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ON THE PIC METHOD FOR MODELING THE
SHAPED-CHARGED PROBLEMS

W. H. LEE
Los Alamos National Laboratory
Los Alamos, New Mexico

and

D. Kwak
~y Ames Research Center, NASA
Moffett Field, California

The PIC (particle-in-cell) method has peen used for
computing compressible, multimaterial problems for more
than twenty years. The present work extends the same
numerical approximation with operator splitting to hydro-
elastic-plastic flow problems in two-dimensional Eulerian
coordinates. Applying the operator splitting method, the
basic set of cylindrical equations is split in radial (r)
and axial (z) directions. The calculations, performed in
each direction separately, are alternated for each time
advancement to maintain the accuracy of one-dimensional
procedure. A shaped-charge problem is treated using the
present code and the results are compared with the ex-

perimental data as well as tnose from other codes.

Introduction

It has been of considerable in-
terest to resolve multi-material
compressible flow problems with
material interface, a Lagranglan ap-
proach would be a gquite natural
choice, e.g., HEMP [1], TOCDY (2],
MAGEE [3,4). However, for a large
material distortion, the Lagrangian
calculations c¢an no longer be con-
*inued, and subsequently an Eulerian
or a combined Lagrangian-Eulerian
type scheme has been applled.

Although many schemes have been
inventad in the various Eulerian code
developments, materials are treated
{in two ways, namely the Particle-in-
Cell Method (5], where materials are
 apresented by discrete mass points
called Particles, and the continuous
Eulerian method as in SOIL(6], HELP
(7] and C€SQ [8]. 1In the continuous
method, the computing economy {8
gained, however, the Lagranglan-type
capability of P'C method is lost and
subsequently replaced by various in-
terface treatments.

In developing the present code,
the PIC capability is sought to be
maintained while {mproving the ac-
curacy and the computing economy.
Recently, Clark (9] proved tne ac-
curacy of the standard PIC method to
pe iat order in hydrodynamic compuv.a-
tion of multi-material problems and
oroposed a second wrder scheme, Hera
a similar second order scheme i3 used
Lo compute multi-material elastic-
plastic flow including phase
transition and spall. A heuispheri{-
cal, copper-lined, shaped charge with
76/25 OCTOL aa high explosive (HE) is
calculated using the present code.
The results are compared with the ex-
perimental data as well as those from
other codes.

THE CONSERVATION EQUATIONS FOR A
STRESS SUPPORTING MEDIUM

The conservation equations in two-
dimensional cylindrical or plane
Eulerian coordinate can be written as
below
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u,v = valoclities
p = density
t = time
31J = stress deviator, and

I = specific internal snergy

EQUATIONS OF STATE

Whan a stress supporting medium
flows under a wids range of stresses,
it exhibits a variety of different
physiocal characterintics. Depending
on its retention of elastic charao-
ter, the flow may be elastic or
plastio. When melting, it would be-

each regime of flow, we need proper
models or equations of state, and
criteria defining the transition from
one regime to another. Here a
straight forward approach is taken,
yet there does not seem to exiat any
better model.

(a) Stresaes in Elastic Regime

When a material flows elasti-

cally, Hooke's law In current form
can be written as bvelow
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Where G = modulus of elasticity in
shear

»f (p, I, material),

and s = correction for rigld body
rotation

In tensor form

= st aag atd o gl (8)
where 5LJ = strain rate deviator
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(b) Stresses in Plastic Regime

For plastic flows, Prandtl and
Reuss considered both plastic and
elastic strain simultaneously and ar-
rived at the fnllowing flow equation
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where W = st & 1 i3 the plastic
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Physically W is the work done
per unit volume in changing the shape
of the madium. And Eqs. (11-14)

holds at the yield limit and for W 2

0. When W < 0, the material is un-
loading elastically from a plastic
statn and Eq. (U4-7) is to be used.
Therafore, for a rlastic regime of
flow, Eqs. (11-15) have to be solved.
(¢) Hydrostatic Pressure

Various forms of equation of
state for pressure are avallable and
we will simply write this as below.

