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ADSORPTION ON MIXTURES OF ION EXCHANGERS

Roberto Triol: and M. H. Lietzke

ABSTRACT

A theoretical study has been made of adsorption on mix-
tures of ion exchangers. The effect of variables such as
the concentration oif the ion being adsorbed. the concentra-
tion of the supporting electrolyte, loading, the values of
the capacities and equilibrium constants for the various
exchange processes, and the fraction of each adsorber in the
mixture on the observed distributicn coefficient has been in-
vestigated. A computer program has been written to facili-
tate the calculation of distribution coefficients for tle
adsorption of an For on a given mixture of ion exchangers
undar a specified set of conditions.

INTRODUCTION

In the past few vears the study of the adsorpticn of ions on
naturally occurring materials, such as clays and other minerals, has
received increasing attention because of the initiation of applied
programs in areas such as enhanced oil recovery and nuclear waste iso-
lation. In enhkanced oil recovery the complex interactions which cccur
between the micellar floods and the geologic fcimations containing the
0il are to a large extent determined by the ion exchange character-
istics both f the formations and of the surfactants used intthe pro-
cess. These interactions must be investigated over a wide r?nge of
salinities and of alkali metal to alkaline earth ratios. Wo?k iﬁ
this arza also involves an effort to:identiff icns which‘migh; bé

used as tracers for underground water flow both under fthe conditicns
g ‘ ‘ e
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2
of salirity and alkali metal to alkaline earth ratios eucountered in
the geologic formations and at the interfaces with the micellar floods.
To be a good wator tracer an i-n should exhibit negligible adsorption
under these conditions.

In nuclear waste isolation an important criterion in selection of
geological formations as disposal sites for wastes from the nuclear
power industry is the degree to which the radioactive substances can be
retarded by the storage environment. The retention of these wastes is
a function of the idsorption characteristics of the particular minerals
involved and of the interaction with ground waters of widely varying
compositions which may pass through the formation. Thus work in this
area involves the measurement of distribution coefficients for the fis-
sion product, actinide, and other ions involved over the range of solu-
tion composition which mignt be encountered in various ground waters,
including the highly saline water which could possibly issue from a
breach in a salt mine vsed for waste storage.

The natural formations involved in these applications are complex
mixtures. They may contain several substances which can function as
adsorpers or ion exchangers. (n scme cases the minerals may contain
very small amounts of impurities which have high adsorption or distribu~
tion coefficients for the various (ionic) species encountered. To help
appreciate the implicatiors of the behavior of observed distribution
coefficients when an ion is adsorbed on a wmixed ion exchanger we have
written a computer piogram fer calculating the overall distribution co-
efficient for an ion ;dsorbed oh a mixed exchanger as a funcgion of

concentration of the ion being adsorbed, concentration of thé supporting
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electrolyte, loading, the values of the capacities and equilibrium con-
stants for the various exchange processes, and the fraction of each ad-

sorber in the mixture. In developing the program ideal exchange has

been assumed in all cases. By ideal exchange we mean that the value of
K/7, as defined below, remains constant over che entire range of the
computation; that there is no ion-complexing in solution; and that there
is no co-icn invasion of the adsorber. Before describing the computer
program, however, we will give a description of the propertier of mi:ed
ideal ion exchangers.
ION EXCHANGE AS A TWO-PHASE EQUILIBRIUM
Ion exchange is a two-phas "librium. The equilibrium for the

+ +
exchange of ar ion M" with an ion AP may be represented by

+ —n+ —_n+ +
pM + nA®T 2 p¥T + nal | (1)

with the corresponding equilibrium ccnstant given by

- p n- p. n
™My " M

K = SIS (2)
(mM) (mA) (YM) (YA)

In these equations the bars refer to concentrations in the adsorber, no
bar refers to concentrations in the solution phase, the Y's are the
activity coetficients of the respective species, and m represents con-
centration in moles/liter of solvent or kg of adsorber The capacity
C of the adsérber in moles/kg Is given by C = paA + naM. Hence

ﬁA = (C—nﬁq)/p. If we designate the stoichiometiic activity coef -

ficient quotient by:T and use the foregoing expression for m, in terms

A
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of tue capacity of the exchanger, equation (2) becomes

n

P
_ @ Gey )

P n
(mH) (C-an)

1l

The stoichiometric activity cvefficient guotient T is a measurable ra-
tio of the appropriate powers of the mean ionic activiiy coefficients
v: of the electrul, tes involved in the exchange reactions. However,
in the present discussion the quantity X/T is assumed constant for ad-
sorption of an ion on a given exchanger.

