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1. Introduction

The kinetics of domain growth in simple spin models quenched from a high
temperature (T>>T.) to a low temperature (T<Tc) have received a great deal of
attention in the iast 10 years. These spin systems provide a simple model for
ordering processes in real materials (e.g., grain growth [1,2]), spinodal
decomposition (3], etc.). Such studies generally show that the correlation
length in the system grows with time as t", where n is the temporal growth
exponent. In cases with nonconservative dynamics, n is generally found to be
1/2. Occasional difficulties in obtaining this value (and the corresponding
vulua of 1/3 for conservative systams) in Monte Carlo simulations are often
attributable tc finite system sizes (i.e., correlation length not sufficiently
larger than lattice size). In many experimental systems, however, a growth
exponent less than expected is observed [4]. Frequently, these low exponents are
attributahle to impurities in the experimental system. These impurities can take
the form of second phase particles, atomic impurities, or lattice defects. At
sufficiently low temperatures, thess impurities are ususlly immobile and can be
viewsd as static or quenched with respect to the motion uf domain wa ls. On the
other hand, at sufficlently high temperatures where the Iimpurity mobility is
significant, the impurities can diffuse along with the moving domain walls. In
either casa, the impurities impede domain wall motion, resulting in slower growth
kinatics,

In the present report, we consider the effects of both static and diffusing
impurities on domain growth kinetics. In particular, we employ Monte Carlo
simulations for nonconservative (Glauber) dynamics to examine the effects of
quenched impurities on domain growth in the Potts mode' ith varying degeneracy Q
(25Qs48; [5,6]. The effects of diffusing impurities are examined within the
framework of the Ising model (i.e., Potts model with Q=2) as a function of
impucity diffusivicy (7). Finally, a theoretical analysis of the diffusing-
impurity vesults {s presented [8]). Dus to the limited space available, however,
this paper presents only a review of our recent work, to which the interested
reader {s refurred for more details (5-8].

ASimulation Procedure

The Hamiltonian describing the Q-component ferromagnetic Potts model (s written
as

He -J) & (1)
NN S8,

where Si is the atate of the spin on site 1 (lssisQ). 6o 18 the Kronecker §
function, and J {s & positive constant. The summation in £q. (1) {s taken over
all nearest neighbor (NN) apins on a two dimensional lattice. Since, in the
present simulation, the order parameter is not conserved, spin-flip (Clauber)
dynamics are employed. The Monte Carlo procedurs employed was made more
efficient by adoption of the technique known as the "n-fold way" (9]. In order to
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account for impurities, the normal Potts model is modified to allow 0<5;=Q, where
S{=0 corresponds to an impurity site [5,6].

The model was initialized by randomly placing Nc¢ impurities with S;=0 on the
lattice, where N is the number of lattice sites and ¢ is the concentration of
quenched-impurities. The remaining sites were assigned a random value between 1
and Q. During the course of the quenched impurity simulations the impurity sites
were not updated and hence both the impurity positions and concentration were
time independent. The surface (line) energy of an impurity interacting with a
spin on a NN site is the same as the domain-boundary energy between two sites
with S,;mS5.;m0. The static impurity simulations were performed on a 200x200
triangular lattice for Q>4, on a 400x400 triangular lattice for Q = 3 or 4, and
on a 500x500 trisngular lattice for Q=2 (i{.e., the Ising model). For Q<48,
results of ten configurations were averaged for ~ach value of Q and ¢. For Q-48,
five simulations were performed for c20.02 and two for smaller values of c.

The diffusing-impurity simulations (7] were all performed on the Ising model
on the square lattice. It is convenient to write the Ising Hamiltonian as

H=-J % 88y (2)

where the spins are now §;=*l. As before, impurities correspond to S$;=0. The
nonzero spins were updated using spin-flip dynamics. The impurity spins, on the
other hand, were updated using spin-exchange (Kawasakl) dynamics, since the
concentration of impurity sites is conserved. The same spin-updating probability
(W) was employed for both impurity and non-impurity spins, i.e.

W = (D/2)[l+tanh(-AE/kgT) ] (3)

where AE is the difference in the energy of the system following and prior to a
spin update and kgT is the thermal energy. The parameter D was cliosen as unity
for the non-impurity spins, and was assigned a value less than or equal to 1 for
the impurity spins., Since D determines how often impurity and non-impurity site
exchanges are attempted, D is proportional toc the impurity diffusivicy. The
diffusing-impurity simulations were performed on 250x250 square lattices at
T=0.08J/kpa. Simulations were performed for 0sD<l and 0.003scs<0.1. Due to the
large number of simulations required to examine this two-dimensional parameter
space, only two simulations were performed for each set of conditions.