Perf (p, I, Material) (16)

(d) Yield Criterion

To oheok whether a material {s
in elastic or plastic state, von
Mises criterion is employed hero.
De¢noting three prinoiple directions
by subscripts 1, 2, and 3.
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The second invarlianc of 31J tensor Ls
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Then von Mises yield criterion
says that a material is in

elastic state when ¢ s 2/3 (!°]2
or

plastic state when ¢ > 2/3 (Y°)°
Now let'= suppose that a small time
step, At, s chosen such that the
Prandtl-Reuss relation is vallid.
During the time increment At, a
mater.al can be in an elastic period
At1. then in a plastic period Atz,

1.e., At = At1 * Atz.

Then for a rigorous computation
of SiJ, At1. has to be obtained such
that

¢ = 2/3 (ro)2

At1 (19)

is satisfied. An iterative procedure
might be considered. However, con-
sidering the accuracy of the yield
crivarion Lftself and plastic flow
model, a simpler method seems
profitable, An experience with a
Lagranglian computation shows that the
following scheme proposed by Wilkins
[1] Ls adequate in computing stress

deviators on yield surface, (blj)..
(st)" = (s¥) ¢

where

e - 2/3 (1°)%0 (20)

Therefore, i{f the flow decomea plas-

tic during At period, SlJ is first
calculated based on elastlic

assumptions, then tne new stresas

i | #*
deviators on yield surface (sM)” are
approximated by (20)

(e) Stress Correction for Rigid Body
Rotation

The magnitude of stresses does
not change during a rigid body rota-
tion, cnd the new 3stresses after
rotation as well as after deformation
have to be expressed in terms of -he
original coordinate system. The cor-
rection for rigid body rotation, as
well as, aftar deformation have to be
expressed in terms of the original
coordinate system. The correction
for rig'!d body rotation is relatively
straight forward. However, there
doesn't seem to oxist a unique way of
correcting stresses for deformation,
Cne possibility is to include this
effect into ths governing differen-
tial equation (1. e., Bertholf [2]).
Even though technically interesting,
the inclusion of deformation correc-
tion does not appear to be very
significant for practical purposes.

Suppose S1J ls rotated by w
during a time increment, At, then the
new stress deviator in original coor-

dinate system, s;J. can be written as
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vhere Sin u =

Instead of innluding GIJ to differen-

tial equations as in Eqs. (4-7) and
(11-14), S1J correction can be done
to the resulting stresses at the end
of each computational time 3step.
Thus, it is convenlent to definre
1 1 <13 L o1
60 At § - S° S
1 1 1

or so S * 8 (22)

Then
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For a small o,
simplify (23) by

we may further

sin 2w ~ 2 sin w = At (%% - %E)

(25)
SPALL, MELTING AND FRACTURE

Macerial failure can be con-
sidered under a number of different
conditions. However, under intense,
short-duration tensile loaaing, a
Jarticular type of fracture called
"spali" {s frequantly produced. For
the problems of our current interest,
the material fallure is l.xely to oc-
cur ln this form., When spalled,
small, indspendent craaks or voids
aro produced, and usually an exten-
sive crack propagation does not take
place. The shape of voids thus

produced, mi:ty depend on material
structure, However, effects of crys-
tallographic¢c orlentation on
grossdamage, and’also the stress dla-
tributlion relative te the shape of
the void serms o be insignificant.

Considering the2e characteria-
tics of spall, and also conaidering
that our problems do not require much
computation once a material 1s sig-
nificantiy fractured, & s!mplistic
mocel sSeems tH be adequate.
Therefore, for the preser: coedz, the
following criteria are used to check
material faillure and phase
transition.

When I > melt energy, the
material is melted and subgequently
is treated as a pure hvdrodynamic
fluid.

When pressure gets down to a

certain specified spall pressure (P §
Pspall) the material is assumed to be
spalled,
P Vtest
— Y
Pnpall

Once spalled, the material can-

not support any stress, and P and SiJ
are set to be zero until re-combined.

For re-comvuining, v {s compared
to vtest' and {f V ¢ vtes:' the

materlal is regarded as recomtined.

