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ABSTRACT

Simple diffusion theory cannot be used to evaluate control
rod worths in thermal neutron reactors because of the strongly
absorbing character of the control material. However, reliable
control rod worths can be obtained within the framework of dif-
fusion theory if the control material is characterized by a set
of mesh-dependent effective diffusion parameters.

For thin slab absorbers the effective diffusion parameters
can be expressed as functions of a suitably-defined pair of
"blackness coefficients." Methods for calculating these black-
ness coefficients in the P^, P3, and P5 approximations, with
and without scattering, are presented.

For control elements whose geometry does not permit a thin
slab treatment, other methods are needed for determining the
effective diffusion parameters. One such method, based on
reaction rate ratios, is discussed.

INTRODUCTION

In strongly absorbing media the neutron flux is a rapidly varying function
of position. This gives rise to steep flux gradients and under these circum-
stances Fick's law of diffusion is invalid. Thus, normal diffusion theory can-
not be used to evaluate control rod worths in thermal neutron reactors. However,
higher order methods may be used to determine effective diffusion parameters
for the control material. With these modified parameters diffusion theory may
be used to accurately calculate control rod worths.

For control materials in the shape of thin sheets, whose thickness is
very small relative to the transverse dimensions, a pair of blackness coef-
ficients may be defined and evaluated to a hirh-order approximation. Effective
diffusion parameters for the absorber slab are determined from these blackness
coefficients. On the other hand, for control elements which cannot be described
in terms of a one-dimensional slab geometry, a different method may be used to
determine the effective diffusion parameters for the lumped absorber. Both of
these methods are discussed in this paper.
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EFFECTIVE DIFFUSION PARAMETERS FOR THIN SLAB ABSORBERS

For the case of thin absorber slabs effective diffusion parameter can be
obtained in terms of two "blackness coefficients" defined by the equations

Here $,, $r> J,, and Jr are the asymptotic neutron fluxes and neutron currents
into the slab evaluated on the left-hand and right-hand surfaces of the absorber.
Because of this definition, the blackness coefficients depend only on the pro-
perties of the absorber slab. This section deals with the evaluation of a and
0 and the corresponding effective diffusion parameters.

Blackness Theory Assumptions

Blackness theory provides a method, based on the one-dimensional transport
equation, for evaluating a and 3. From the outset it is well to state the assump-
tions upon which blackness theory depends.

1. The control slab is assumed to be of infinite lateral extent.

2. There are no neutron sources within the control slab due to fission,
n2n, or scattering reactions from other energies.

3. Neutron scattering within the slab is isotropic.

4. Diffusion theory is applicable to all regions within the reactor
except for the control slabs.

5. Blackness coefficients evaluated for infinite slabs are applicable
to finite slabs whose width-to-thickness ratio is very large.

Because of the first two assumptions, the one-dimensional monoenergetic
Boltzmann transport equation may be solved within the slab to determine the
surface fluxes and currents. The fourth assumption is probably violated at
locations just outside the absorber slab. As a result, the flux shape deter-
mined using blackness-modified diffusion parameters is likely to be erroneous
in the immediate vicinity of the control slab. The last assumption is neces-
sary because quantities analogous to a and & for finite slabs do not exist.
However, the assumption is expected to provide a good approximation.

Reflection and Transmission Coefficients

In order to account for both scattering and absorption events within the
control slab, the blackness coefficients will be expressed in terms of the
neutron reflection and transmission coefficients introduced by Maynard.1

Consider a slab of control material of thickness T and bounded by vacuum.



The angular flux of neutrons incident on the left boundary of the slab is
taken to be of the form jin where n is an integer and u is the cosine of the
angle between the flux direction and the normal to the slab. No neutrons
enter the slab from the right. For isotropic scattering the angular flux,
t|)n(x,u), within the slab satisfies the monoenergetic one-dimensional Boltzmann
transport equation,
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subject to the boundary conditions

i|»n(0,u) - V
n, V>0

i|»n(T,u) - 0, iKO .

The reflection and transmission coefficients are defined as
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E~n and Tmn are the reflected and transmitted contributions to the outgoing
m"1 moments due to the incoming flux. They are defined to be always positive.