It is convenient to speak of the distribution coefficient DM of
the adsorbed icn as defined hy DM = ﬁM/mM. Introducing this into equa-

tion (3) and rearrarging gives

n
(C—nﬁM)
P _[(KY_ M (4A)
(0,® = (F) -
(pmA)
or
1 lp n/P
=P A(C~nm))
K ™M (4B)
(pm‘\)

The term K/T is a measure of the relative selectivity of an exchanger
for one ion over another. In the following discussion we will focus
bur attention on the effect of a possibly varying and usually much
éreater concentration of the {on Ap+ on thé distribution coefficient

DM for the adsorption of an ion Mm+.
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6
where the sum is taken over all the individual exchangers in the mix-
ture.
Combining equations (4) and (9) gives the following general expres-
sion for the overall distribution coefficient for the adsorptior of an

- n+
ion M cn a mixed exchanger:

1/p
D -1 _yp [k (€.-nm )P . (10)
observed , n/p { i \T), 1 i

\pmA) i

In this equation m represents the concentration of M in the 1th ex—

i
changer. For simplicity, in the subsequent development mixed exchangers
containing only two components will be considered.

To study the adsorption of an ion in solution on a mixed ion ex-
changer over a wide range of conditions a computer program has been
written. In this program, equation (3) is solved numerically by suc-
cessive appreximations for each exchanger separately to give the value
of EH corresponding to fixed values of (K/T), My> ®y> €, 0, and p.  The
values of BM obtained in each case are then used to calculate the re-
spective distribution coefficients for the adsorption of the ion in
question. Taking into account the fraction of each solid component in
the mixed adsorber the value of Dobs is rhe:. calculated using equation
(9). Further details cocncerning the mathematical methods used in the

computer program are giveu in Appendix 1. This program bhas been used

t> carry out the calculations and produce all the figures in this report.



MIXED ION EXCHANGERS
Since we are interested in the prcperties of rixed exchangers we
need an expression for the overall distribution coefficient for the ad-
sorption of an ion on the exchanger in terms of the fractions of each
adsorber in the exchanger. To derive such an expression, consider a
mixed exchanger containing gy kg of exchanger 1 and 89 kg of exchanger
2. Let El be the amount of an adsorbed ion in exchanger 1 and 52 the

amount of the same ion in exchanger 2, in each case per kg of ad-

sorber. Then the total amount of the ion adsorbed per kg of adsorber

is given by
m g m g
Total adsorbed/kg = 1+1 2+2 (5)
£178B2 8178
However, gl+32 Fl’ the weight fraction of exchanger 1, and 81+82 F2’

tite weight fraction of exchanger 2. Hence, equation (5) may be written

Total adsorbed/kg = mlF1 + m,F,, (6)

where F1+F2 = 1, Dividing through by m, the concentration of the ion

in solution gives

Total adsorbed/kg _ mlpl + m2F2 )
m m m
Hence,

Dobserved = FlDl + FZDZ i (8)
or in general ‘
| D = EFDy (9)

observed i
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DISTRIBUTION COEFFICIENTS IN MIXED ION EXCHANGERS
IN THE LINEAR ISOTHERM REGION (LOW LOADING)

In considering the adscrption at low loading of an ion on a mixed

exchanger containing two adsorbeirs it is convenient to write equation

(10} as
] i (K)llp . n/pf om \n/p ] (x)l/p n/pf = \o/p
obs / v i= tFAT C 1- 2 .
(pmA)n/P 1 1 1 Cl AT 2 2 C
2
(11)
t-;li th
In this equation the terms n o represent the loadings of M on the i
i m
exchanger. If we designate the terms n Ei by Li and the terms
(K)llp n/p by 1,, equation (11) becomes
F (= C. i
i\ i
- SN I n/p _ y0/p
Dobs alp 31(1 Ll) + a, (1 LZ) (12)
(pmA)

