LA-UR -86-964 OONT - géPO s |- N l
Received by £541

At O 71986

Los Alamos Nanonal Laboraiory 18 0peraisd Dy the Uriveraity of Cahlormis fo1 ihe Unned Siaies Depariment of Energy under contract W-7405-ENG-36

LA-UR--86-964
DE86 008743

TITLE: A MODULAR, AUTOMATED SOFTWARE TESTING ENVIRONMENT

AUTHOR(S): G. Cort and R. 0. Nelson, P-9

MASTER

SUBMNED TO: Softool Users' Group Meeting
14-15 April 1986
Culver City, CA

DISCLAIMER

This report was prepared as an nccount o] work sponsored ty an agency of the United States
Government. Neither the United Stutes Government nor uny agency thereol, nor any of their
employces, mukes any warranty, express or implied, or nxsumes any legal linhility or respons)
bility for the nccurncy, completencss, or uscfulness of any imformation, apperatus, product, ar
process disclosed, or repres nts thut its use woult! not infringe privately owned rights. Reler-
ence herein to eny specific commescial product, process, or service by trade nume, trademark,
munufacturer, or otherwise does not necessarily coratitnte or imply its endorsemient, recom:
mendation, or favoring by the United Stutes Government or any agency thereol. The views
and opinions of authors cxpressed herein do not necesaurily stute or reflect those of the
United States (iovernment or any agency thereof.

By acceptance of this article the pubhishar recognizes thet 1h. 1) S Government reiains a nonerclus. /e royally-free licensy to publish of raproduce
the published torm n! this contnibulion O 10 allow others 10 do 30. for US Gove'nment purpo’us

The Lot mIiamos Nstianal Lab yralory requesia tha) he pubhisher dentiy this article as work petiormed yndar the ‘usL.ces 0'tha 1) S Departinuni of Eneryy

ey

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED q\&/ﬁ‘
v

Los Alamos National Laboratory
L@S A @[ﬁfﬂ@g Los Alamos,New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A MODULAR, AUTOMATED SOFTWARE TESTING ENVIRONMENT

G. CORT AND R. 0. NELSON
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS, NEW MEXICO 87545

Background

The testing environment has evolved from the eristing LARSCE softwvare
development methodology in resronse to some deficiencies identjified
therein. Principally, it had become evident that the veakest link in the
development cycle occurred in configuring a certified software product for
operation. This problem derived in large measure from the structure of the
methodology.

The Los Alamos Neutron Scattering Center (LANSCE) approach to software
development and softwvare ccnfigurution management are described in detail

elsewhere.l'2

Hovever, in order to provide the necessary context for
understanding the testing environment, the salient features of the LANSCE

hybrid approach are described in the followving paragruaphs.

The LANSCE system provides an evolutionary softvare development
me*hodology vhich incorporates a comprehensive, automated configuration
management system based upon Softool’s Change and Configuvration Control
(CCC) environment. Fundamental to this approach is the exclusion of all
development sctivities from the CCC data base. The contents of the CCC
data base are restricted to certified baselines (j.e. suvftvare that has
passed the appropriate reviews). Development activities (includ!ng
software testing) are performed in the host operating system accounts of
the various programmers. A very poverful set of softvare tools (CCC macros
and VMS command files) support this methodology, thereby alloving tne
configuration manager to transfer files between the development and

configuration management environments.

The advantages of this strategy are numerous.3 Programmers are given
aaximum flexibility to develop and implement their designs, yet certified
softwvare is captured and controllied effectively. In addition, data base
size is minimized and the computing system resources diverted to support
the CCC environment ar: drastically reduced.

The sofivare tools provided to ruprort file transfers betwveen the
development and configuration management environments have also proved
highly effective. The two major functions of these tools are to release
selected modules of an application from the configuration management
environment 1o a particulur developer (as tha first step of a maintenance
or enhancement activity), and to move modules from the development
environment to the secure configuration management environment after the
final delivery acceptance reviev has been satisfied.

Software releases pose few problems tor the automated system. In response
to an engineering change request or trouble report a programmer submits a
request for specific modules of the affected application. Upon approval of
the request, the configuration manager invokec a CCC macro vhich constructs
the appropriate export lists and transfers the required modules to the
developer’'s acccunt. These mddules generally include documentation and
testing software as vell as the source code to be modified. Even it the
request is not cumplete, no serious harm is done. A subsequent request can
be submitted for additional modules vhich can be similarly vithdrawn from
the CCC data base.

In the case of submissions of certified sofivare to the configuration
management environment, hovever, a far more serious situation can arise.
Again, the process is initia.ed by the developer vith the submission (by
electrcnic mail) of a transfer request vhich specifies the source code,
documantation and testing modules to be moved into the configuration
managemant environment. This request is made after the final review of

softvare, documentation and test report has ccrtified the functionality of

the softvare being submitted. The configuration manager is then
responsible for transferring and cataloging the softvsare in the
configuration management environment as wvell as for building the associated
application and for updating system data bases to make the applications
generally available to the user community. <2ach of these ta.ks is

periormed automatically by the appropriate softwvare tools.

