
LA.UR -86-964

LA-Uli--86-964

DE86 008743

TITLE: A MODULAR, AUTOMATEDSOFTWARE TESTING ENVIRONMENT

AUTHOR(S): G. Cort and R. O. Nelson, P-9

MASER
SUBMI1-,EDTO Softool Users’ Group M~eting

14-1,5 April 1986
Culver City, CA

DISCLAIMER

This rc~)rl WUHprcpurcrl m un :wxwunl WVwnrk sprmsorccl ty .rn ugcrwy d the (lmIcd SIHI.X

(kwernmcnl, Ncilhcr the (Jnilcd Sl[llcs(it)v,rnll)cnl nor uny ilgcncy Ihclc, d, INII ,Inyol{hclr

cmployccs, mnkcs uny wurnrnty, cxprcw ~m implicl, t!r wwmcs uny ICBHI li~ihill(y or rcspm~l

hilily for the nmurncy, ctmlplclcncss, (w uscfulnc$~ uf nny lll(~wnlillitm, nppltrn(u., prwluct. or

process dIwlomrl, or rcprc%nls Ihnt iln usc wmIh! no! in(ringc privnlcly owncd li~hlii RCICI.

cncc hcrc~n 10 vny spcci(lc comrnclciul pnxluct, prtwcx~, or scrvltx by lrmlc III IIIIC, Irwdcmurk,

rrmnufw(urcr, nr olhcrwiw Arm no! ncccsmrlly uorstitllle (u imply IIS cmhIIst IIIcm, rcctml.

mcnrlntimc, or Iuvoring hy the (lnilcd SImrs (itw’crnmcnl or rmy rqrency thcrcol. I’hc vicwn

imrJ opininmr of nu[horq caprenml herein rln no(nccxmnrily II*IC m rcrlcct (how II(~hc