If now Ll and L2 <<1 and the 2y by assumption are constant at fixed

vaaves of Fl and Fz, then

n n
= - = —_ = +
in Dobs > in my > iIn p + 1In (01+02)

and

d1n D (13)

]
|
o3

d In m,
I3
Thus, at negligible loading plots of log qus vs log My are parallel

and ‘have slopes of -n/p, irrestpective of the values of Fl‘and F?. This
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is 1llustrated for 1-1, 2-1, and 3-1 exchange by consideration ol the
extreme right hand portions of the curves in Figures 2, 4. and 1.,
’ which give log Dobs vs log m, at constant My All the curves are par-
allel as the relative proportions of the two excnangertc vary from pure
adsorber 2 to pure adsorber 1; since in this case p=! the curves have
1imiting slopes at low loading (the linear isotherm region) of -1, -2,

and -3, respectively, for 1-1, 2-1, and 53-1 exchange.

DISTRIBUTION COEFFICIENTS IN MIXED ION EXCHANGERS AS A FUNCTION
OF SUPPORTING ELECTROLYTE CONCENTRATION AT CONSTANT my

In deriving expressions for the limiting values of Dobq for rixed

exchangers as a function of m it is convenient to carry out the com-

A b ]
putations at constant . However, we should point out that this does
| 3

not correspond to a single sequence of experiments where perhaps the

fnitial concentration mM’ but rot the equilibrium value, is controlled.
Modeling this hore realistic case could be achieved by constructing a
family of curvés of the type to be described for a range of values of
mH which cover:the experimental conditions.

For convehjence, we shall derive the expressions for the distribu-
tion coefficieﬁ:s in mixed exchangers with the value of p in equation
(3) taken as uﬁity. Hence the expressions will coply to 1-1, 2-1, and
3~1 exchange. :For completeness, however, an expression will be given
fer the generai case where p may ¢iffer from unity.

With g_ta#en as unity, rearrangement of equation (3) gives for
each solid
[5] O

Ay
B ) {C - nﬁMJ - (my) = 0. | (14)
m,

PR
Toaadd
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]

We now consider separately the cases wheren = 1; n = 2; and n = 3.

(a) With n = 1 further rearrangement of (13) gives

e () _ Ry By

i
—, ——C= 1+ oz T/ (13
t7) (my) N o (7) (m));
Then,
I I4 hY
K K
(m,) = C =, C
Pobs ~ :: = —l sl . (1%)
b : { o
M m, |1 4=m) w4 T (o)
w) |
i A
Now, if we let mA - N at constant mq. Dobe » € , the maximum value of

i

the distribution coefficient for ideal 1-1 exchange at constant m, -

When DO reactes this value the adsorber is fullv loaded. In view of

bs

equation (9), for 1-1 exchange on a mixed adsorber concaining I components

as m, ~ 0 at constant My Since the terms on the rigzht hand side of
H

equation (17) are constant,

=0 (18)

under these conditions. Thus plots of log D7 s log m\ will approach
< I3

bs
the ordinate axis at very low my with zero slope. The numerical value
! 4
of D in all éases will be given by equation (17).

obs



10

Consider a mixed exchanger consisting of two adsorbers each with

the same lon exchange capacity (C1 = C2 = C). According to equation

at constant Ty will be given by Dobs =

C/mH for all relative proportions of the two exchangers. In Figure 1

' (17) the limiting value of Dobs

is shown a plot of log D0b~ vs leg m, for 1-1 exchange of an ion on a
i)

mixed adsorber with the following characteristics: C1=62=1.0; (K/F)1=

1.0; (K/D) =104. With LV 10-4 moles/liter the limiting value of D
2 obs
4

is given by 1/1x10 ' = 104 for all reiative proportions of the two ex-
changers. As shown in the figure, all the curves converge to a single

line which approaches the ordinate axis with zero slope. The limiting

value ¢. D is 104.
obs

1f the values of Ci for the two adsorbers are different, then,
as the relative pronportions of the two adsorbers vary, the limi'ing

