ 0 for an
initial condition (in fact, it may not even be the high-temperature minimum for
the supersymmettic example]. It is tempting to say that this is not a problem,
and that it is only necessary for ¢ =~ 0 in some region of the Universe where the
kinetic contributions to p are small enough to start inflation.

The above two models are existence proofs that it is possible to implement new
inflation. Whether new inflation is the final answer will be discussed briefly after
mentioning some other approaches for inflation that do not involve SSB.

For weakly coupled scalar flelds there is no reason to believe the inflaton will
be in LTE nt high temperature, and the value of ¢ at high temperature might be



random (hence the name “chaotic inflation™). Imagine a simple scalar potential
of the form V(¢) = A¢*, with minimum at {¢) = 0. Assume as initial conditions
that ¢ = ¢y # 0, and that ¢ is sufficiently smooth in a large enough region to
inflate. The nutnber of e-folds of inflation is

N(¢ -~ 0) _j Hdt~r( ¢ )1, (5.28)

mp;

In order to abtain 58 e-folds of inflation, ¢ > 4.3mp;. The dennity perturbations

(5), () o oo

Aguain, using N = 50, A must be smaller than about 10~ for sufficiently small
density perturbations. Since Linde originally proposed this modell'?l several re-
finements have been made. Firat, it has been shown thet it ia possible to use &
m?¢? potential rather than a 3¢* potential. Some work has been done in exam-
ining and formalizing what exactly is meant by “chaotic™ initial conditions, and
which regiona of phase space will inflate. Linde’s model is an example of how
genernl inflation ia, and that it is possible, perhaps even desirable, to separate
inflation from SSB phase transitions. Chaotic inflation (at least for the ¢! case)
has the possible problem of using classical gravity in the regime ¢ > mp,. At
present it also hes the undesirable feature of involving the dynamics of a scalar
feld introduced for the sole purpoee of inflation.

A mode] even further from the original idea of an SSB phase transition ia & pure
gravity model based upon including an ¢R? term in the gravity Lagrangian. Such
higher-derivative terms are expected to be present in theories with extra dimen-
siona. Miji¢, Morris, and Suen'® have examined this possibility in detait, including
questions of density perturbations and reheating and find that all constraints can
be met for 10" < ¢~4/? < 10MGeV.

Yet further from the original iden of inflation is the possibility that the inflaton
ia related to the size of extra dimensions. This will be diacussed in the next section.
A possibility not discussed here is the role of quantum gravity and the program of
the “wave function of the Universe.”

In a Universe without inflation, the space of inijtial conditions that give the
Univerae we observe is a set of measure zero. The inflationary Universe enlarges
the apace of initial data that will lead to the observable Universe. Howaver, it
does not imply that every imaginable set of initial data will lead to inflation.
A trivial example is a closed Universe that becomes curvature dominated, and
collapses before the vacuum energy dominates and causes inflation. The question
“is inflation inevitable™ has not yet been completely answered. Inflation may be
the final anawer, part of the final answer, or none of the fna! answer.

If inflation did occur there are two general predictions. The first prediction
is that {] in very close to 1. It would be hard to imagine that eractly 58 e-folds
of inflation occurred. With all models that give small density perturbations, the
number of e-folds of inflation is enormous, and the intrinsic curvature will only
appear on scales far larger than our present horizon. Of course, scale-free density
perturbations would appear on the horizon today, so s (6p/p) = 107! would lead
to 1} = 1% 107Y. The second prediction is that of acale-free dena:ty perturbations.
At present there is no convincing data to support either prediction. Dynamical
measurements of {1 seem to give {1 = 0.1 — 0.3. This has {at least) three possible
explanations. Either there are systematic uncertainties in all the measurements,
there is unclustered matter (like masaless putxcles) that gwe the unseen part
of fI, or there i & picsent vasuuin energy that can account for ﬁ‘paiu‘u Hainess
{the actual prediction of inflation} and f1 # 1. None of these explanations are
compelling. If the recent determination of the velocity feld on large-ecales nre
correct, it is evidence against a scale-free apectrum. Possible ways out are the
meesurements are wrong, cosmic stringa, and double inflation.