(Jnit~Slnlcn (i{)vcrnnlcnl\)r nnyqencythcrcu(,

DISTRIBUTIONOF THI!:OOCUMENTIS UNLIMITED‘y+y

~~~ ~[~~~~ Los.la.os,.ewMetic.875.5 ‘Los Alamos National Laboratory

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



A MODULAR,AUTOHATEDSOFTVARETESTING ENVIRONMENT

G. CORT AND R. O. NELSON

LOS AMMOS NATIWJfL LABORATORY

LOS ALMOS, NEW!IEXICO

Background

The testing environment has evolved from

87545

the exist!.nf: LANSCE softvare

development methodology in response to some deficiencies identified

therein. Principally, it had become evident that the veakest link in the

development cycle occurred in configuring a certified software product for

operation. This problem derived in large measure from the structure of the

methodology.

The Los Alamos Neutron Scattering Center (LANSCE) approach to softwre

development and software ccnfigurticion management are describd in detail
1,2

elsevhere. However, in order to provide the necessaq context for

understanding the testing environment, the salient features of th~ LANSCE

hybrid approach are described in the following paragraphs.

The LANSCE system provides an evolutionary software development

methodology vhich incorporates a comprehensive, automated configuration

management system based ~pon Softool’s Change and Configtlration Control

(CCC) environment. Fundamental to this approach is the excl,lsion of ●ll

development activities from the CCC data base. The contentti c~f the CCC

data base are restricted to certified baselinm (j.e. software that has

passed the appropriate reviews). Development activ{.ties (includ!ng

software testing) are performed in the host operating system ●ccounts of

the various programmers. A very powerful set of software tools (CCC macros

and VttS command files) support this methodology, thereby alloving t,~e

configuration manager to tra’)sfer files between the development and

configuration management environments.



The advantages of this strategy are numerous.3 Programmers are given

maximum flexibility to develop and implement their designs, yet certified

software is captured and controlled effectively. In addition, data base

size is ❑inimized and the computing system resources diverted to support

the CCC environment arc drastically reduced.

The softvare tools provided to ~up~ort file transfers between the

development and configur~tion manageinent environments have also proved

highly effective. The ttio major functions of these tools are to release

selected modules of an aplllication from the configuration management

environment to a particul~r developer (as the first step of a maintenance

or enhancement activity), and to move modules from the development

environment to the secure configuration management environment after the

final delivery acceptance rtviev has been satisfied.

Software releases pose few p!oblems for the automated system. In response

to an engineering change req~lest or trouble rerort a programmer submits ●

request for specific modules of the affected ~pplication. Upon approval of

the request, the configuration manager invokes a CCC macro vhich construct:,

the appropriate export lists and transfers the required modules to the

developer’s account. These mzdules generally include documentation and

testing software ns veil as tlw source code to be modified. Even it the

request is not complete, no s~?rious harm is done. A subsequent request can

be submitted for additional modules vhich can be similarly uithdlavn from

the CCC data base.

In rhc case of submissions of certified softvare to the configuration

❑anagement environment, hoveter, a far more serious situution CIN] arisa,

Again, the process is illitia’:ed by the developer vith the submission (by

●lectronic ma~l) of a transfer request vhich specifies the source code,

documentation and testing modules to b~ moved into the configuration

management environment. Thjs request is mnde after the final reviev of

softvare, documentation and test report has certified the functionality of

-2-



the softvare being submitted. The configuration manager is then

responsible for transferring and cataloging the softvsre in the

configuration management environment as well as for building the associated

application and for updating system data bases to make the applications

generally available to the user community. Aach of these ta.ks is

performed auto-tically by the appropriate softvare tools.

Tvo prublem.s can arise at various stages of the procedure. The first

(and least serious) is associated with identifying inconsistencies in the

delivered softvar~ vhich prevel:t the application from being compiled or

linked in the ❑ ore general system environment. Such local references are———
invariably discovered and reported by the automated procedures vhich build

the applications, and the submitter can be plevailcd upon to effect

remedial action. Local references are generally rela’.ively trivial in

nature (incorrect logical name usage, improper defaulting in file

r~ferences, etc). They are easilj identified and present no challenge to

repai r, However, they can prove an annoying disruption to tl~e submission

process,tmd over the long term, can impose a significant overhead in terms

of wasted effort nnd bad feelings betveen the configuration management and

development communities.

The second problem which can arise during the suhmissiorl cycle is

potentially ❑uch more serious, oving to the fact that it is far more

difficult to detect, and because components of the baseline can be lost as

a result. This problem derives from An oversight on the developer’s part

vhen specifying the modules to be transf~rred to the configuration

management environment. Although a missing source code mcdult is readily

{clentified by the automated t~ols, more subtle omitisions (one of many files

of input t~st data, for example) cannot be detected automatically. Tha

only sure defense against such all occurrence is for the confiliuration

manager to execute the testing software after the modules havu been

transferred to the configuration management ~nvironment , UnftJrtunat~ly, a

special harrlvare configuration is often required for opera(iou of this

-3-



softvare. As this hardware is generally not availe.ble on the

configuration management computer, this approach cannot be implemented.

The most serious aspect of this problem derives from the fact that

upon being notified of the completion of the transfer operation, the

developer ge~lerally deletes the associated softvare from the local

operating system environment. Files that vere omitted from the transfer

request are now lost; their absence may not be discovered until the next

❑aintenance activity (vhich may be months or years in the future).

The LANSCEmodular testing environment is designed to address both of

the problems associated vith post-reviev softvare submissions. This is

accomplished by providing an isolated environment, segregated from the

developer’s local vork space, in vhich all testing is performed. In this

manner, local references can be identified ~nd implemented by the developer

at an early stage of the testing activity. In addition, the independent

environment removes the human element from the specification of those

modules vhich are ultimately transmitted to the configuration management

environment. in this manner, the submission process is completely

automated, thereby eliminating the possibility of omissjons.

Implementation

The testing ●nviL”onmf2rIt is established in an independent host

oDerating system account on a computer vith the appropriate hardware

co;lfiguration to support the softvare to t? tested. It is supported by a

comprehensive set ot automated, softvare tools which significantly enhance

the user interface to the environment. Jt is util;.zed h; the developer to

perform final acceptance testing of a software application prior to

subn,ission to the final delivery acceptance review, and as the source of

all modules to be transferred into the secure configuration management

environmer:t.

-4-



AS specified hy application-dependent characteristics, the developer

invokes one of several software tools to configure the environment for

testing a particular softvare product. As part of the process, the

developer specifies the name of the source file list3 (SFL) for the

application source files as well as file names for users’ documentation and

testing softvare.

A subdirectory is automatically created within the test environment

and the specified software is identified and automatically transferred to

the subdirectory. Special symbols and logical names are crea(ed to support