With a un source distribution, the tranport code ONEDANT2 can be used to
solve the monoenergetic one-dimensional Boltzmann equation for the surface
angular fluxes i|»n(0,u) and i|in(-r,u) using an angular quadrature of 24 (S24)
and double P~, quadrature constants. The equations for the reflection and
transmission coefficients may then be numerically .integrated by Gauss-Legendre
quadrature methods3 to obtain R ^ and T ^ .

For the special case of a pure absorber (£s - 0) K ^ is zero and Tmn c a n

be expressed analytically. For this case the transmitted angular flux is just
the product of the incident flux and the probability of a neutron passing through
the slab without absorption. Thus,

•n(T,u) - u
n e"E«T/w , u>0

» 0, u<0 .

Thus,

Tmn(EaT) "

where Em+n+2(£aT) i s t n e exponential integral of order m+n+2



Matching Boundary Conditions

Before we can express the blackness coefficients a and £ In terns of the
reflection and transmission coefficients, it is necessary to consider Hatching
conditions imposed at the surfaces of the absorber slab. Consider the three-
region slab configuration shown below.

II III

x-0 X«T

Three-Region Slab Configuration

The angular fluxes incident on Region II from Regions I and III must be con-
tinuous at the boundaries. Therefore,

u>0

) , U<0 .

The moments of the distributions leaving Region II are determined from the
incident destributions by means of the reflection and transmission coef-
ficients .

The boundary fluxes in Regions I and III are expanded into a power series
over the full range of y(-l to 1).

*T(0,u)
n-0

•m(T,|l)
n«0

Using these expansions, which are equivalent to the P^ approximation, Maynard1

has shown that the angular flux continuity requirement leads to the matching'
condi tions

- 0

and

* (- 1 ) O • «) "*"Tm An]
provided region II is a source-free region which scatters neutrons isotropically.
It turns out that only odd values of m need be considered with 1 % ^ > L.



Evaluation of the Blackness Coefficients

To obtain analytical expressions for the blackness coeff ic ients the angular
fluxes on the surfaces of the absorber plate are expanded in a Legendre s e r i e s .
Thus, in the PL approximation

1 L

f(x,u) « i V (2n+l) +n(x) Pn(w)

where +n(x) i s the nth spherical harmonic moment corresponding to the one-
dimensional monoenergetic Boltzmann transport equation. They have been evaluated
in Ref. ( 4 ) . Although the higher order moments are more complicated, <|»o(x) and
<l»l(x) are jus t the neutron flux and neutron current, respectively.

We now evaluate the angular fluxes on the left-hand and right-hand surfaces
of the absorber plate in the Fj approximation.

L-l

7 2 <2n+1>V0)Pn(ll) * 7 *0 + I V * 7n"0

Hence, AQ - \ *%, Aj - y J £ , B
0 ' 7 *r»

 Bl " " 7 J r *

If these results are substituted into the matching equations (for L » 1) , one
obtains:

7 ( 7 " R10>** " 7 T10*r - 7 ( J + R11)J£ - 7 T l l J r " °

7 (7 - HJ\ - 7 Tio*£ - 7 ( I + R n ) J r - 7 TiiJ^ - ° •

From these equations i t follows that

- J * + J r m [1 - 2R10 - 2TIQ]

+ 3Rn

- J & " J r [1 - 2R10 + 2TIQ]

H - *r 2 t l + 3Rn -



Note that the blackness coefficients are functions only of the properties of
the absorber slab (Za, Za, T ) .

Although the algebra is tedious, the same methods may be used to evaluate
a and $ in higher orders of approximation. In Ref. (4) the blackness coefficients
have been evaluated in the Pj, P3, and P5 approximations.

It was pointed out earlier that for a purely absorbing slab (£s * 0),
0 and Tnn - Em+n+2* Thus, in the Pj approximation,

1 - 2E3 (£ax)

^ 2 U + 3E4 (Z

1 + 2E3 (£ax)
6 0 " 2 [1 - 3E4 (£ax)]

where the subscript on a and 8 is a reminder that these equations apply only
to the zero scattering case. Although without mathematical justification,
these results may be multiplied by 0.4692/0.5 in order to force agreement with
the correct result for a perfectly black absorber (Ea -»«•). We will call
these modified values "dirty blackness" (DB) coefficients. They are given by
the equations

do (DB) - 0.4G92

B o <DB) - 0.46,2 [1 - 3E4 (ZaT)]

This dirty blackness approximation works remarkably well for those energy
groups for which S3 « Ea. For high energy groups the absorption cross
section is usually small enough so that normal diffusion theory can be used
making blackness theory unnecessary.

