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ABSTRACT

Numerical studies of the resistive stability of tokamak plasmas in

cylindrical geometry have been performed using: ( 1) the full set of

resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of

the reduced set of resistive MHD equations including diamagnetic and

electron temperature effects. In particular, the nonlinear interaction of

tearing modes of many helicities has been Investigated. The numerical

results confirm many of the features uncovered previously using the simple

reduced equations.
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INTRODUCTION

Since the last workshop, we have extended the scope of the three

dimensicaal resistive HHD calculations, by moving In two directions

simultaneously. First, we have Incorporated more physics, like dlamagnetlc

and viscous effects, and resistivity and density evolution, In the reduced

set of resistive MHD equations [1]. Secondly, we have also started

calculations using the full set of resistive MHD equations. Both types of

calculations at present are llm* *d to cylindrical geometry. We have made

detailed comparisons with previous calculations using the standard reduced

set of MHD equations. It was of special Interest for us to study their

potential impact on the basic disruption model which we developed on the

basis of the interaction of multiple helicity tearing modes [2]. The

present results do not modify the basic conclusions of the reduced set of

equations, but they do show some quantitative differences.

II. FULL SET OF MHD EQUATIONS

t

The full set of resistive magnetohydrodynamic equations can be written

as [3]

- 2 » - V x ( v x B - - ± - n J ) , (1)
at sA

ft.* + + 1 + o * "*" 1 o *
- P - v x (V x V ) - •£ V (v 2 + pQp) + J x B + ; V| v ,
3t 2 R

(2)

plus an equation of state for the pressure. The equation of state either

assumes the form

JE « -v • Vp - TpV • v + n(r - I) |j| 2 (BgS^""1 (3a)

which results in a compressible plasma modal, or



. .2. (3b)

Equations (l)-(3) have been written in a dimensionless system of units with

all lengths normalized to a (the plasma minor radius), the magnetic field B

to BQ (the equilibrium toroidal vacuum field at the plasma major radius R Q ) ,

the velocity v to the Alfven velocity vA - (B^/|ipo)
1/2, the time to the

Alfve'n time x^ - a/vA» t n e pressure p to PQ (the equilibrium value at the

magnetic axis), and the resistivity TI to r^ (the value at the magnetic

axis). In terms of these quantities SA -
 Tr^TA i s c^e rat*-° °* t n e

resistive skin time xr -
 a—^ to the Alfve'n time; PQ - 2ypQ/B(* is the

equilibrium beta at the magnetic axis; and R - av*/v where v is the

viscosity in units of U 2 / T A ] . The unit vector £ denotes the toroidal (or

axial in cylindrical geometry) direction, and the subscript 1 denotes the

poloidal (perpendicular to £) plane. The coefficient T in Eq. (3a) is the

ratio of specific heats for the plasma.

Both the full and reduced sets of equations are solved using

three-dimensional, nonlinear, initial value computer codes, CYL and RSF, [4]

respectively. These codes are very similar: both are partially implicit,

using finite differences in the radial coordinate r and in time, and a

spectral representation with periodic boundary conditions in 6 and ?.

The first step in comparing both sets of equations has been to perform

systematic linear stability studies. These results will be reported

elsewhere [3]. We would like to emphasize here the reasonable agreement

between the linear growth rates obtained from both calculations (Fig. 1)

even for relatively small aspect ratios (e^ ~ 0.2). At very small aspect

ratio (E^ ~ 1) the main changes to the eigenfunctions come through pressure

effects (Fig. 2). In this paper we will concentrate on the nonlinear three

dimensional results, namely the nonlinear interaction of tearing modes.