the testing effort and all software (including test drivers) is

automatically compiled and linked. This process identifies any local

references which exist in ary source code module. A brief description of

each local reference is formatted into a message vhich is sent to the

corresponding developer by electronic mail. This ❑essage generally

provides sufficient information to identify and eliminate most such

references. It references a history file which contains detailed

information about all phases of the softvare transfer and build process and

can be used in the event tl]at the information provided in the br~ef message

is insufficient to di~gnose a prcblem.

The software tool which performs the softvare transfer and rebuild is

characterized by a simple, high-level useK interface. The interface is

designed to minimize the amount of interaction required by the user to

configure the environment for testing a p~rticular application.

The interIace prompts for all information. The need f~r the user to

specify la).ge numbers of source files is eliminated by driving the system

from source file lists. In this way, the user need specify only the name

of the application’s source file list in order to transfer and rebuild the

entire application. This streamlines the interface and viutually

eliminates problems associated with incol-rectly typed file names and

inadvertent omissions.

-5-



Although the vast majority cf files to be transferred to the test

environment are specified through a single reference to the SFL~ other

files exist vhich must be explicitly identified by the developer. ABong

these are documentation files, command files and testing data b~ses. In

order to simplify the specification of these files, the interfecc supports

a “wildcardm mechanism vhich is identical to the corresponding feature of

the host VtlS operating system. Thus a single wildcard specification can.

result in the transfer of an entire class of files to the test environment.

The test environment also provides a facility which automatically

rebuilds and executes the test suite. In so doing, a formal :est report is

automatically created and cataloged within the appropriate partition of the

environment.

Interface with the CCC System

The LANSCEconfiguration management plan specifies the use of the CCC

configuration management environment to contlol and track all softvare

baselines. This is accomplished by employing a set of software tools to

transfer the components of a certified baseline into the appropriate

partition of the CCC data base,

Previously, :he files to be transferred vere specified by the

developer on a special fo~m submitted via electronic mail. Because the

specification formalism incorporated SFL’S for rei,~rencing source code

modules, these components could be identified and transferred ve~

reliably. However, because testii~g and documentation files cannot be

referenced through source file lists, thpre existed the possibility that

some (or all) of these components could be inadvertently omitted and

thereby vanish irum the hie]archy of controlled softvare.

-6-



The use of the testing environment eliminates the poteniial for losing

files in this manner. In addition, it permits the transfer of baseline

components to the CCC data base to be performed completely without human

intervention.

At the conclusion of testing and the final delivery acceptance reviev,

the testlllg environment contains a partition in which all of the components

of the corresponding softvare application reside. These comporlents are

presorted into subpartitions which correspond to the Iov-1.evel organization

of the CCC data base. As such, subpartitions exist fur application source

vode, the test suite (including the test plan and test report) and users’

documentation. Because both the application and test suite have been built

and ev-”uted in this environment, the softvare and supporting data in these

subpartitions are guaranteed to be complete.

Software tools (in the form of CCC macros) are provided to admit all

software for a specified a~plication into the CCC data base. To +nitiate

this process, only the application name need be specifiad -- no names of

individual files are required. These macros automatically create the

appropriate data structures within the CCC data base to receive th~

baseline components. The HOST facility is then employed to scan the

appropriate partitims of the test environment, compile a set of import

l{.sts and move the corresponding software into the CCC data base. A

separate set of HOST macros is employed to rebuild the application and to

integrate it into .he LANSCEsoftware environment. This integration

includes updates to object libraries, command tables and the LANSCEdata

base of executable images. A fil]al set of macros notifies the developer of

the admission of the baseline to the controlled environment and deletes the

corresponding modules and partitions from the testing environment.

Conclusions—

-7-



Use of the modular testing environment described in the prececiing

sections has several significant advantages. The first such advantage

derives from the simplification of all aspects of the software te:~;ing and

submission process.

From the developer’s perspective, the approach provides an automated

facility for configuring the softvare for final testing and for eliminating

local references from the application. The manual methods previously

employed to accomplish these tasks vere unreliable, tedious and error

prone. In addition, provision of these automated facilities permits the

transfer of the most c!i.ficult aspect of final software integration

(namely, the identification and resolution of local ~eferences) to the

individual most familiar with the application: the developer. As a result,

local references can be more efficiently resolved than vhen their discovery

is postponed and relegated to configuration management personnel. In

addition, because all local references are eliminated before the softvare

is submitted to the configuration management environment, integration of

the application can be performed completely by automated tools, thereby

further enhancing the efficiency and reliability of the operation.

The introduction of large scale automation into the software

submission pracess also provides numerous benetits. Principal among these

is the elimination of potential problems relating to completeness of the

submission and resulting in compromises of the inte~lity of rhe

configuration management environ~ent. In addition, because the ~utomated

operation no longer requires human interaction, it can be scheduled to

execute in a background mode during periods of 10V utili~~tion oi the host

computer Kesource. In this manner, the high demands for system resources

made by the CCC system can be scheduled for periods vhen they vill have the

least impact on other system users.

Finally, i~ siiuc ld be noted that because of its modular

implementation, the testing environment is suitable for use by projects of

-9-



videly varying size and organization. In the limit of small projects such

as the LANSCEeffort, this approach is very effective for providing

individual developers vith a uniform, independent environment in which to

integrate and test their softvare applications.

It is our belief, hovever, that an approach such as this is potentially

even more beneficial vhen applied to large software development projects

vith independent testing organi~ations. In addition to providing automated

support for both unit testing and integration testing activities, the

envirmment provides the means to test evolving softvare configurations

(and to freeze intermediate stages of development) vithout intruding upon

the ilciiviti:s ~f :hc det:elcpment community. Regardless of project size,

th~s approach to software testing and integration relieves people from many

tedious, time-consuming and error prone tasks, vith the ultimate result of

increasing efficiency, productivity and morale.

References

1. G. Cort and D. H. Barrus, “Configuration Management for tiission-

Critical Softvare: T!JC Los Alamos Solution.” Proceedings of the

Softool Users’ Group Hetting, September, 1984.

2. G. Cort, J. A. Goldstone, R. O. Nelson, R. V. Poor~, L. tfiller and D.

H. Barrus, “A Development tlethodology for Scientific Softvare.” IEEE

Transactions on Nuclear Science, NS-32, 4, 1985.

3. G. Cort, “The Los Alamos Hybrid Environment: An Integrated

Developme~)t/Configuration Management System)” in Conference on—.

Software Tools, John Mann’.ng, cd., IEEE Computer Society Press. 1985.—.

-9-