Tvo prublems can arise at various stages of the procedure. The first
(and least serious) is associated vith identifying inconsistencies in the
delivered softwvare wvhich prevent the appiication from being compiled or
linked in the more general system environment. Guch local references are
invariably discovered and reported by the automated procedures vhich build
the applications, and the submitter can be prevailed upon to effect
remedial action. Local references are generally rela'ively trivial in
nature (incorrect logical name usage, improper defaulting in file
references, etc). They are easily identified and present no challenge to
repair. Howvever, they can prove an annoying disruption to tl.e submission
process,and over the long term, can impose a significant overhead in terms
of vasted effurt and bad feelings betwveen the configuration management and

development communities.

The second problem which can arise during the submission cycle is
potentially much move serious, owing to the fact that it is far more
difficult to detect, and because components of the baseline can be lost as
a result. This problem derives from an oversight on tie developer’s part
vhen specifying the modules to be transferred to the configuration
management environment. Although a missing source code module is readily
identified by the automated tuols, more subtle omissions (one of many files
of input test data, for example) cannot be detected automatically. The
vonly sure defense against such an occurrence is for the confijjuration
manager to execute the testing softvare after the modules have been
transferred to the configuration management environment. Unfortunately, a

special hardvare configuration is often required for operacior of this

softvare. As this hardvare is generally not available on the

configuration management computer, this approach cannot be implemented.

The most serious aspect of this problem derives from the fact that
upon being notified of the completion of the transfer operation, the
developer geuerally deletes the associated softvare from the local
operating system environment. Files that were omitted from the transfer
request are nov lost; their absence may not be discovered until the next

maintenance activity (which may be months or years in the future).

The LANSCE modular testing environment is designed to address both of
the problems associated with post-reviev softvare submissions. This is
accomplished by providing an isolated environment, sesgregated from the
developer’s local work space, in vhich all testing is performed. 1In this
manner, local references can be identified and implemented by the developer
at an early stage of the testing activity. In addition, the independent
envi-onment removes the human element from the specification of those
modules which are ultimately transmitted %o the configuration management
envircnment. 1n this manner, the submission process is completely
automated, thereby eliminating the possibility of omissions.

Implementation

The testing environment is established in an independent host
ooerating system account on a computer vith the appropricte hardwvare
coufiguration to support the softvare to te tested. It is supported by a
comprehensive set ot automated, softvare tools vhich significantly ernhance
the user interface to the cnvironment. Tt is utilized by the developer to
perform final acceptance testing of a software application prior to
subnission to the final delivery acceptance review, and as the source of
all modules to be transierred into the secure configuration management

environmert.

As specified by application-dependent characteristics, the developer
invokes one of several softwvare tools to configure the environment for
testing & particular softvare product. As part of the process, the
developer specifies the name of the source file list3 (SFL) for the
application source files as well as file names for users’ documentation and

testing softvare.

A subdirectory is automatically created within the test environment
and the specified softvare is identified and automatically transferred to
the subdirectory. Special symbols and logical names are creaced to support
the testing effort and all software (including test drivers) is
automatically compiled and linked. This process identifies any local
references vhich exist in ary source code module. A brief description of
each local reference is formatted into a message vhich is sent to the
corresponding develuper by electronic mail. This message generally
provides sufficient information to identify and eliminate most such
references. It references a history file which contains detuiled
information about all phases of the softvare transfer and build process and
can be used in the event that the information provided in the brief message
is insufficient to disgnose a prchlem.

The software tool which performs the softwvare transfer and rebuild is
charazterized by a simple, high-level user interface. The !nterface is
designed to minimize the amount of interaction required by the user to

configure the environment for testing a particular application.

The interiace prompts for all information. The need f r the user to
specify large numbers of source files is eliminated by criving the system
from socurce file lists. 1In this wvay, the user need specify only the name
of the application’s source file list in order to trensfer and rebuild the
entire application. This streamlines the interface and virtually
eliminates problems associated with incorrectly typed file names and

inadvertent omissions.

Although the vast majority cf files to be transferred to the test
environment are specified through a single reference to the SFL, other
files exist which must be explicitly identified by the developer. Among
these are documentation files, command files and testing data bases. 1In
order to simplify the specification of these files; the interfece supports
a "wildcard" mechanism which is identical to the corresponding feature of
the host VMS operating system. Thus a single wildcard specification can

result in the transfer of an entire class of files to the test envirorment.

The test environment alsov provides a facility which automatically
rebuilds and executes the test suite. In so doing, a formal :est report is
automatically created and cataloged within the appropriate partition of the
environment.