In order to compare the results of calculations having interacting

tearing modes, multihelicity calculations were carried out at c^ • 0*2,

SA = 10
s, and R - 1.67 * 105. The reduced set of equations, as well as the

full set of equations with constant B|q • 1, were used. Sixteen components

were included in the calculations according to the ordering scheme in

Ref. [4]. In both the full and reduced equation calculations the 2/1 and

3/2 magnetic islands grow, overlap, and result in a stochastic magnetic

field over a large portion of the plasma (Figs. 3 and 4). Consistent with

the single helicity results [3], the islands display somewhat more rapid

growth and larger amplitudes with the full equations than with the reduced



equations, but the evolution as seen by the two systems of equations Is

quite similar* The (m»2;n«l) and (n»3;n-2) Kxiss are both linearly

unstable* These instabilities grow Independently until their nonlinear

Interaction (facilitated by the (m-5;n-3) and the (ra-l;n»l) modes) becomes

strong. This occurs roughly at the time the 2/1 and 3/2 magnetic islands

overlap. At this time the 2/1 drives the 3/2 instability through their

nonlinear interaction leading to the stochastization of the magnetic field

throughout a sizeable region of the plasma. We associate this process with

certain major disruptions [2] • The effects of this process upon the

magnetic field lines for the full equation calculation is shown in Fig. 4.

III. REDUCED SET OF MHD EQUATIONS WITH DIAMAGNETIC EFFECTS

We now consider a reduced set of nonlinear three dimensional resistive

MHD equations including diamagnetic effects. These are a generalization of

the ones used elsewhere [5,6] in a single hellcity approximation, we have

further included the resistivity evolution and the effect of the thermal

force. The equations are

V|(n

a)V,,Te--|*

C + u ST±

STi

e * * *.«o

9t i " J. e ™ XB* jTe + Xj."j.Te 4- —— — — »|i(TeJ_) (7)
3 Thp ci n

and

n - T o
3 / Z (8)



These equations are written in dimensionless form, and details on

normalization and conventions can be found in Reft [7]« They are solved by

a time evolution scheme implemented in the computer code KITE, and are used

to study drift-tearing [8], rippling [9] and drift-rippling modes. The

numerical scheme is very similar to the ones described earlier for CYL.

In this paper we present only results relevant to tha nonlinear

interaction of drift tearing modes. One important consequence of adding the

electron diamagnetic effects is the rotation of the magnetic islands

(Fig. 5). This produces a time dependent phase between the different modes,

which in turn might have an important effect on their nonlinear interaction.

We have investigated this possibility for a case of a strong disruption,

with an equilibrium q-profile q - 1.344[1 + (r/rQ)]
l/l* rQ - 0.56, which was

previously studied [7] in great detail with the simple reduced set of

equations. We did the present numerical calculations for values of the

electron diamagnetic frequency comparable to the linear tearing mode growth

rate. In particular we show in Fig. 6, the results for % e • 1.3Yf which is

a reasonable value for present day experiments. The results are compared

with the iAk& " 0 case. They show no apparent modification of the basic

interaction mechanism leading to the strong destabllization of the (m«3;n=2)

mode. More sensitive to the diamagnetic effects are the weakly interacting

cases, in which magnetic island overlap is marginal. The diamagnetic

effects are important in modifying the boundary between disruptive and

nondisruptive equilibria.

CONCLUSION

Although the different effects studied in this paper quantitatively

modify and certainly complicate the dynamics of the nonlinear tearing mode

interaction, they do not change the nonlinear destabilization of the

(m=3;n=2) mode by the (m«2;n-l)« Therefore, the basic disruption model put

forward in Ref. [ 2] is supported when a more complete physical model is

incorporated in the calculations.
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Fig. 3. m/n-2/1 and m/n-3/2 magnetic island widths (a) and magnetic energy

growth rates (b) vs time for eL « 0.2 and SA « 10
5. The arrows indicate the

times at which the 2/1 and 3/2 magnetic islands overlap. The full set of

equations was solved with Bfi » 1.
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Fig. 4. Magnetic field line plots at several times for the case described

in Fig. 3. The full set of equatloas was used.
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Fig. 6. Results of the nonlinear nultlple heliclty tearing mode calculation

described in the text.