values of Dob" at low m, will also vary, but in all cases will be given

bv equation (17). This is illustrated for 1-1 exchange by tte lefr haad

portions of the curves in Figure 2. In this case an ion at my = 10-'5

is adsorbed on a mixed exchanger with C

and (K/T')2 = 103. Application of equation (17) to a mixture containing

= = r =
1 0.1, C2 1.0, (K/.)l 1.0,

50% of each of these components gives a limiting value for Dobs of

55,000, the value shown on the plot for this mixture.
(b) Putting n = 2 into equation (14) recults in a quailratic ex-
pression that may be solved using the quadratic formula. The expression

for D becomes
obs

b

(19)
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Although the quadratic equation has two roots it can readily be shown

by substituting numbers into the equation that adding the radical term

in the mn nerator of equation (i9) leads to meaningless values of Dobs

If we let m_ + 0 at constant mM, D -> l-—g—, and equation (18) again
A obs 2 EH

with log m, at very low values of

describes the variation of log Do N

bs

W, - For a mixed exchanger containing i components the limiting expres-

sion for Do at very low values of m, in the case of 2-1 exchange is

bs A

obs (20)

at constant m,.
If we consider a mixed exchanger consisting of two components each

with the same jion exchange capacity (C1 = C, = C) then the limiting

2
o o -— ) 11~ - -
value of DObs at corstant m, for 2-1 exchange will be given by D0

bs
%- £ for ali relative proportions of thr. two exchangers. This is il-

lustrated by the left hand portion of the log D vs log m, plot in

obs

-4
Figure 4. In this case an ion at a concencration of 10 ~ moles/% is
adsorbed on a mixed exchanger in which both adsorbers have the same ca-

pacity (C1 =C. = 1) bit different K/T values: (K/T)1 = 1.0, (K/l’)2 =

~
£

100. Under these conditions the limiting value of D0 is given by

bs

Dobs = %-1.0 X 104 = 5000 for all relative proportions of the two ex-

changers. If however,:the ion exchange capacities of the two adsorbers
are different, theﬁ as;the relative proportions of the two adsorber$
vary, the limiting values of DObS at low m, are all different and afe
given by equation (20). This is {llustrated by considefing the lefﬁ

hand portions of the curves shown in Figure 8. Here an ion at
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concentration my = 10" 7 is adsorbed on a mixed exchangar in which the

adsorbers 1 and 2 have cagacities C1 = 0.1 and C2 = 1.0, while (l(/'.')1 =

4
50 and (K/TYA = 10 . In tnis case the limiting values of Do vary

bs
from 5000 for adsorption on pure component 1 to 50,060 for adsorption
on pure component 2.

(c) Putting n=3 into equation (14) gives a cubic équation which
is diffirult to solve explicitly for the three roots co;responding to
possible values of ﬁM. However, by substituting reasonéble values of
(K/T), C, and Ty intn the cubic expression and letting @A + 0 it can be

shown that under these conditions there is only one real root. In

solving for this root numerically the same value for ﬁnlis obtained re-

gardless of whether the starting estimates are higher of lower than the

converged value. Using this value of ﬁH, the limiting Qalue of Do >

bs
% < in all cases as m, > 0. Hence for 3-1 exchange of a trivalent

ion on a mixed adsorber a. very low wvalues of m,

obs (21)

2 W

vs log m, for 3-1 exchange

Figures 11 and 12 illustrate plots of log D0 A

bs

on a mixed adsorber under ccnditions where the capacities of the two ex-
changers are the same and where the capacities are different. 1In all

cases the limiting values of D0 are given by

at very low values of m

bs A

equation '(21).
(d) n - p Exchange on a Mixed Adsorber. In the geﬁeral case of

‘'n-p exchanze on a mixed ?dsorber it is easy to show that as mA + 0 at

. constant m, the limiting value of Dibs becomes:
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F, — (22)

We have discussed the behavior of the overall distriburion coef-
ficient for the adsorptior of an ion at fixed concentration in sclution
on a mixed ion exchanger, both at low loading, which occurs ar high
values of D and at high loading, which occurs at low values of m, -

In the intermediate range -he behavior of the overall distribution co-
efficient is strongly influenced by the relative values of K/T for the
various components in the mixed exchanger. This is illustrated in Fi,-
ures 4 through 7 for adsorption of a divalent ior at oy = 1 x 10‘4 on

a mirxed adsorber in which both solid ccmponents have a capacity of 1.
With (K/I')2 equal to 100 and (K/.")1 equal to 1 there is a slight sugges-
tion of a change of slope in the plot for the mixture containing 5% of

component 2. As the value of (K/{), increases from 100 to 100,000 with

2

(KII‘)1 fixed at 1, this effect becomes much more pronounced because the
second adsorber becomes loaded much more quickly than does the first.

