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Improved Input Representation for Enhancement of Neural Network Performance

C. H. ALDRICH, Z. G. AN, K. LEE and Y. C. LEE
(Los Alamos National Laboratory, Los Alamos, NM 87545)

INTRODUCTION

Avto-associate and hetero-associate memory have received major attention as important ap-
plications for neural network or "connectionist” computing’~®. The potential importance of this
application has attracted numerous investigations into optical hardware implementations’~!3. An
important consideration for the implementation of associative memory is the storage capacity of
the network. For a Hopfield net, the memory capacity for uncorrelated patterns is approximately
25N [log(N ), where N is the number of neurons. In general, the capacity for information storage
is proportional to the number of synapses!®. For fully connected networks the number of synapses
scales as N™*!  where N is the number of neurons and m is the order of the network. Higher
order networks have a much greater storage capacity than a Hopfield net for an equivalent number
of neurons. Simply increasing the number of neurons will not always increase the storage capacity.
This will be shown by the simulation results of this paper. Since in most applications, the patterns
are coherent with some correlation, the storage capacity is significantly worse than for uncorrelated
patterns. The performance of an associate memory network depends significartly on the repre-
sentation of the data. For example, it has already been recognized that bipolar representation of
peurons ith -1 and +1 states out- perform neurons with on and off states of +1 and 0 respectively.
This paper will show that a simple modification of the pattern vector to have zero bias will provide
even more significant increase for the performance of an associative memory networl:.

The higher order algorithm of Lee et al.'® is used for the numerical simulation studies of
this paper. To the lowest order this algorithm reduces tc the Hopfield model for auto-associative
memory and the bidirectional associative memory (BAM) of Kosko® for hetero-associative memory
model respectively.

ALGORITHM
For auto-associative memory, the iterative dynamical equation is:
5.-".“ = W'[ Z T.','.',,__.',S,-';...S::]
(2...01
where
Wiz]=+1 for 220
Wiz]=-1 for <0

The iterative dynamical equations for hetero-associative memory are:

S..nl"l = u’[ z: Til...ilj]-..jnSI";"'S:[‘L,;'I"'U;‘n]

200,00 Jm
U.;ll-’-l = ‘4’[ E ‘.|""“i'lj|lj?'---"n Srlsa"s::(,;;'nlj;‘m]
ety dm

where T,,, ... is the memory tensor constructed from the assumpticr: of Hebbian learning. For
auto-associative memory the memory tensor is:

Tn.w---u = Ee,;{np: l,:
P
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For hetero-associative memory the memory tensor is:
= PgP  gP_P
T'l-'n---'l.ll---Jn = ZE| £|’3"' iln.h"'n;-
P

The summation over p is the sum over all patterns. The most efficient implementation of the itera-
tive dynamical equations depends on the nature of the application. For a learning situation where
the system is required to extract features and to generalize, the number of patterns is sufficiently
large such that the storage requirement for all the patterns exceeds the storage requirement for
the tensor elements. For associative memory applications, on the other hand, to avoid degradation
of classification accuracv, the number of patterns stored on the neural network is limited and the
storage requirements for all the individual patterns is less than the storage requirement for the
memory tensor. In this instance, it is more efficient to implement the iterative dynamic equation
in the form ol dot products. For hetero- associative memory, the dynamical equations are:

St = w8y LM
1 4

n+1
U.h

APIUAGECR UL Ay
)
For auto-associative memory, the dynamical equations reduce to:

Stti=wy err -8
4

For the applications of pattern recognition or retrieval, the bipolar representation of pattcrns
usually lead to a bias. As will be shown in this paper, this lead to degraded performance of the
network. To remove the bias, the bipolar representation will be transformed into an alpha-beta
representatjon where

Ny~ Npma=0
Nma® 4+ N,g' = N

Nm and N, are the number of neurons for pattern £” ia the -1 and +1 states respectively. The
second equation insures that all pattern vectors are of the same magnitude. The new dynamical
equations are:

stt=w(y e 3@ L
1 4

U;‘I'H = u’[Z ,’;’l(ip ,S")l(ﬂ? _ﬂ")m—l]
P

The ~ indicates the transformed state. The transformed state replace the -1 and +1 with -alpha
and beta respectively. Each pattern has its own corresponding value of a!pha and beta, and the
alpha and beta values for S and [/ are re-computed for each iteration.