Broad-group blackness coefficients are best obtained by weighting the
fine-group values. Thus,

<J. + Jr>
<ot> - —

4>r> fLn [*£<u) + *r(u)]du

L<J,-Jr> L
—2.—L. » — _

where Au is the lethargy range of the broad group. Because the same surface
flux combinations appear in both the numerator and denominator in the expres-
sions for <a> and <B>, highly precise values of $ and $r are not necessary.
These fine-group surface fluxes used for weighting may be obtained from a
one-dimensional ?\, S3 transport calculation using ONEDANT2 with cross
sections generated by EPRI-CELL5 or MC2-H.6 Numerical methods are then
used to determine <a> and <$> for each of the broad-groups.



Control Slab Effective Diffusion Parameters

The effective diffusion parameters are chosen so as to preserve the
current-to-flux ratios on the surfaces of the control slab as given by the
blackness coefficients. Since these effective diffusion parameters are to
be used in a finite difference solution, they will be expressed in such a
way as to contain an explicit dependence on the mesh interval size, h. This
allows one to use a very coarse mesh in the absorber for the diffusion calcu-
lations. We will derive equations for the effective values of D "and £a for
use in those diffusion codes, such as DIF3D,7 which evaluate fluxes at the
center of mesh intervals. For codes which evaluate fluxes on mesh interval
boundaries see Ref. (4) for the corresponding effective diffusion parameters.

Consider the diagram below

V

•-1

•r' Jr

Control Slab

It is convenient to assume that the same material extends to regions outside the
absorber slab of thickness T. -ince a and 0 depend only on the properties inside
the slab, this assumption leads to no loss of generality. If we assume that the
flux varies linearly from the center to the edge of the mesh cell, it is easy to
show that

*t * T <*- h ' I <•-]

For the symmetric solution to the diffusion equation, J, - j
• , • C cosh k (T - h)/2, and #_j - C cosh k (t + h)/2 so that

2D

~ [sinh (kt/2) sinh (kh/2)l/tcosh (kx/2) cosh (kh/2)]n

Similarly, for the asymmetric solution

B - ~ [cosh (kr/2) sinh (kh/2)]/[sinh (kr/2) cosh (kh/2)].
n



The ratio of these two equations gives

| - tanh2 (kx/2)

from which it follows that

The expression for the effective diffusion coefficient is obtained by adding the
equations for a and 3.

Finally, an exp ision for the effective macroscopic absorption cross section
can be obtained 7 writing the diffusion equation,

in the finite difference form and solving for Ea. Thus,

2D

h2
- 2 +

h2
[cosh kh - 1]

where

• C cosh kxn

• C cosh k(xn + h)

• C cosh k(xn - h) .

The above equations for k, D, and Za determine the effective diffusion parameters
in terms of the blackness coefficients and the mesh interval size, h.

MULTI-DIMENSIONAL CONTROL RODS

It has just been shown that control rod worths can be calculated using
blackness theory for that special class of control elements that can be approxi-
mated by a one-dimensional slab treatment. For this class of problems, a pair
of blackness coefficients was evaluated which depended only on the characteristics
of the control material and from which mesh-dependent effective diffusion para-
meters were determined. In the more general case, however, where the thickness
of the lumped absorber is not negligible relative to the transverse dimensions,
quantities analogous to the a and 0 blackness coefficients do not exist and
otfier methods are needed to determine effective diffusion parameters.



Analytical expressions for the effective diffusion parameters cannot be
obtained for two-dimensional and three-dimensional control rods. For these
cases an iterative technique is needed to determine Deff and Ea f f. The assump-
tion is made that effective diffusion parameters for the strong absorber can
be found which depend primarily on the cross sections of the absorber, its
dimensions, and the mesh spacing used in diffusion theory to describe the
region, but do not depend on the environment outside the lumped absorber.

