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UNDERSTANDING THE BOILING WATER REACTOR LIMIT CYCLE

Jose March-Leuba
Oak Ridge National Laboratory"

This paper presents an interpretation of the physical mechanisms involved in
the development of limit cycle oscillations in boiling water reactors (BWRs). Based
on this interpretation, approximate correlations for some oscillation parameters are
developed and shown to be largely independent of the particular reactor operating
condition. The stability of the limit cycle is also studied in this paper. It is shown
that the BWR limit cycle may become unstable and bifurcate. The bifurcation
process leads to aperiodic (chaotic) behavior of the reactor power and causes the peak
oscillation powers to be larger than those from a nonbifurcated limit cycle.

BACKGROUND

It is a well known fact that BWRs are susceptible to instabilities when
operated at relatively low flow and high power. At least three instability types have
been recognized in commercial BWRs:

(1) Control system instabilities, that may be caused by out of tune controllers.

(2) Channel thermohydraulic instabilities, that are purely thermohydraulic
instabilities related to the momentum dynamics of heated channel in a two-
phase flow regime.

(3) Reactivity instabilities, that originate from the coupling of the reactor
neutronics with the channel thermohydraulics, including momentum dynamics.
Two types of reactivity instabilities are recognized:

(a) In-phase or core-wide instabilities, when the neutron dynamics of the
fundamental mode dominates resulting in core-wide oscillations.

(b) Out-of-phase or regional instabilities, when parallel channel momentum
dynamics is the dominant feedback loop and is reinforced by a
subcritical mode of the neutronics.
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Agreement No. 1886-8947-8A and performed at Oak Ridge National Laboratory, operated by
Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract
No. DE-AC05-8/1OR21400. The views expressed in this paper are not necessarily those of
the U.S. Nuclear Regulatory Commission



The above four instability modes have been observed in either special tests or as a
result of normal reactor operation at low flows. Typically, reactivity instability
modes are of more relevance to safe commercial BWR operation than the other two
types because the control system and the channel thermohydraulics are designed to be
stable under normal conditions.

Reactivity instabilities result in
power oscillations that diverge from the
steady state equilibrium point following
a spiral trajectory in phase space. If
BWRs behaved as linear systems, the E W' r~ '
oscillation trajectory would diverge
indefinitely. The nonlinearities in the
system, however, cause the oscillation
to remain bounded as the trajectory
converges to a limit cycle. The limit
cycle is a particular periodic trajectory
in phase space that attracts all other
trajectories. If the oscillation trajectory
is perturbed away from the limit cycle,
it will eventually converge back to the
limit cycle when the cause of the
perturbation is removed. An example
of a limit cycle in phase space can be
seen in Fig. 1. In this figure, phase
space is represented by the neutron flux
and the excess fuel temperature. It can
be observed that the trajectories diverge
(i.e., spiral away) from the unstable
equilibrium point but stay bounded and
are attracted by the limit cycle
trajectory. Mathematically, the limit
cycle is caused by the nonlinearities in the system dynamics that have an stabilizing
effect on the divergent oscillation. The main nonlinearity affecting BWR dynamic
behavior was determined to be related to the power-dependence of the cross
sections1-2 (i.e, the void reactivity coefficient). In the point kinetics approximation,
this nonlinearity is represented by the term p times n.

Neutron Flux

Fig. 1. Illustration of the development
of a typical limit cycle in phase space

REACTIVITY FEEDBACK DURING LIMIT CYCLE OSCILLATIONS

Boiling water reactors are extremely complex nonlinear devices. To
understand its behavior we must simplify their dynamics to a bare minimum. With
this goal in mind, we should attempt to understand first their linear dynamic
behavior. Figures 2 and 3 show the open loop transfer functions of a typical BWR
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Fig. 2. Typical BWR reactivity-to-power
and power-to-reactivity transfer functions