This behavior observed in plots of log D0 v8 log mA is indicative of

bs

a mixed adsorber. However, in manv cascs, especially when the (K/T)
values for the components in a mixed exchanger are not too dissimilar,
the effect may hardly be roticeable, as in Figure 4. This is also the

case for the log Do s log m, plots shown for 1-1 exchange in Figures
r

bs

2 and 3. As will be showr later, a far better method for differentiating

a mixture from a "pure' acsorber is to determine log DO

bs U8 load;ng of

the adsorber at constan:t m,-
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Th2 presence in a1 mixed exchanger of even a very small amount of
an adsorber having a high value of X/ relative to the value of K/ for
the adsorber present as the major component may have a dramaric effect
on the value of Dobs for the adsorption of an ion even at trace loading.
This is illustrated in Figure 7 for the adsorption of a divalent ion at
m, = 1x10 ' on a mixed exchanger in which both adsorbers have the same
capacity C=1 but different K/I values: (K/I’)2 = 130,000, (K/I‘)1 = 1.
Note that the presence of only 0.1%Z of component 2 in the mixture in-

creases the value of Do s by a factor of 40, at a supporting electrolyte

b

corcentration of 4.5 m, over the value observed fnr adsorption on pure
componeit 1. Thus, supposedly pure samples of a clay from different

sources may exhibit different values of D0 for the adsorption of a

bs
particular ion due to the presence in the samples of differing small
amounts of impurities with high distribution crefficients.

In Figures 9 and 10 are shown log Do s log A plets for 2-1 ex-

bs
change on a mixed adsorber at two different values of my, - The values
of m, (.02 to 4.5 m) in these plots span a range commonly encountered

in experimental situations. Here again the strong effect on Dob° of
=1
small amounts of a component with a large value of K/I in a mixture is

illustrated.

DISTRIBUTION COLFFICIENTS FOR MIXED EXCHANGERS AS A FUNCTION OF my
AT CONSTANT SUPPORTING ELECTROLYTE CONCENTRATION

We pointed out in the previous section that distribution cvefficients
are not experimerntally measured at constant values of My However, it
is relatively easv under most conditions tc measure distribution coef-

ficients as a function of m, at constant values of LA the supporting
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electrolvte concentration.

In an ion exchange equilibrium, as ~he concentration in solution
of the ian adsorbed mH -+ 0 at constant mA, the concentration of the ion
in the adsorber EH also approaches zero. Hence, the term (C - nﬁ:.M)n in

equation (¢) approaches the ion exchange capacity £ and
| (23)

For a mixed adsorber the corresponding limiting value of Dobs as m, -

0 at constant m, is thus giver by

1/p n/p

D =IFD = ——— IF, P% c (24)
. n/p T i .
i (pmA) i R |

Figure 13 shows plots of log Do Jc log My for 1-1 exchange on a

bs

mixed adsorber with C; = C, = 1, (K/T); = 1, and (K/T), = 100. With

my equal to 0.1 the limiting value nf Do as m, > 0 for a mixture con-
£

bs

taining 0.3 weight fraction of each component is 505 as computed using
equation (24). This is the value shown on the plot. As the value of

My increases the values of D begin to decrease and eventually go down
O

bs

w#ith a slope of minus one. Note that only the curves for the mixtures
with the three lowest weight fractions of the second component show
slight inflexinrns indigative 6f a mixed adsorber. A much more dramatic
way to differentiate bétween a‘”puré" adsorber and a mixed adsorber is

to plot log Do vs loading of the adsorber at fixed values of m,.