The last point is that some explanation must be found for the present smallness
of the cosmological constant.
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6 COSMOLOGY AND EXTRA DIMENSIONS

In the past few years the search for a consistent quantum theory of gravity and
the quest for a unification of gravity with other forces have led to a great deal
of interest in theories with extra spatial dimenaions {extra time dimensions scem
to lead to ghosts). These extea spatial dimennione are unseen because they are
compact and small, presumably with typical dimensions of the Planck length,
Ip; = 1.816 x 10~¥cm. If the “internal” dimensions are static and small compared
to the large “external” dimensions the only role they would play in the dynamics
of the expansion of the Universe is in determining the structure of the physical
laws. However, if the big bang is extrapolated back to the Planck time, then the
characteristic size of both internal and external dimensions were the same, and
the internal dimensions may have had a more direct role in the dynamics of the
evolution of the Universe. This chapter presents some speculations about the role
of extra dimensions in cosmology.

6.1 Microphysics in Extra Dimensions

Theories that have been formulated in extra dimensions include Kaluza-Klein
theories,/'! supergravity theories, 'l and superstring theorien.l?! The exact moti-
vation and goals of these spproaches are quite different, but for many applications
to cosmology they have several common features and they will be referred to sim-
ply as theories in extra dimensions. Among the common features of theories in
extra dimensions are:

® There are large spatial dimensions and small spatial dimensions: If some of
the dimensiona are compact and amaller than the three large dimensions, it is pos-
sible to dimensionally reduce the system (integrate over the extra dimensions) and
obtain an “effective” 3+1-dimeosional theory. Present sccelerators have probed
matter at distances as small as 107**¢m without Bnding evidence of extra dimen-
sions. This ias not surprising, as the extra dimensions are expected to have a size
characteristic of the Planck length. The large dimensions may also be compact.
If 8o, their characteristic size is greater than the Hubble distance, 10®cm. This
disparity of about 81 orders of magnitude is somewhat striking. This disparity is
usually posed by the question “what makes the extra dimensions so small?™ How-
ever, il gravity has anything to do with the size of dimensions, the only reasonable
size 18 the Planck length, and a more appropriate question to ask is “what mnkes
the observed dimensiona sc large?” One possible answer to the the last guestion
is inflation. The possible connection between inflation and extra dimensions will
be explored.

o The effective low-energy theory depends upon the internal apace: In Kaluza-
Klein theories the low-energy gauge group is determined by the continuous isome-
tries of the internal manifold. In superatring theories, the structure of the internal
space determines the number of generations of chiral fermiona, whether there is
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Table 4: Variation of fundamental constants with the size of the internal manifold

low-energy supersymmetry, etc. If the internal space in distorted in any way the
effective low-energy physics could be very different.

o The fundamental constants we observe are not truly fundamental: In theo-
ties with extra dimensionn the truly fundamental constants are constants in the
higher dimensional theory. The constants that appear in the dimensionally re-
duced theory are the result of integration over the extra dimensions. If the volume
of the extra dimensions would change, the value of the conatants we observe in
the dimensionally-reduced theory would change. Exactly how they would change
depends upon the theory. In Kaluza-Klein theories, gauge symmetries arise from
continuous isometries in the internal manifold, while in auperstring theories the
gauge symmetries are part of the fundamental theory. In all theories the gravita-
tional conatant is inversely proportional to the volume of the internal manifold. In
the most general case there in not a single radius in the internal manifold. How-
ever, for the sake of simplicity it will be assumed that there is a single radius, &,
which characterizes the internal manifold. The b dependence of some fundamental
constants are given in Table 4. In Table 4, a® is the present value of the fine
structure conatant, G ia the present value of the gravitational constant, G} is the
present value of Fermi's constant, and by is the present value of b.

o The internal dimensions are atatic: If the internal dimensions change, fun-
damental constants change. Limits on the time variability of the fundamental
constants can be converted to limits on the time variability of the extra dimen-
sions. Limits on time rate of change of the fine structure constant (assuming
that the change is a power law in cosmological time} are given in Table 5. The
look-back time, Ar, is the maximum time over which the limit may be applied.
For the look-back time, an I = 1 cosmology was sasumed, i.e., 8 present age of
(2/3)H;' = 6.8 x 10°h-1yr. Long look-back times are relevant if the change is
not a power law in cosmological time. It is interesting to know how soon after the
bang the internal space had easentially the aize it has today. The limit with the
longest look-back time is the limit from primordial nuclecsynthesis.