G
A
1
N

d
B

-50 t-

P
II
A
S
E

D
c
g

- 1 0 0 ' — ^ - J U L -

0.001 U.01 0.1 1 10

FREQUENCY (Hz)

100

Fig. 3. Typical BWR open loop
transfer function

computed using the LAPUR code.3 A reactor is unstable if the open-loop gain is
greater than 0 dB at the point where the phase is -180°. Observation of Fig 3 shows
that the phase is only below -180° for a small range of frequencies around 0.4 Hz;
therefore, unstable oscillations in BWRs must have a period of approximately 2.5 s.
This period is related to the bubble residence time in the core. We also observe in
Fig. 2 that the magnitude of the reactivity feedback transfer function has a steep
slope beyond 0.3 Hz. This implies that the reactivity feedback acts as a strong low-
pass filter, and damps high frequencies from the power oscillation. Thus, we can
reach two conclusions from these simple observations:

(1) If a limit cycle is developed by a BWR, the reactor power should follow a
periodic oscillation with a period of about 2.5 s (i.e., a frequency of
approximately 0.4 Hz).

(2) Regardless of the time-shape of the power oscillation, the reactivity oscillation
should be essentially sinusoidal. This is due to the filtering effect of the
reactivity feedback transfer function. No mater how many harmonics the
power oscillation has, the reactivity feedback transfer function will filter out
their contribution to the reactivity.



These two findings might ;eem rather irrelevant at first, but they allows us to
simplify the limit cycle analysis dramatically. Typically, most of the modelling
complications arise from the thermohydraulic feedback. If these two findings are
applicable to any limit cycle case, then the feedback reactivity, p(t), is approximately
given by an expression of the form

p(t) = -p0 + p, sin(wt) , (1)

where p0 is the average reactivity value, p t is the amplitude of the oscillations and w
is the oscillation frequency that is approximately equal to 0.4 Hz.

The reduction of the complexity of a thermohydraulic model to a simple
equation such as Eq. (1) allows us to perform very simple analysis that yield general
correlations applicable with some degree of approximation to any BWR as long as
Eq. (1) holds. The parameters of these correlations become now p0 and p,, instead of
the physical geometry and cross sections of a particular reactor.

Equation (1) can be justified mathematically in the following manner: First.
We know that a limit cycle oscillation is periodic. Thus, the power oscillation, n(t i,
can be expanded in Fourier series without loss of generality as

n(t) = I Ak cos(kwt) + I Bk sin(kwt) . (2)

Due to the filtering effect of the fuel transfer function, large oscillations in power
result in fairly small oscillations in heat flux from fuel to coolant, and the reactivity
feedback transfer function can be considered to behave linearly.2 Thus, the reactivity
feedback can be approximated with good accuracy by the following expression

p(t) = I Hk Ak cos(kwt + \|/k) + Z Hk Bk sin(kwt + yk) , (3)

where HK and \\fk are the gain and phase, respectively, of the feedback transfer
function. Typical power feedback magnitudes (Hh) are: 0.14 dollars per percent
power change at 0 Hz, 0.007 $/% at 0.4 Hz, and 0.0014 $/% at 0.8 Hz. Since the
first two harmonics (k = 0, and k = 1) account for 99% of the feedback energy,
higher harmonics can be neglected and Eq. (3) reduces to Eq. (1) with the proper
selection of initial phase lag. We shall use Eq. (1) to study the BWR limit cycle and
to obtain some general correlations.