bs A

Figure 14 shows the loading plots for 1-1 adsorption on a mixed exchanger

under the same conditions as those for the log Dobs vs log My plots
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shown in Figure 13. Of course, the limiting values of Dors (correspon-
ding to zero loading) are the same in both Figures 13 and 14 and the
’ values of DObS eventually all approach a limiting value at full loading
of both adsorbers. However, in the intermediate regions the overall
"observed” values of D for the mixed adsorbers much more clearly reflect
the composite nature of the adsorber. Similar plots for 2-1 and 3-1

exchange on mixed exchangers are shown in Figures 15 - 18,
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Log D vs. Log A for 1-1 exchange
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Log D vs. Log A for 2-1 exchange
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APPENDIX 1

Description of the Mathematics in the Computer Program

The calculatione performed by the computer program involve the
soluytion of equation (3) fcr the value of ﬁM for each adsorber in the
mixture with a range of fixed values of the other quantities in the
equation. The values of D, the distribution coefficient, and L, the
loading, are computed for each adsorber under specified conditions.
These values are then combined to give the overall values of D and L
for the mix.d adsorber.

With n and p both equal to one (l1-1 exchange) equation (3) can be
solved directly for ﬁM. However, higher order equations must be solved
wvhen 1 and/or p are greater than unity. Thus different methods wcuid
have to be used in the latter cases, not only to solve for the roots of
the equations, but also to choose the approprigée root for the computa-
tion of D and L. 1In order to make the computer program as compact and
efficient as possible, tne same method is used for all three cases.
This results in a slight loss of efficiency for the case where n and p
are equal to one. This is more than offset, however, by the gain in
efficiency for:Lhe cases where n or p are greater than unity.

In rhé computer program equation (3) is solved numerically for the

value of ﬁﬁ for each adsorber using the Newton-Raphson method. In im-

plementing this method we rearrange equation (3) and define

- p

c — nrﬁM)n ~ Ty (25)
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Suppose EH(O) is an initial estimate of the value of the desired

root of equation (25). Then an improved estimate of the root is given

ty
B1) = Byco) A0y (26)
where
£y ()
AEH = ;' = ) ° (27)
*"M(0)

V(- - . o
In this equation f (mH(O)) represents the derivative of f(mH) with re
spect to EH evaluated for the initial estimate of the root ﬁH(O)' The
derivative of equation (25) with respect to ﬁH is given by

%) (¢ - am)™ " - pa,P Tt (28)

£'(my) = -

The value of ﬁM(l) is then used similarly to obtain a better estimate
of the value of the roct, and the process is continued until the differ-
ence between sv ~essive calculated values of ﬁM becomes arbitra~ily
small.
It can be shown by hand calculation that in thLe cases with n or p
> 1 the desired root is the smallest positive root. Hence an initial
0

estiméte of:ﬁH is taken as 10'-1 . Convergence upward to the smallest

positive rodt ﬁM is very rapid.

DAt i e o L L . L
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APPENDIX 2

Description cf the Computer Program

The computer program, writter in Fortran, allows the calculation
of the total distribution cocfficient and total 1~ading for rhe adsorp-
tion of an ion in solution onto an exchanger containing up to ten ad-
sorbers, each with its own value of K/ and capacity. (Of course all
dimensions in the program may be changed to suit the needs of the in-
dividual user.) The definitions of the variables which comprise the
input and output of the program are shown in Table 1, while Table 2
gives the field and format information for transferring the variables
tce the input cards.

The program, as listed below, contains a statement CALL DPLOT. We
have not included a plotting routine sinc2 such routines are often writ-
ten to take advantage cf the pecularities of a specific computing system.
If the user wishes to plot his output, as we have done in this report,
he may supply his own plot package. Since all necessary outpui variables
are stored in subsrripted arrays, adapting any plotting routine to the
program should be fairly simple.

In order that a prospective user may check o't the program at his cwn
installation we have included a sample problem. Values of the input vari-
ables for this problem are shcwr in Table 3. The problem illustrates 2-1
exchange on an adsorber consisting of three exchangers. Output from the
program corresponding to the input variables in Table 3 is shown in Table
4. Input cards generating this output are included as the last eight

COMMENT cards at the head of the program. In order to use these last
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COMMENT cards as iuput for the sample nroblem it is only necessary to

remove the C from Column 1 and the asterisk fr.n Column 79 on each card.
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TABLE 1

DEFINITIONS OF THE VARIABLES WHICH COMPRISE
THE 1/0 OF THE MAIN PROGRAM*

INPUT

NKGC Number of different adsorbers in the exchanger (< 10), or
Number of different values of KG (defin/d below), or
humber of different values of C (defined below).