Primordial nuclecaynthesis is a sensitive probe of changes in a, smince the
neutron-proton mass difference § = m, — m, = 1.203 MeV has an electromeag-

|&/al METHOD Ar

5 x 10"yt WTRe /M0y 5 x 10%r

L x 107 Tyt Oklo reactor 18 x 10%¢

13 x 10-"*h yr~' | Radio galaxies | 2 x 10°h~! yr

2 x10"M4p ye-! | QSO B x 10°h-" yr

15 x 107" yr~' | Primordial 6.8 x 10°h ! yr
nuclecsynthesis

Table 5: Conatraints on the time varintion of the fine structure constant

netic component. Although the details of the neutron-proton mass difference are
not known, it is reasonable to assume that the electromagnetic contribution is the
same size (but the opposite sign) as the entire difference. With this assumption
o/a® = Q/Q% where Q7 in the value today.

The neutron-proton ratio at freeze out given by Eq. 1.78 is exp(—-Q/T}), 8o
n/p ia very sensitive to small changes in . The primordial *He manss fraction as
a function of b/by is given in Fig. 25, sssuming that a, G, and Gy depend on
b/by ms in Table 4. The curve labeled “SS™ is the superstring model (D = @), and
the curves marked “KK;:" and “KK," are Kaluzs-Klein modelas with D = 2 and
D = 7 internal dimensiona. The allowed range of the primordial *He, ¥p = X, =
0.24 + 0.01. For the superstring model, the primordial helium is within scceptable
{imits only if at the time of primordial nucleceynthesis 1.005 > b/by > 0.995. The
Kaluza-Klein models give the slightly less stringent result 1.0L > b/by > 0.99. In
either case, by the time of primordial nuclecaynthesis the internal dimensions had
obtained a size very close to the size they have today. )l

& The ground state geometry doea not have all the symmetries of the theory: It
ia generally assumed that the ground state geometry is of the form M* x B?,
where M* is four-dimensional Minkowski space, " and B? is some compact
D—dimennional space. The symmetrien of the ground state are generally not ns
large as the symmetrien of the theory, i.e., there is spontaneous symmetry break-
ing. One of the results of SSB is the existence of a massless (at least at the classical
level) Nambu-Goldstone boson, which is sometimes called the dilaton.

o The spectrum containa an infinite number of massive states: If the radius of
the internal apace is b, then b7 sets the scale for the massive states. The spectrum
of the massive states depends upon the type of theory and the structure of the
internal manifold. Since b is expected to be close to {p, the massive states should
have masses close to mp;.

“9The assumption of M* is not quite correct in & cosmological context, and should be replaced by
R x 53 for the closed model, R' x @* for the open model.
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Figure 25: The primordial mans fractlon aa a function of b/by

6.2 Stability of the Internal Space

All theoties formulated in extra dimensions must contain some mechanism to keep
the interna! dimensions static. In the sbsence of such a mechanism, the extrs
dimensions would either contract or expand. The origin of the vacuum stress
responsible for this is unknown. Here, some toy models are given, along with some
poasible coamological effects.

In theories with extra dimensions new types of interactions may arise. For a
starting point, consider the ChaplineManton action, 1Yl which is an N = 1 su-
pergravity and an N = 1 super-Yang-Mills theory in 10 space-time dimensions.
This theory is thought to be the field theory limit of a 10-dimensional superstring
theory. It is not at all clear that the 10-dimensional fleld theory limit of the super-
string ever makes sense. The 10-dimensional fleld theory description obtains only
in the region between two similar energy scales. The Rrst acale in determined by
the atring tension. It is the scale shove which it in necessary to include the massive
excitations of the string. Above this acale physics is “stringy” and any point-like
fleld theory desctiption is inadequate. The second scale is the compactification
scale, which is determined by the radiua of the internal space. At distances smaller
than the compactification scale dimensional reduction no longer makes sense, the
3+ 1-dimensional description is inadequate, and the 10-dimensional theory must be
used. The 10-dimenaional Beld theory deacription makes sense at distance scales
larger than the string tenmion scale, but smaller than the compactification scale.
Since these two ncales are expected to be the same order of magnitude, it is not

clear if the 10-dimensional field theory description ever obtains. Nevertheless, it
offers = convenient starting point for an exploration of cosmology in extra dimen-
sions,

The Chepline-Manton Lagrangian contains the IV = 1 supergravity multiplet
{e& ¥m: Bumw; X5 o}, where el is the vielbein, yus is the Rarita-Schwinger
field, Ba is the Kalb-Ramond field, A is the sub-gravitino, and ¢ is the dilaton,
and the super Yang-Mills multiplet {Gunn; x}, where Gpep is the Yang-Mille field
strength and x is the gluino field. The Lagrangian is ¢