REACTOR RESPONSE TO SINUSOIDAL REACTIVITY PERTURBATIONS

The response of a nuclear reactor to sinusoidal reactivity perturbations has
been well studied.0 It is well known that, for the solution to exhibit bounded
periodic solutions (i.e., limit cycles), a negative bias (i.e., -p0) is required. For each
value of p,, there is only one value of p0 that results in a limit cycle: if p0 is too
small, the oscillations diverge exponentially; if p0 is too large, the oscillations
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Fig. 4. Power response to sinusoidal
reactivity with small bias

Fig. 5. Power response to sinusoidal
reactivity with large bias

converge to zero. This effect can be observed in Figs. 4 and 5, that shows the
response of a point kinetics model (with typical BWR parameters) to a sinusoidal
reactivity perturbation of the type of Eq. (1). In Fig. 4, the bias, p0, is too small and
the resulting power oscillation diverges. In the case of Fig. 5, the bias is too large
and the power oscillation is damped and converges towards zero.

If the right amount of bias, p0, is present for the particular amplitude of
reactivity oscillation, p,, we obtain the situation represented in Fig. 6, where the
power oscillation reaches and maintains a constant amplitude. The reactor behavior
in this case is similar to that of a limit cycle caused by an instability. Thus, we
conclude that in order to obtain periodic bounded power oscillations in a nuclear
reactor, a relationship must be satisfied between the reactivity bias, p0, and the
reactivity oscillation amplitude, p,. Physically, the reactivity bias is caused by an
increase in average reactor power that increases with the oscillations until the reactor
is subcritical enough to compensate for the divergent tendency imposed by the
reactivity oscillation term,

To study the relationship between p0 and p,, the model of ref. 2 was used to
compute a large number of limit cycles with different oscillation amplitudes. In the
model, which is described and validated in refs 1 and 2, the fuel dynamics are
represented based on a single node approximation, the channel thermohydraulics are
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Table 1. Calculated limit cycle
parameters as function

of peak magnitude

Ka DR"

1.0 1.00
1.021.02
1.05 1.08
1.1 1.15
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.30
1.47
1.62
1.78
1.93
2.08
2.24
2.39

2.0 2.53

1.00
1.45
1.82
2.35
3.30
4.24
5.15
6.2f

9.8f

13.5s

18."
24."
32."

0.00
0.063
0.16
0.32
0.65
0.98
1.32
1.65
1.90

0.00
0.36
0.59
0.87
1.32
1.72
2.10

Fig. 6. Power response to sinusoidal
reactivity with the right bias

1 Inverse gain margin (see ref. 2)
b Decay ratio
c Peak oscillation value as fraction

of equilibrium power
d Reactivity bias in dollars
' Reactivity oscillation in dollars
' Solution has bifurcated (see ref. 2).

Value reported is highest peak
g Solution is chaotic (see ref. 2).

Value reported is highest peak

m o d e l e d u s i n g a t w o - n o d e
representation, and the neutron dynamics
are based on the point kinetic
approximation. The model parameters
used are those presented in ref. 2 with
the exception of using 6 groups of
delayed neutrons instead of 1 and Ko

= -3.2769xlO\ Different limit cycle
conditions were modeled by changing
the feedback gain, K.

A summary of the results of this analysis is presented in Table 1, that contains
the values of p0 and p, required to obtain a limit cycle of amplitude N ^ . The linear
decay ratio and inverse gain margins are also shown in Table 1. From these data, we
can obtain the following correlation:

p,2 = 2 pQ + p0 (± .006, p, < $2) (4)

that relates reactivity bias required to maintain a bounded limit cycle with a particular
reactivity oscillation amplitude. Equation (4) compares well with the analytic
solution for small oscillations reported in ref 4 (p,2 = 2p0, p0 « $1).



From the results ot Table 1, we observe that the peak value of the neutron
flux oscillations, N,^, is related to pt through a correlation of the form

( N ^ - No)/No = P l + 0.75 p,2 - 0.14 P l
3 (± .001, P l < $2) , (5)

where No is the equilibrium flux. Note that Eq. (5) is only valid for reactivities
satisfying Eqs (1) and (4), i.e., for fully developed periodic limit cycles, because
Eq. (5) obviously can not be applied to cases like those of Figs 4 or 5. Equation (5)
can be interpreted as the nonlinear reactor transfer function at the frequency studied
(w = 0.4 Hz), and reverts to the linear gain (i.e., 1.0) for small values of p,, as
expected.