NA Number of different values of A (defined below).

NM Number of different values of M (defined below).

NIT Maximum number of iterations allowed for convergence.
EN Valence of the exchangeable ion.

P Valence of the adsorbed ion.

EPS Convergence parameter.

C Exchange capacity of different adsorbers in the

exchanger (moles/kg).

KG K/T for different adsorbers in the exchanger.

A Concentration of supporting electrolyte (moles/{).

M Equilibrium concentration of exchanged ion (mwoles/4).

FR | Weight fraction of each adsorber in the exchanger.
OUTPUT

DTOT Distribution Coefficient

LTOT Loading fraction of the exchanger

*No description of plotting subroutines is given in the following,



Card No. 1

Card No, 2

Card No. 3

Card No. 4

Card No. 5

Card No. 6

40

TABLE 2

INPUT DATA FORMAT FOR MAIN PROGRAM

Field Variable Format
1- 5 NA I5

6 - 10 NM 15
11 - 15 NKGC I5
16 - 2C NIT 15
21 - 30 EN E10.0
31 - 40 EPS E10.0
41 - 50 P E10.0
> -10 Aq E10.0
7m0 g £16.0
Not=: If NA > 8 then enough cards to accomodate

all values of A will follow.

1-10 M E10.0
71 - 80 Mg E10.0
Note: If NM > 8 enough cards to accomodate
all values of M will follow.
1-10 KG, E10.0
71 - 80 KG2 E10.0
Note: If NKGC > 8 enocugh cards to accomodate
all values of KC will follow.
1-10 Cy E10.0
71 - 80 C8 E10.0

Note: If NKGC > 8 ernough cards to accomodate

1 -

7 -

all values of C will follow.
10 FR; E10.0

.
'

80 FRg E15.0

Note: If NKGC > 8 enough cards to accomodate all

valves of FR will follow.




TABLE 3

INPUT VARIABLES FOR THE SAMPLE PROBLEM

Variable Vaiue Variable Value Variable Value
NA 5 NM 2 NKGC 3
NIT 100 EN 2.0 EPS 1.0-10°
P 1.0 AL 0.1 A(2) 0.5
A(3) 1.0 ALS) 2.0 A(5) 4.0
M(1) 1.0-107%  M(2) 1.0-1072 KG(1) 1.0
KG(2) 1.0-10>  xc(3) 1.0-10° c(1) 1.0
c(2) 1.0 c(3) 1.0 FR(1) 0.95

FR(2) 0.04 FR(3) 0.01
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TABLE 4

OUTPUT FROM SAMPLE PROBLEM

2-1 PXCEABGE OB A RIXTCRE )P 1 ADSORBEARS

TRE EICNANGER COKTAINS 3 COAPOBEETS

K/G( 1) = 1. c( 1) = 1.00cCc 00 PRACTION = 0.950
Ks¢t Z) = 100C. c{2) = 1.00D 03 PRACTION = 0.040
K/G6( 1) =100700. c{ 3 = 1.00D 00 PRACTION = 0.010
[ ] A D L

1.0000-08 1.0000-01 3.003p 02 6£.0050-02

1.000¢c-0a S.0CCD-CY 1.1730 02 2.3a87D-92
1.0000-08 11,0000 00 7.0130 271 1.803n-Q2
1.000tr-08 2.0CCD CO 4.133D Ot 8.2870-03
1.000p-08 &.00CD 00 2.35%D 01 8.7020-0)
t.000£-02 1.0CQ0D-01 2.6200 01 S5.281D-01
1.0200-02 5.000D-01 5.575D 00 1.115D-01
1.000c-02 1.0C0n 00 3.0030 00 6.005D0-02
1.000p0-02 2.000D 00 1.997p 00 3.99830-92
1.000r-02 &.0COD CO 1.357D 00 2.718Dp-02
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LToT