A 1, 1 3
et £ = 3R~ ;I Doty - L exp(-o)Hpwr HM™F

-390 - %52.,., Pot™) — 11 A
ﬁ JMNPR MpN P
+1—6 exp(—o/?)ﬂywp (&ql" n + GVIJ '™y

—VE{RTMNPTR) ;Trg Px - %exp(foIZ)TrGMNGM"

3
“3 (TrTanrex)’ + exp(—o/2) Haenp TegsCY¥Fx + ... {8.1}

where TM¥F = TIMPNTP and Hynp = S Bnp. Four fermion couplings and
other terma have been omitted.

The “Binstein equations” are straightforward to obtain:

9 1
Run = Eexp(*") (HMPOHNM - EQMNHPORHWR)
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Yy eaMe _ Vime IrFeRy
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T (Trelrgrx)’ omen + iexp(ﬁofz)HM TexTwrax

3
71—6exp(‘a/Z]gMNHpquer‘Pqu - (5.2)

The task at hand is to solve Eq. 8.2 to find the equations of evelution of the scale
factor(s) in the expansion of the Universe toward the quesi-static ground state
of the system where there are D static dimensions and 3 dynamic dimensions
expanding as in a standard FRW cosmology.

3T he following notation will be used: D =number of extra dimensions; M, ¥, P, Q, ... run
from 0 to D +3; u, v, p, ...are indices in the extes dimensions; snd m, n, p, ¢, ... are indices
in the large spatial dimensions,



In general it is necessary to choose background fleld configurations. For ex-
ample consider the “boscnic” partas of the equations. What are the symmetries
of the metric? What are the vacuum (background) values of Hywe, of Garw, of
§Tx, of AT), of ¢ In general, many {possibly infinitely many) solutions of the
field equationa are expected, even if there is but one ground state that describes
the microphysics of our Universe. The immediate question to ask is what picks
out the ground state and what is the evolution of the Universe to this ground
atate? Perhaps when the true string nature of the equations are taken into con-
sideration there will be but one poesible solution to the string equations even if
thete are many solutions to the field theory. Perhaps something in the evolution
of the Universe prefers a unique or small number of possibilities. Such questions
are reminiscent of the questions considered in inflation. If the conditiona in some
region of the Universe are such as to enter an inflationary phase, that region of
the Universe will grow relative to » region that does not undergo inflation. It is
poesible to imagine that the Universe starts in a state with no particular back-
ground field configuration, but in & quantum state described by a wave function
¥ that describes the probability of a given configuration, ¥{field configurations).
If in some region of the Universe the wave function is peaked about s particular
confignration that will inflate some apatial dimensions, that region will grow. All
that is required to produce the Universe we observe is that there is some region
that will lead to three spatial dimensiona inflating {and some mechanism to keep
D dimensions static). It may be that the theory is unique, but the ground atate
is not. It may be that somewhere outside of our horizon the Univerns is quite
different. There may be a different number of amall versus large dimensions, or
the internal space may have different topological properties leading to drastically
different microphyaics. Before this speculation is considered, it is necessary to un-
derstand the mechanism that leads to the stabilization of the internal space. This
problem will be studied by considering individual contributions 1o the right-hand
side of Eq. 6.2.

For simplicity, the metric will be taken to have the symmetry R' x §% x 57

gMN = =2 () Gma (8.3)
N agrm

Where fma is the metric for §° of unit radius and a(t) is the actual radius, and §,.,
is the metric for §2 of unit radius and b(t) is the actual radius. The components
of the Ricci tensor are

— Rgg = 3E+D£
a b
- % 3 .

CRen = |22t D202
a a? ab ol

b B _ab D-1
-R, = [;+(D*l]§+3;S+T]OM. (0.4)

With the Einatein equations in the form

. 1 1 A
R R = Tt (@5)

where € is the gravitational constant in D + 4 dimensions, 7 and 4 is a possible
cosmological constant in D + 4 dimenaions. All the terma on the right-hand aide
of Eq. 8.2 contribute to Thyn and A.