Presently the fracture oriterion
i{s based on tensile strength, namely
if principal streasses, LB > tensile

strangth, ¢, the material is asaumed
to bs fractured. A fraotured cell is
treated as a spalled cell. A detail
desoription of the procedure to solve
the pertinent conservation equations
and the equation of state i{s given I(n
Reference [10].



CALCULATIONS QF THE HEMISPHERICAL
COPPER-SHAPED CHARGE PROBLEM

To demonstrate the present code
capabilitv, we choose the hemispheri-
cal copper liner shaped charge
problem whichh was also calculated by
Harrison (11)., Fig. 1 showe the
initial dimension of the teat problem
with the hollow hemispherical copper
liner of thickness 0.206 cm and out-
slde diameter of 6.35 cm. The bare
75725 GCTOL high explosive has an
outside diameter of 6.985 cm and was
detconated by single point initiated
at pcint A. We use a 2-D Lagranglian
cod€ to setup the input and run the
problem up to 15 ysec when the liner
becones about 0.52 cm thick. The
present code caiculations start at 15
usec and stop at 90 usec using a win-
dow of 7.5 cm (r~direction) x 30 cm
(z-direction). The grid size is 0.15
ca square mesh that is equivalent to
have a grid number of 50 x 200. For
75725 OCTOL, we use the JWL-EOS for
the »oressure which has the orm

-R,V
Peaa(t-22%)e
R,V
v 8 (1 - %) o 2V
2
+(e-¢)F

wheire A = 7,486 MBar, B
MEar, R1 - I',5, R2

€ = 0.272 MBar - om3/om3. V .8 the

specific volume and e the detonition
energy. For the Chapman-Jouguat
CP 1.821 s/om3,
0.84u9
= 0,098 MBar - on3/cm3

= 0,37 MBar -~

= 0.1338
L 1-2. w = 0138,

parameters:
detonation veloelty, D =
cm/ usec, €

and ¢ €.+t ¢

chemical " % 1

om3/om3. For the copper liner, ve

use a quadratio form such as:

P(MBar) = [A.u + Ay ulul

2
+ (B, + Byu+ Bu) e

2
+ {c° +C,u) e ]7(e + D)

where y = p/p° Sl e=p 1 (MBar -
cm3/cm3], Ay =

3.6883726, B, -
11.519148, B, =

2
0.39u492613, C

L,9578323,
T.4727361,
5.5251138,

= 0.52383u12,

A -

2
B1
C =
o}
1 Do

3.6000001, and p_ = 8.899 (g/cm3).

Fig. 2 shows the initial grid setup
for the 2-D Lagrangian code with 3%
zones iIn the HE Reglon and 11 in
linn~~ along the z axis and 90 sectors
(1° in one sector) for the first
quadrant. At t = 15 ysec, the liner
has become abcut 0.52 c¢m thick near
the z axis aa shown in Fig. 3, while
the HE reglion has slid way belcw the
liner wing. The geumetry of the col-
isapsing copper liner and the jet
formations at time t =« 20, 30, U0,
and 50 usec are given in Fig. 4. The
vel "y distributions along the z-
axis for the liner s given in Fig. 5
which shows that the jet slug sectlon
is moving into the poaitive z-
direction and many velocity
fluctuations exist inside the jet be-
t#een the slug and tip. The observed
oumulative mass ver~sus jet velocity
is plotted in Fig. 6 along with the
computer simulations of HOIL Code
(11] and the pr~sent study.
Experimental cata shows that the tip
valocicy 18 0.422 cm/usec compared to
the present code of 0.43 cm/useaq.

CONCLUSIONS

A sacond order PIU methud ia
used for norputing hydro-elastic-
plastin flow. Although there remalns
the quention of how tc treat the ad-
veation of the stiesses correctly in
the Eulerian ocode, present study does
give good numeriocal raesults for tnse
explosive-pushing metal problems,
Thers are at least eight snaped
charge and self-forging fragment



problems have been run using .hec
present code that produces excellent
numerical results compared with ex-
perimental data. The authors believe
that a combinegtion of the 2-D
Lagrangian and the present 2-D
Eulerian codes can become a very use-
ful engineering design tool for
explosive-metal interaction pr.oolems.
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