ALXED ADSORBER PROGRANM

LUPGY
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460
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1.0090E+3 1.0007%+5
1.0 1.0
0.08 0.01
2-% EXCRASGE DN A ALXTNRE OF 3 ALSORBERS

IAPLICIT REAL® S (A-W,3-2)

BEAL®S 8, KG,LOAD,LTOT

PINESSION A(30),R(3I).XKG(10),C(10), PR(10) ,CH( 10}, PR(10y ,OPA (10),
1AR (10) , DSV (10),LOAD (10) ,D (10) .0 TOT (30, 30) ,LTOT(30,39) ,TTTLE(20)
READ (°.1) BA,¥R, NEGC,WIT.EN, EPS,P
PORAAT (+ 5 ,J219.0)

IP(WA .BQ. 0) CALL EBXIT

READ (5,2) (A(I),I=1,PA)

READ (5,2) M (I),f=1,3M)

READ (S,2) (XG (1) ,I=1,BK3Y)

READ (S5,2) (C(I),L=1,WKGC)

READ (5,2) (PB (I),I=1,8KG2)

PORAAT (BE10.0)

I? (PR(1) .EQ. J.) GO TO 10)

00 500 LA=1,0A

A=) (LA)

DO S00 mG=1,%R

A=A (AN)

DO 210 I=1,BK5C

CN¢I) =1.0D-1)

DO &S0 SP=1,JIT

DO 830 I=1,¥KGC

PA(L)=KG (1) SEN/AASOEN® (C(T) ~ENSCY (1)) #6 2N -CA (I) s0P
DAY= gR-1.000

PR 1=P-1.0D0

DPH (1) >-KG (I) *EA/AASOENSEN @02 ¢ (C (I) -EYOCH (1)) SOENN1-2 =4 ([) SOPNY
M (T)=~P8 (1) /DPU (1)

AN (T) = AN (T) oCH (1)

DO 810 I=1,MKGC

OBV (1) *DABS (AR (I) /-9 (I)-1.000)
IP(CONV(I) -2PS) 410,810,820

CORTINDE

GO 70 860

DO 830 I=Y,NKGC

CRIT) =AN(T)

CONTINGE

BRITE(G, 10)

PORAAT (1H116HDID ROP CONVERGE)

00 870 I=%,MKGC

CR(I) =AN(D)

RP=1.0/P

EP=TH /P

DO 880 T=1,WKGC

LOAD(I) =EReCA(D /A (1)

D(T) =NG(I) SSRPS( (C (1) ~ENOCN (1)) /AN} SO ENP
0720.000

TL=0.000

PO 890 I=1,WKGC

DE=DT+D(L) *PR(D)

TL=TL¢ LOAD (I) ¢PR(I)
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DTOT (AM,LA)=DT

LYO® (WA, LA} =TL

CORTINOR

RBAD(S,60) (TITLE (RTIT) ,KTIT=1,20)
PORNAY (20AW

ORITE (6,70) (TITLE(KTIT) ,KPIT=~1,20)
PORXAT( 181, 20A8)

I (6,200 WKSC

PORNAY (RO, * THE EXCHABGER CONTAINS® ,I3,1X,°*I)9PIRENTS//)

DO 600 I=1,8KGC
sRITE (6,30) I.KG(D),I,C(I),PR(L)
PORMAT (180, 10X ,°K/C(*, 12, %) =°,£7.3,5%,°C(",I2,%)

1'PRACTIOB =*,0PP6.3, /)

mnmITE 6,80)

PORNAT (MO, 10X, *9° _10K,*A°,12K,°0°,10K, L")
PO 650 Be= 1,54

DO 650 LA=1,8A

sRITE (5,5ﬂ B (U9 A(LA),DTOT(BA, LA} ,LTOT (AR, LD,
PORRAT (180, 1PE1S.3,211.),2:3.3,211.3)

CORNTI NOE

CALL DPLOT

G0 TO 200

1)

SUBROUTINE DPLOT

asvoRm

£ED

7/G0.PTOSP00Y DD ©

<

2 3 100 2. 1 -7 1,

n.s 1.9 2.0 8.0
-8 1.0 -2

1.0 +3 1.9 5

1.0 1.0

9.08 .01

=', 1929.2,5Y,
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