Symmetries of the stress tensor are usually chosen such that the only non-
vanishing componenta of the stress tensor are

Tm = p
T = —Pifma
T.. = —podw (6.8)

with TX, = o — 3py — Dpp. In terms of p, py, pp, and py = A/82G the Einatein
equations are

a b 8xG

L+Dy = —D+2[[D+l]p+3p;~t-DpD—P.\l
@ & &b 2 Bl
2T tDita = pazPt(P-Ue- Deot o

b P ab D1 85y
s NEHY TG = Doz
Some possible contributions to the right hand side will be considered in turn.

o Rasny =NOTHING: The simplest possible form for the tight hand side is zero.
For the tmoment abandon the choice of R x §% x §P, and consider a D + 3 torus
for the ground state geometry. The spatial coordinates can be chosen to take the
values 0 < z' < L, where L is a parameter with dimension of length. The general
cosmological solutions of the vacuum Einstein equations are the Kasner solutions.
The Kasner metric is

lp - 3pa + 2p0 + 24} - (6.7)

det = dt' - ?;: (é)z" (d=)?. (6.8)

The Kasner metric is & solution to the vacuum Einstein equations provided the
Kasner conditions are aatisfied

3G is related to Newion's constant G by & = GVJ, where V] is the volume of the internal apace
today.
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In order to aatisfy the Kaaner conditions at lenst one of the p; must be negative.
It is poasible to have 3 spatial dimensions expanding in an isotropic manner and
D dimensiona econtracting in an isotropic manner by the choice™

_3+{3D? +enpin?

Pep=p = D +3)
D~ (3D* + 6D)/?
Pa= ... =pPup = q=——LD—(D—+—3—)L—. (6.10)
Note that p > 0 and ¢ < 0. With this choice the metric may be written
ds? = dt? — a*(t}dZ" — B {1)dF", {6.11)

where z are coordinates of the 3 expanding dimennions, and ¢* are coordinates of
the D contracting dimensions. The two scale factors are given by a(t) = (t/t)”,
bt} = (t/to)*.

Somewhat more complicated classical cosmologies have been considered. The
Kasner model can be regarded aa an anisotropic generalization of the flat FRW
cosmology, i.e., & Bianchil cosmology. A generslizsation of the closed FRW model is
the Bianchi IX model. The Bianchi IX vacuum solutions have the feature that the
general approsch to the singularity is “chaotic.”!" On approach to the initial singu-
larity the scale factors in different spatial directions undergo a series of oscillations,
contractions, and expansions. This feature is quite general, and independent of
the state of the Universe after the singularity. The oscillation of the scale factors is
well described by a sequence of Kasner models in which expanding and contracting
dimensions are interchanged in *bounces.” Such anisotropic behavior is predicted
to be the general approach to the initial singularity. The question of whether such
a cheotic approach to the initial singularity is present in more than three spatial
dimensions has been considered. It has been shown that chaotic behavior obtaina
only for models with between 3 and 9 spatial dimensions.”) The importance of
this observation is ¢louded by the fact that at the approach to the singularity
curvature may not dominate the right hand side of the Einstein equations, and
near the singulazity classical gravity may be a poor description.

The solutions above do not have solutions with a static internal apace and if
they are ever relevant, it is only for n limited time. The right-hand side must be
more complicated than nothing. The next simplest thing to consider on the right-
hand side is free scalar fields. Before discussing their effect on the evolution of the
Universe it is necessary to discuss regularization in the background geometry.

The free energy of a non-intersciing spinless boson of masa y is given byl

F=T%lnDet(—D¢+p+u’). (6.12)

since finite temperature effects wre of interest, the time is periodic with period of
1/2xT, the relevant geometry is §* x 5% x §2, and the radii of the apheres are
1/2xT, a, and b. The eigenvalues of O on the compact space are discrete, and are
given by the triple sum (hereafter u will be st to zero)

2T 'F = f: i D,..,.ln[r’(?wT)’ + m{m + 2)a?

. + nn+D-0pY, {8.13)
where D,.. is a factor that counts the degeneracy

Do = (m+1)}2n + D - 1){n + D - 2)I/[D - 1)!n. (8.14)

The free energy given by Eq. 6.13 is, of course, infinite. To deal with the

infinities, a regularization scheme will be found to extract the relevant finite part.

For the purpose of regularization, each term in the sum can be expressed as an

integral using the formula!®

nX = .:;x- loco= d‘.‘; (f’(’i_a'i L’d!t"'up{—lX))mo. (e.15)

The finite part of the free energy is given by

2T'F = :—s [F(l:.s—) fo" dtt""o.{4K’T’t]a,[u"!)uD(b"l}] L {6.16)

where the functions o; are given by

o) = f: {(Zn+i—1}{n+i-1}!