Interface with the CCC System

The LANSCE contiguration management plan specifies the use of the CCC
configuration management environment to control and track all softvare
baselines. This is accomplished by employing a set of software tools to
transfer the components of a certified baseline into the appropriate
partition of the CCC data base.

Previously, the files to be transferred vere specified by the
developer on a special foim submitted via electronic mail. Becausa the
specification formalism incorporated SFL's for ret:rencing source code
modules, these components could be identified and transferred very
reliably. Howvever, because testing and documentation files cannot be
referenced through source file lists, there existed the possibility that
some (or all) of these components could he inadvertently omitted and

thereby vanish frum the hierarchy of controlled sotftvare.

The use of the testing environment eiiminates the poteniial for losing
files in this manner. 1In addition, it permits the transfer of baseline
components to the CCC data base to be performed completely without human

intarvention.

At the conclusion of testing and the final delivery acceptance reviev,
the testing environment contains a partition in which all of the components
of the corresponding software application reside. These compolienis are
presorted into subpartitions which correspond to the lov-level organization
of the CCC data base. As such, subpartitions exist fur application source
~ode, the test suite (including the test plan and test report) and users’
documentatinn. Because both the application and test suite have been built
and ev~r~uted in this environment, the softwvare and supporting data in these

subpartitions are guaranteed to be complete.

Softvare tools (in the form of CCC macros) are provided to admit all
softvare for a specified application into the CCC data base. To ‘nitiate
this process, only the applicaticn name need be specified -- no names of
individual files are required. These macros automatically create the
appropriate data structures wvithin the CCC data base to receive the
baseline components. The HOST facility is then employed to scan the
appropriate partitions ot the test environment, compile a set of import
lists and move the corresponding software into the CCC data base. A
separate set of HOST macros is employed to rebuild the application and to
integrate it into "he LANSCE softwvare environment. This integration
includes updates to object libraries, command tables and the LANSCE data
base of executable images. A final set of macros notifies the developer of
the admission of the baseline to the controliled environment and deletes the

corresponding modules and partitions from the testing environment.

Conclusions

Use of the modular testing environment described in the preceding
sections has several significant advantages. The first such advantage
derives from the simplification of all aspects of the software te::ing and

submission process.

From the developer’s perspective, the approach provides an automated
facility for corfiguring the softvare for final testing and for eliminating
local references from the application. The manual methods previously
employed to accomplish these tasks were unreliable, tedious and error
prone. In addition, provision of these automated facilities permits the
transfer of the most di.ficult aspect of final software integration
(namely, the identification and resolution of local references) to the
individual most familiar vith the application: the developer. As a result,
local references can be more efficiently resolved than vhen their discovery
is postponed and relegated to configuration management personnel. In
addition, because all local references are eliminated before the softvare
is submitted to the configuration management environment, integratlon of
the application can be performed completely by automated tools, thereby
further enharcing the efficiency and reliability of the operation.

The introduction of large scale automation into the software
submission process also provides numerous benetits. Principal among these
is the elimination of potential problems relating to completeness of the
submission and resulting in compromises of the integrity of rhe
configuration management environment. In addition, because the tutomated
operation no longer requires human interaction, it can be scheduled to
execute in a background mode during periods of low utili.ation of the host
computer resource. In this manner, the high demands for system resources
made by the CCC system can be scheduled for periods when they will have the
least impact on other system users.

Finally, it siwtld be noted that because of its modular

implementation, the te:ting environment is suitable for use by projects of

videly varying size and organization. In the limit of small projects such
as the LANSCE effort, this approach is very effective for providing
individual developers with a uniform, independent environment in which to

integrate and test their softwvare applications.

It is our belief, however, that an approach such as this is potentially
even more beneficial when applied to laryge softvare developmert projects
vith independent testing organizations. 1In addition to providing automated
support for both unit testing and integration testing activities, the
envirnrment provides the means to test evolving softvare configurations
(and to freeze intermediate stages of development) without intruding upor
the acuvivities of the development community. Regardless of p-oject size,
this approach to software testing and integration relieves people from many
tedious, time-consuming and error prone tasks, with the ultimate result of

increasing efficiency, productivity and morale.

References
1. G. Cort and D. M. Barrus, "Configuration Management for Mission-
Critical Software: Thc Los Alamos Solution." Proceedings of the

Softool Users’ Group Meeting, September, 1984,

2. G. Cort, J. A. Goldstone, R. 0. Nelson, R. V. Poor2, L. Miller and D.
M. Barrus, "A Development Methodology for Scientific Software." IEEE
Transactions on Nuclear Science, NS-32, 4, 1985.

3. G. Cort, "The Los Alamos Hybrid Environment: An Integrated
Development/Configuration Management System," in Conference on

Software Tools, John Mann’ng, ed., IEEE Computer Society Press. 1985.