Numerical simulations appear to indicate that Eqs. (4) and (5) are independent
of reactor parameters and, thus, general for any nuclear system where the point
kinetics approximation is applicable.

PHYSICAL MECHANISM OF THE BWR LIMIT CYCLE

As seen in the previous section, in order to have a self-sustained, periodic
bounded oscillation of the power in a nuclear reactor, the reactivity feedback must
oscillate sinusoidally and have a negative bias of the appropriate magnitude. Indeed,
this bias can be understood as the stabilizing mechanism for an unstable divergent
oscillation. T o understand this mechanism, let's follow, step by step, the development
of a limit cycle in a BWR from the point of inception of the linear instability:

(1) A moment before the instability event starts, the reactor can be assumed to be
operating in a steady state condition with some particular power and flow.
Since the reactor is critical at this point, the net reactivity is zero.

(2) If by some change of conditions, the reactor suddenly becomes unstable in the
linear sense, any small perturbation will result in diverging power oscillations
that, in phase space, will spiral away from the equilibrium point similarly to
the case presented in Fig. 1. Initially, the perturbation around the equilibrium
point will be small enough so that the reactor will behave linearly and the
oscillation will grow exponentially with a time constant equal to DR/w, where
DR is the decay ratio and w is the oscillation frequency.

(3) As the oscillation becomes larger, the nonlinearities in the system, and
specially the p-times-n term begin to grow in importance. These
nonlinearities have the effec of "leaking" power between otherwise linearly-
orthogonal modes. In effect, the power that the instability is generating on the
fundamental oscillation mode ( sin(wt) ) is distributed among other modes. In
particular, some of the power of the fundamental mode "leaks" into the steady



state mode (i.e, the average power). This increase in average power feeds
back to the reactivity and generates a negative reactivity bias, p0.

(4) As the reactivity bias increases, the reactor becomes more and more subcritical
and tends to damp out the unstable oscillation. When a sufficiently large
degTee of subcriticality is reached to cancel out the growth tendency imposed
by the instability, a dynamic equilibrium is established and the limit cycle
oscillation remains at a constant level.

Thus, we see that the underlying cause of the appearance of limit cycles that
bound the oscillations of an unstable BWR is the increase in the average power that
accompanies the oscillations.

THE AVERAGE POWER INCREASE

We have seen that the average reactor power must increase during oscillations.
Unfortunately, general correlations of the type of Eqs. (4) and (5) can not be found
for this increase because it depends on the particular reactor conditions. The
procedure to estimate the average power increase for a given peak oscillation power
is as follows:

(1) Estimate, from Eq. (5), the value of P! required to establish the particular peak
power, N,,^. Note that this procedure depends on the initial (or steady state)
power, No. For instance, almost twice as much reactivity, p,, is required to
obtain a peak power of 100 MW over the initial power when operating at an
initial power of 1000 Mw than at a power of 2000 MW. Thus, the value of
p, depends not only on N,^, but also on No.

(2) Determine, from Eq. (4), the reactivity bias, p0, required to maintain a periodic
bounded oscillation with the particular value of p, obtained from step 1.

(3) Determine the average powe, increase required to produce a reactivity bias of
po. This is accomplished by dividing p0 by the steady state power reactivity
coefficient, which depends on the particular reactor and operating conditions.