{i = )il expl-n(n +i-1)z]. (8.17)

n=0

The full expression for the free energy is quite difficult to evaluate, but the
free energy ia simple in several limits. In the “Hat-space™ limit the radius of 5 is
much larger than the radius of S [a » b) and es - (/7 /4)a ">, In the limit
a > b the free energy can be approximated by

F= ";f’ [e1 = es(3T)* — es6T)7*] , (6.18)

where {}; is found from the volume of the i-sphere, V; = R'f}; with R the radius
and 11y = {2x)0+V3/T[(i + 1)/2]. For 5% the volume is Vy = R°2x?, and {15 has
the familiar form 11y = 2x*. The term proportional to ¢; is the Casimir term {2,

*3This regularisation is only valid for D =odd. The D =even case will be discussed below.
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Table 8: Contributions to thermodynamic quantities

is ey of Candelas and Weinberg®l). The term proportional to ¢; = x*/90 is the
leading temperature-dependent term when T « b~'. When T > b7!, the term
proportional to ¢ = (2¢{D +4)/=x¥T (D + 4)/2|/T{{D +1)/2] dominates. In the
“low-temperature” limit the radius of the 5! becomes large and &) — (4xt77)- /2,
In the flat-space, zero-temperature limit only the term proportional to ¢; survives.

The interna! energy is given in terms of the free energy, the temperature, and
the entropy

by U = F + TS, The thermodynamic quantities p, p3, and pp are defined in terms
of the internal energy:

_ v
# = MyNpas?
N N (-1
P T ipa%® | Fal,,
5 au
Po = T DhipaP [ﬁ]_.,’ (6.20)

The thermodynamic quantities in zero temperature, low temperature, and high
temperature limits are given in Table 8. There are several obvious limita of Table 6.
In the zero-temperature or in the low-temperature limits, dimensional reduction
is possible. Upon integration over the internal dimensions the effective three-
dimensional energy density and pressure is obtuined by multiplication by Vp =
1pb2. Afier dimensional reduction the Casimir terms are proportional to ¢, b7*.
The low-temperature limit after dimensional reduction is p = 3py — (x?/30)T* and
pp = 0, which is the expected contribution for a spinless boacn in 3+ 1 dimensions.
In the high-ternperature limit dimensioral reduction does not make sense.

'

It is possible to perform a similar analysis for particles of higher apin. The
technical details are more dificult, but the physics is quite similar.

#Ryn =RADIATION:A"™ Consider the “high-temperature” (T > 57! “flal-

space” {a > b) limit with & = 0. In this limit Tasw is isotropic in the sense that
p1 = pp = p (see Table 6). The Einstein equations are

:;f-;-DE = —8np
a b
a & &b
c—+2;; ab = BnCp
b B ab D-1 -
5+(D_1)F+3ES+T = 8xép. (8'2”

In keeping with the flat space assumption the 2/a? term has been dropped in
R.... The equation of state ia p = Np, where ¥ = [J + 3. The conservation law
TME, = 0 implies

pa¥t! = constant, (8.22)

where & o (ab0)1/¥ is the menn acale factor. Since p o« TV*!, there is & conserved
quantity Sy = (8T)" that is constant. This is simply the total N-dimensional
entropy.

The Einstein equations (or & subset of the Einstein equations and the TM%, - 0
equation) can be integrated to give a(t) and 3(t). A typical solution is shown in
Fig. 26. Both scale factors emerge from a initial singularity. The scale factor for
the internal apace reaches & maximum and recollapaes to n second singularity, As
b approaches the second singularity a is driven to infinity. The parameter z/z, in
Fig. 26 is » measure of the time in units of the time neceasary to reach the second
singularity.

The evolution of the temperature is shown in Fig. 7. The figure demon-
sirates the rather striking feature that as the second singularity is approsched,
the tempersture increases. The expansion of a together with an increase of T
seems unusual. However it is simply due to the conservation of entropy. In the
region of growing T the mean volume of the Universe is actuelly decreasing, and
the temperature must increase to keep Sy constant.

The assumption of the flat-space limit for 5% can be easily justified. Imagine
that the spatial geometry is 57 x §?. If a > b in the high-temperature region,
onee the maximum of b ia reached, the S* will be inflated. The only requirement
is that the curvature term, 1/a?, ia small compared to the thermal term, BrGp, st

b = byax.
In the approsch to the second singularity the combination of expanding and
contracting dimensions behaves like a Kasner model. A recurring feature in the