To determine the effective diffusion parameters a characteristic control
cell with reflecting boundary conditions is defined. This cell explicitly
models the lumped absorber, its immediate environment, and a surrounding fuel
region. For this cell high-order transport or Monte Carlo calculations are
performed to determine for each energy group the capture rate in the homogenized
control region (absorber lump and immediate environment) relative to the fission
rate in the surrounding fuel region. If the reaction rate ratio is determined
from transport calculations, it may be necessary to divide the absorber into
several nested regions and to generate appropriate cross sections for each
region.

The same cell is used for diffusion-theory calculations choosing the same
mesh structure which will be used later for global diffusion calculations.
Beginning with the highest energy group, these diffusion-theory calculations
are repeated using different sets of Za and D values for the homogenized
control region. For each case and for each energy group the capture rate In
the homogenized control region is determined relative to the fission rate in
the surrounding fuel region. Effective diffusion parameters are those values
of £a and D for the homogenized control region which produce the same reaction
rate ratios as those obtained from the high-order transport or Monte Carlo calcu-
lations.

Control rod worths are determined by performing global diffusion calcula-
tions with and without the control rod inserted using these group-dependent
values for £a ., and Deff. This procedure has been used by the University of
Michigan to calculate the worths of the shim-safety rods in the Ford Nuclear
Reactor.8

CONCLUSIONS

To calculate control rod worths within the framework of diffusion theory
it is necessary to determine effective diffusion parameters for the strongly
absorbing control material. If the control rod can be represented by a set of
thin slab absorbers, effective diffusion parameters can be determined in terms
of a pair of blackness coefficients and the mesh interval width. This method
can be expected to yield reliable eigenvalues provided the P5 blackness coeffi-
cients are calculated from good, self-shielded, cross section data.

If the geometry of the control rods does not lend itself to a thin slab
approximation, a and 6 blackness coefficients do not exist. Other methods must
then be used to determine effective diffusion parameters for the control material.
One such method is to define a representative control cell and to determine by
a Monte Carlo or high-order transport calculation the capture rate in the
absorber relative to the fission rate in a nearby fuel region for each energy
group. For the same cell, D and Za of the control material are adjusted so
that a diffusion-theory calculation gives the same values for the group-dependent
reaction rate ratios.



ACKNOWLEDGEMENT

Contributions to this study from E. M. Gelbard are gratefully acknowledged.
It was he who showed how mesh-dependent effective diffusion parameters can be
expressed in terms of the blackness coefficients.

REFERENCES

1. C. W. Maynard, "Blackness Theory and Coefficients for Slab Geometry,"
Nucl. Sci. Eng. 16, 174 (1959). Also, C. W. Maynard, "Blackness Theory
for Slabs," in Naval Reactors Physics Handbook, Vol. I, A. Radkowsky,
Editor, pp. 409-448, U.S. AEC (1964).

2. R. D. O'Dell, F. W. Brinkley, and D. R. Marr, "User's Manual for ONEDANT:
A Code Package for One-Dimensional, Diffusion-Accelerated, Neutral-
Particle Transport," LA-9184-M (February 1982).

3. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill Book
Company, Inc., 1956, see Chapter 8.

4. M. M. Bretscher, "Blackness Coefficients, Effective Diffusion Parameters,
and Control Rod Worths for Thermal Reactors," ANL/RERTR/TM-5 (September
1984).

5. B. A. Zolotar, et al., "EPRI-CELL Description," Advanced Recycle Metho-
dology Program System Documentation, Part II, Chapter 5, Electric Power
Research Institute (September 1977). EPRI-CELL code supplied to Argonne
National Laboratory by Electric Power Research Institute, Palo Alto,
California (1977).

6. H. Henryson II, B. J. Toppel, and C. G. Stenberg, "MC2-2: A Code to
Calculate Fast Neutron Spectra and Multigroup Cross Sections," ANL-8144
(June 1976).

7. K. L. Derstine, "DIF3D: A Code to Solve One, Two, and Three Dimensional
Finite Difference Theory Problems," ANL-82-64 (April 1984).

8. D. K. Wehe, C. R. D: amm, J. S. King, W. R. Martin, and J. C. Lee,
"Operating Experience, Measurements, and Analysis of the LEU Whole Core
Demonstration at the FNR," Proceedings of the International Meeting on
Reduced Enrichment for Research and Test Reactors," 24-27 October, 1983,
Tokai, Japan (May 1984).


