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The PIC (particle-in-cell)methodhas oeen used for
computingcompressible, multimaterial problems for more
than tWenty year9. The pre:sentwork extends the same
numericalapproximationwithoperatorsplittingto hydro-
elastic-plasticflow problemsin two-dimensionalEulerian
coordinates.Applyingthe operatorsplittingmethod, the
basic set of cylindricalequationsis splitin radial (r)
and axial (z)directions.The calculations,performed in
each direction separately,are alternatedfor each time
advancementto maintainthe accuracy of one-dimensional
procedure. A shaped-chargeproblem13 treatedusingthe
presentcodeand the results are compared with the ex-
perimentaldata as well as thosefromothercodes.

Introduction

It has been of considerablein-
terest to resolve multi-material
compressible flow problems with
materialinterface,a Lagrangianap-
proach would be a quite natural
choice,e.g., HEMP [1], rOODY [2],
MAGEE [3,4]. However, for a large
materialdistortion,the Lagrangian
calculationscan no longer be con-
‘,lnued,and subsequentlyan Eulurian
or a combined Lag~angian-Eulerian
typeschemehas been applied.

Although many schemeshave been
inventedin the variousEuleriancode
developments,matsrialsare treated
in two ways,namelythe Particle-in-
Cell Method [51, where materials are
fepres~ntedby dlscret9 mass points
called Particles,and the oontlnuoua
Eulerianmethodas in SOIL[6], HELP
[71 and CSQ [81. In the continuous
method, the computing eaonomy is
galned, however,the Lagrangian-type
capabilityof P’Cmethodis lost and
subsequentlyreplacedby variousin-
terfacetreatments.

In developingthe presentcode,
the PIC capability i9 sought to be
maintained while improving the ac-
curacv and the computing economy.
Recently, Clark [9] proved tne ac-
curacyof th@ standardPIC method to
De Istorder in hydrodynamiccompu\’.a-
tionof multi-materialproblems and
proposeda secondorderscheme. Here
a similarsecondorderschemeis used
to compuLe multi-materialelastic-
plastic flow including phaae
transitionand span. A hemispheri-
cal, Topper-lined,shapedchargewith
75/25OCTOLas high explosive(HE) is
calculatedusing the present code.
The resultsare comparedwith the ex-
perimentaldata as well as thosefrom
othercodes.

THE CONSERVATION EQUATIONS FOR A
STRESSSUPPORTINGMEDIUM—.

The conaervatlonequations in two-
dilllensionalcylindrical or plane
Euleriancoordinatecan be writtenas
below
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Mass
each regime of flow, de need proper
❑odels or equations of state, and
criteriadefiningthe transi~ionfrom
one regime to another. Here a
straight forward approach La taken,
yet there does not seem to exist any
better model.

Momentum

(a) Stresses in Elas:icRegime

When a material flows elasti-
cally, Hooke’s law in current form
can be written aa below

DSrr
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where a - 0 for planegeometry,

a n 1 for cylindricalg90me:ry,
= ~ (-srr - Szz) (7)

srr
or +s Zz de-oDa aa

FE-z+’%’%

Where G = modulus of elasticity in
shear

p.- 1/3 :1
and 61; = mrrectlon for rigid body
rotation- 1/3 (Orr + Ilzz + Oee)

U,V - velooitles
p = deneity
t . time

In tensor form

(8)# = stress deviator, and
I = apeciflo internal energy

oijwhere e - at?aln rate deviatorEQUATIONS OF STATE

Uhan u strese supporting m~dlum
flows under ● wida range of stresses,
it exhlblta a variety of different
phyaloal oharaoLerlntloe. Depondlng
on lte retention of elaatlo oharao-
ter, the flow may b. elastlc or
plastio. When molting, it would be-

---- -,- ___m _ . _ , _



o

0

u.+~~
ar 1

(b) Stressesin Plastic Regime

For plagtic flows, Prandtl and
Reuaa considered both plastic and

+ (* +$) S7(%LQ)
az 3p Dt

1 q) ~oes=+ (+ . —
(9) 3p Dt

au ~rr
‘F + (* + *) Srz

elastio strain simultaneously and ar-
rived at the fnllowing flow equation

‘J is the plastic‘dhere~ - ~ #1 ;

lJ
WOrk/unit volume

and YO - yield stress in siuple
tension.

Expanding (10)
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Physically i is the work done
per unit volume in changing the shape
of the madium. And Eqs. (11-14)

holds at the yield limit and for fi 2

0. When ~ < 0, the material is un-
loading elastically from a plastic
stat~ and Eq. (4-7) is to be used.
Therqfore, for a ~lastic regime of
flow, Eqs. (11-15) have to be solved.

(c) Hydrostatic Pressure

Various forms of equation of
state fOr pressure are available and
we will simply write this as belod.