SIMULATION RESULIS

These modified algorithins have been Implemented on the Sun workstation with a very friendlv
user interface. Figure(1)is a sample display of the window interface. By using the mouse a user can
choose the simulation model, the simulation resolution (8x8, 16x16, or 32x32 pixels) and the order
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of the simulation. Other features arc included for printing, storing, retrieving and deleting patterns
to make the use of the interface easier and more intuitive. The particular sample is running the
algorithm in the auto-associative memory mode. Using the mouse, the pattern displayed on the
upper right corner can be arbitrarily modified turning pixels on and off. Patterns constructed
in this way can be added to the network memory which is displayed on the left. Each of these
stored patterns can be recalled, modified and either restored to storage or used as an input pattern
(perhaps with the addition of "noise™ pixels or warped in shape) for the nenral net. The pattern
on the Jower grid is the input interface to the network. For the example shown, each pattern vector
has 256 pixels or input neurons (16 x 16). The bipolar representation is active, the letter "Q” was
retrieved from storage and placed on the lower grid. The dot product formulation was used with
dot product raised to the eighth power. The output for each iteration is also displayed on the lower
left grid pattern. For the particular example, the iteration has converged to the alphabet "O” in
memory. A ninth order neural network is required to retrieve the letter "Q" without error.

Simulation studies have been conducted with the system described above using three different
set of patterns. Thesc three sets are shown in Figure(2). The first two sets of letters have 16x16
resolution or 256 input neurons. The third set has a resolution of 8x8 or 64 neurons. The third
pattern set is constructed from the second pattern set where four pixels are mapped onto one pixel.
Pixels in the third set are turned on if any one of the four pixels on the corresponding mapping are
on. The simulation recults are shown in table (I). Orly one set is in the neural network memory
at a given time. For each set, the order of the network is determined for the perfect retrieval of
each patterns with corresponding uncoriupted pattern as input. Performance can be compared for
each pattern set in memory and for the two different representations.

The first and fourth column compared the performance of the alpha-beta representation versus
the pipolar representation for the perfect retrieval of the first pattern set. Very high order is
required for the bipola: representation, order of 7-15, as compared to order of 2-5 for the alpha-beta
representation. The simulation clearly showed the problem of bias for the bipolar representation.
At network order lower than that given in column one, the network converges to a very strong
attractor which turns everv pixel off or to -1.

Comparison between the first and second column shows large improvement for the bipolar
representation, cousistent with the second pattern set being mucli less biased. The corresponding
comparison in the alpha-beta representation is between columns four and five. The perfrrmance
degraded slightly for the second pattern set due to greater cverlap among the patterns.

The best performance for tlie bipolar representation is for 64 neurons. This contrasts with the
conventional wisdom that storage capacity increases with number of input neurons. This rule of
thumb is only ‘sue for storage of unbiased random patterns. If the stored patterns requires only a
small number of neurons, the excess neurons contribute noise and not increased storage capacity,
This points to u problem for using neural network to recognize a small object in a large scene. The
signal from the small object will be dominated by the background scene. To overcome this problem
a network must have the ability to focus attention on the small object. That is local connec.ions
on the network has to be enhanced over gl.bai connectiona.

The comparison for the alpha-beta representation for the three sets of pattern shows a similar
level of performance. The best performance is achieved with the first set since the overlap among
these patterns is the smallest. Recognitiuon system requiring high resolution will always be biased
for the bipolar representation. The alpha-beta representation overcomes this problem. Comparison
between the tvo representations has been made in the hetero-asscciative mode. Figure (3) shows
the input patterns and the corresponding output patterns. Figure (4) illustrates that the network
successfully retrieved the association of "f" with "F” for a noisy "f" input. As expected the
simulation results showed significant increased performance with lower network order for the alpha-
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beta versus the bipolar representation. The gain in performance is comparable to that acheived
for auto-associative memory.
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