This procedure results in an approximate correlation for the average power
increase, N,ve, of the form

N w = Favc ( N ^ - No) , (6)

where F.ve is a proportionality factor that, for typical BWR parameters, is of the order
of 0.015 to 0.02. In other words, the average power increase is typically 1.5% to 2%
of the value of the peak power minus the steady state power.
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LIMIT CYCLE STABILITY

Numerical simulations*'6 have shown that as a parameter controlling the
reactor's linear instability is increased, the limit cycle may become unstable and
degenerate, through a cascade of period-doubling pitchfork bifurcations,1 into a
chaotic (i.e., aperiodic) sequence of power oscillations. In this regime, the power
oscillations are aperiodic but remain bounded by a strange attractor.1 It appears,
however, that the oscillation amplitude (i.e., peak power) is increased by this
phenomenon, and that the bifurcated limit cycle exhibits larger peak powers than
extrapolation of the nonbifurcated limit cycle would predict. Thus, the understanding
of the bifurcation phenomenon in BWRs is relevant to accident analysis where large
peak powers may affect fuel integrity.

As seen in previous sections, if a positive disturbance is imposed on a limit
cycle, the system nonlinearities create a positive average power increase that, through
its reactivity effect, damps out the disturbance. An instability in this mechanism can
occur if the average power increases too much during a power peak causing the next
peak to decrease by an amount larger than the original disturbance. Thus, if a limit
cycle should become unstable, an oscillation of double the original period will be
established because the mechanism involves two full oscillation periods. In first
approximation, the average power (<N>) and the reactivity bias, p0, can be assumed
proportional to the peak disturbance value, N ^ .

Ap0 A<N> A N ^

Poincare maps were used in ref. 2 to study numerically the stability of the
limit cycle and the bifurcation process. These maps are obtained by plotting the
value of a power oscillation peak, N2, versus the previous oscillation peak value, N,.
It was shown in ref. 2 that this procedure results in a quadratic map similar to those
studied by Feigenbaum.7 An analytic expression for this map is the following:

N2 = N, DR(N,) , (8)

where DR is the nonlinear decay ratio, which is a function of the oscillation
amplitude. The equilibrium limit cycle is defined by N2 = N,, or DR = 1.0.

The stability of the limit cycle is guaranteed as long as the derivative of N2

with respect to N, evaluated at the equilibrium point (DR = 1.0) is greater than -1.0
(i.e., the slope of the Poincare map is smaller than 45"). Taking derivatives in
Eq. (8), we obtain



dN, dDR dDR dK
— = DR + Nt — = 1.0 + p0 ^ ^ , (9)

where K is the inverse gain margin,2 and we have made use of Eq. (7). Thus, the
stability condition is

dDR dK

From Table 1 we observe that the term dDR/dK evaluated around DR = 1.0 is
approximately constant and equal to 1.43. The term dK/dp0 is physically the change
in gain of the neutron dynamics caused by a reactivity increase. For small
perturbations around the limit cycle, this second term is approximately 1.0 dollars1.
Thus, the condition for stability of the limit cycle can be approximated by

p0 > $-1.40. (11)

Using the correlations developed above, the stability condition can be
expressed in terms of peak power. The result is that BWR limit cycles should be
stable for peak power values of approximately less than 500% of equilibrium (i.e,
initial) power. Beyond these limits, the bifurcation and chaotic regimes are
established and result in larger peak powers than a nonbifurcated limit cycle study
would predict.

SUMMARY

It has been shown in this paper how a limit cycle bounds the power
oscillation in BWRs when they become unstable. The underlying cause for the BWR
limit cycle is an increase in the average power that result in a negative reactivity
bias. This average power increase is above the required equilibrium power taking
into account all system effects such as water level or inlet subcooling changes. Thus,
BWRs under limit cycle conditions are actually subcrirical.

Two general correlations have been developed that relate the reactivity bias
with the amplitude of the oscillation. Based on reactor dependent parameters, the
average power increase can be calculated from these correlations. Typical values of
the average power increase are 1.5% to 2% of the peak power oscillation.

The stability of the BWR limit cycle has been studied. It has been shown
that the limit cycle can become unstable and bifurcate into an aperiodic regime. The
bifurcation proces: increases the amplitude of the expected peak powers, and it is
estimated that should occur for limit cycles with peak powers greater than 500% of
the steady state power.
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