P - f (p, I, Material) (16)

(d) Yield Criterion
(11)

Te oheok whether a material 1s

(12)

(13)

(14)

iri elastlc or plastic state, von
Misea criterion is employed hero.
Dunotlng three prinolple direotiona
by sabscrlpts 1, 2, and 3.

s, m l/2(#’ +s=) + 1/2

[(srr - SZZ)2 ‘ (2 srz)2]’;2

S2 ● W(sr’ ● s=)

1/2 [(srr - SZZ)2

+ (2 6rz)zj”2
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Then von Mises yield criterion
says thata materialis in

elasticstatewhen 4 S 2/3 (Y”)2
or’

plasticstatewhen @ > 2/3 (Y”)2

Now let’s suppose that a small time
step, At, is chosen such that the
Prandtl-Reuss relation is valid.
During the time increment At, a
mater.al can be in an elastic period

‘tl’ then in a pla~tic period At2,

i.e., At = Atl + At2.

Then for a rigorous computation

of siJ , Atl, has to be obtainedsuch

that

o
Atl =

2/3 (YO)2 (19)

is sat~sfled. An iterativeprocedure
might be conaldered. However, con-
siderln# the acouracy of the yield
criterion itself and plastic flow
model , a simpler method seems
profitable. An experlenoe with a
Lagrangian computation shows that the
follf~wing soheme proposed by Wllkln8
[1] is adequatein computing stress

deviatorson yield surface, (hi])*.

where

f. 2/3 (Yo)2/4 (20)

Th@refore, if th~ flow boctomeaplaa-

tic duringAt period. SIJ 1s first
calculated based on elastic

assumptions, then tne new stress

deviatorson yieldsurface (SiJ)” are
approximated by (20)

(e) Stress Correction f’or RigidBody
Rotation

The magnitude of s:ressesdoes
not changeduringa rigid body rota-
tion, cnd the new Stresges after
rotation
have to
original
rection
well as,

as well as afterdeformation
be expressedin termsof the
coordinatesystem. The cor-
for rigid body rotation,as
aftardeformationhave to be

expressed in terms of the original
coordinatesystem. The correction
for rig!dbodyrotationis relatively
straight forward. However, there
doesn’tseem to exista uniqueway of
correctingstressesfor deformation.
Gne possibility is tc!include this
effectintothe governing differen-
tial equation (1.e., Bertholf[2]).
Eventhoughtechnicallyinteresting,
the inclusionof deformationcorrec-
tion does not appear to be very
significantfor practical purposes.

‘J is rotated by wSuppose S
duringa time increment,At, then the
new stress deviate? in original coor-

ijdlnatesystem,So , can be writtenas

rrso - Srr COS2 w + sZz sin2u

+ 2Srzsinw 00s w

22
so - Srr sln2 u + Szz 2Cos u

- wrz sln w ooa w

rz
So = Srz (cos2u - sir12u)

- (Srr - S22) aln UJcoa u (21)



Insteadof ln?luding6‘J to differen-
tialequationsas 13 Eqs. (4-7) and

(11-14), SiJ correction
to the resulting9treS89)9

of each computational
Thus, it is convenientto

*ij i:
-At6 ~ SIJ -0 0

can be done
at the end
time 9tepm
defice

#J

(22)

Then

rr
60 = 1/2 (Srr - Szz)(cos 2 u-l)

+s ‘z sin 2UJ

Zz
60 = ‘“ 6:? (23)

and

rz ‘z fcos 21u-6.=S , 1)

1/2 (Srr - S22) sin 2LU (241

For a small W, we may further
simplify(23)by

sin 2u*2sinw=At(# ‘~)

~pALL, MELTING AND FRACT’URE
——

Material failure can
sidered under a number of
condiLiona.However,under

(25)

be con-
different
intense,

short-duration tensile loaaing, a
>articulartype of ffaoture called
“spal~” is frequentlyprod~ced. For
the problemsof our ourrentit?’,erest,
the material failure 1s l.iely to oc-
cu- in thl~ form, Hhen apalled,
small, independentcraoks or voids
aro produced,and ‘lsually an exten-
~ive crack propagationdoee not take
place. The shape of voids thus

produced, ,u;{Ydepend on fiaterial
structure.Ho~ever,effectsof crys-
tallographic o?:entation on
grossdamage,ant!’alsothe stressdis-
tribution relative to the shapo of
the voidseem9%0 be insignificant.

Considering these characteris-
ticsof span, and also considering
thatour problemsdo ?ot requiremuch
computationonce a ❑aterial 1s 9ig-

nificanti:’fractured, z simplistic
❑otel seems to b~ ad~q~ate.

Therefore, for the preser:tco~c,tho
followingcriteriaare used to check
❑ aterial failure a~d phase
transition.

When I > melt energy, the
materialis ❑elted and subsequently
is treated as a pure hydrodynamic
fluid.

Iihen pressure gets down to a
certainspecifiedspan pressure(P S
P~wll] Lhe material1s assumedto be

spalled.

not
are

to

Once spalled,the material can-

aupportany atrea9, and P and S
l.j

set to be zero until ?e-oombined.

For re-comuinlng, v is compared

‘test’ and if V S Vte~t, the

material is regarded as reoomblned.

Presently the fracture oriterion
is baaed on tensilestrength,namely
if prinoipalstreasee, 01 > tensile

strength, c) the material1s asaumed
t~ be fraotured.A f’raoturedcell is
treated as a spalledoell. A detail
deaoriptlonof the prooedureto solve
the pertinentoonaervatlonequations
and the equationof state 1s givenin
Reference [10].



CALCULATIONS OF THE HEMISPHERICAL
COPPER-SHAPEDCHARGEPROBLEM

To demonstratethe present code
capabilLtv,u% choosethe hemispheri-
cal copper liner shaped charge
problem whit’1was also calculatedby
Harrison (11). Fig. 1 show? the
iniLialdimensionof the test problem
with :he hollow hemispherical copper
liner of thicknass0.206cm and out-
side diameterof 6.35 cm. The bare
75/25 UCTOL high explo9ive has an
outside diameterof 6.985 cm and was
detonated by single pointinitiated
at pcintA. We use a 2-D Lagrangian
COde to setup the input and run the
problem up to 15 usecwhen the liner
becones about 0.52 cm thick. The
presentcodecalculationstartat 15
~secand stop at 90 @ec usinga wlr!-
dow of 7.5 cm (r-direction)x 30 cm
(z-direction). The grid ~lze is 0.15
ca square mesh that is equlvalest to
have a grid numberof 50 x 200. For
75/25 OCTOL, we use the JWL-EOS for
the preaaure which has the :Orm

P=A(l - *) e-Rl’J
1

+B (l- *) 0-R2V
2

whe?e A = 7.486 MLla~,B - 0.1338
MEar, RI = /’.5, R2

= 1.2, u = 0.38,

33
c1 = 0.272 MBar - Om /om , V LS the

specific volumeand c the doton~tion
energy. For the Chapman-Jougu,?t

3parameters: p. ● 1.821 g/orn ,

detonation veloolty, D = 0.849

cm/uaec, co = 0.098 MBar - om3/om3

and c +~
chemical - co 1

■ 0.37 MBari -

33om /om . Foe the copper liner, we
uae a quadraLio form suoh as:

P(MBar) = [Alu + A2 ~lul

+ (B. + BII.I+ 92U2)c

+ [c. + CIIJ c2]/(c+9.)

where u = p/p.- 1, c . p. I (MBar-

cin3/cm3j, Al . ti,$)578323, A2 =

3.6883726, B. = 7.4727361, B, =

11.519148, B2 = 5.5251138, Co =

0.39492613, Cl = 0.52883412, Do =

3.6080001,and p. = 8.899 (g/cm3).

Fig. 2 shaw9 ttieinitialBrid setup
for the 2-D Lagrangiancode iiith31
zones in the HE Region and 11 in
line-alongthe z axis and 90 sectors
(Io in one sector) for the first
quadrant. At t = 15 ksec, the liner
has become abcut 0.52 cm thick near
the z axia a9 shownin Fig, 3, while
the HE region haa slid way belcw the
linerwing. The geometryof the col-
Lapstr~gcopper liner and the jet
formation at time t - 20, 30, 40,
and 50 paecare givenin Fig. 4. The
vel ‘y dlatributlonsalong the z-
axis for the liner is glve~ in Fig. 5
whichshowsthatthe ,jetslugsect:on
is moving into the po3itive z-
direotion and many velocity
fluctuations exi~t insidethe jet be-
ttieenthe slug and tip. The observed
cumulative masa vercus jet veloe!ty
la plottodin Fig. 6 along with the
computer simulations of HOIL Code
[11] ana the pr~aent study,
ExperimentalGata showsthatthe tip
vnlocicyia 0.U22cm/@ec comparmdto
the presentcodeof 0.43 cmipaeo.

CONCLUSIONS—.

A second order PIG methud is
used for no~putlng hydro-elaatic-
plaetoinflow. Althoughthereromalns
the quer)tlonof how tG treat the ad-
vuotion of khe stl’essea correctlyin
the Eulerlanoode,presentstudydoes
give good IlumerloalPe8ultSfor trla

exploaivu-pushingmetal problems,
There are at leaat eight arlaped
charge and self-f~rglng fragment



problems have been run using ~fi,.
present code that produces excellent
numerical results co(l,paredwithex-
perimentaldata. The authorsbelieve
that a combination of the 2-D
Lagr’angian and the present 2-D
Euleriancodescan becomea veryuse-
ful engineering design tool for
explosive-metal interaction prcolemso
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