Several different methods are available for characterizing the degrea of order
in the system as a function of time. We have found (7] that rhe mean chord
length, L, the inverse perimeter density, R1 !nd tne inverss square root of rhra
second moment of the structure factor, anz' / , all yield approximately the same
domain-growth exponent. However, the inverse perimeter denasity <R> was the most
efficient to calculate and, hence, will be employed hers. Noting that, at low
temperature, the perimeter density is inversely proportional to the excess energy
(over the ground-state energy E ), we write

<R = -E/(E(t)-E,) (4)

where E(t) is the energy of the syrtem at time t. Since the ground-state energy
of the non-impurity spins i{s a function of the instantaneous impurity
configuration, the time dependence of E, must be carefully accounted for.

L. Static Impuricies
A. The Ising Model

In Flg. 1, we show the aevolution of the spin configuration for the
nonconsecvative Ising model quenchad from Twe to Tw0 with c¢=0.005. While domain
growth is evident between 200 and 400 Monte Carlo Steps (MCS), little domain



growth occurs between 400 and 2000 MCS. The pinned configuration (at 2000 MCS)
shows fairly irregular domain walls. Fig. 2 shows the evolution of the domain
size with time for five different impurity concentrations. /et early times, all
of the curves fall on the same line, ccrresponding to <R>--t1 . At later times,
however, the curves corresponding to nonzero c¢ flatten out, indicating that th~
structure becomes pinned. The final domain size R; is seen to increase with
decreasing impurity concentration. A double logarithmic plot of Re versus l/c
(Fig. 3) shows that the final, pinned domain size is inversely proportional to
the square root of the impurity concentration. Such scaling relatio?s collapse
all of the data [5] onto a single curve obtained by plotting ln(R(t)/t /2) versus
In(ct).

The microstructural evolution corresponding to a quench to T~0.7Tc with c=0.01
is shown in Fig. 4. Unlike for the quenches to T=0, the domain walls in this
case are relatively smooth and considerable evolution of the structure is
apparent between 400 and 800 MCS. The evolution of the domain size, <R>, with
time is shown in Fig. 5 for c=0.1 and quenches to T=0, 0.25J, 0.45J, 0.9J, and
1.3J. As for the quenches to T=0, all of the curves collapse at early times.
While the curves do separate at later times, a well-defined, pinned configuration
(<R> = constant) does not occur, indicating thermal activation over the impurity
pinning sites. This activated depinning clearly becomes increasingly effective
with increasing temperature. Attempts to calculate a growth exponent based on
the curves in Fig. 5 yleld exponents which vary with time: in other words, the
system 1s not executing power-law growth. The exponents measured at the latest
times in the figure increase with increasing temperature (from zero at T=0 to
nearly 1/2 at T=1.3J), again supporting the notion of tharmally activated domain
growth.

B. The Potts Model

In addition to the Q=2 (Ising) limit discussed above, the effects of impurities
on domain growth in the Pocts model were examined for Q = 3, 6, 12, 24, and 48
(6). Figure 6 shows the evolution of the microstructure for a quench to T=0 with
c=0.01. Unlike in the Ising model, where domain wall., never cross, for Qz3 (in
two dimensions), the domain walls meet at three-fold vertices. This results in
relatively compact domains. The fremporal evolution of the mean domain area (A~R®)
is shown in Fig. 7 for ¢=0.01 with Q = 3, 6, 12, and 2{. Figure 8 presents
similar data, but for fixed Q (=4) and varying c. All of these curves show a
slope of order 0.5 at early times and become flat at late times, indicating
pinning. Pinning occurs at smaller domain sizes with incre.sing Q and c. Plots
of the final, pinned Jdomain size (area) versus the invurse impurity concontration

(Fig. 9) are all linear, with a slope that is Q dependent. An excellent fit to
ail of this data is providad by the following empirical functional form:

Ag = (1/¢) [3+8/(Q-1)/2) (5)
where B {s a constant.
4, Riffusing Imwpucities

When the impurities are free to diffuse [7], three new effects can occur: l) the
{mpurities can diffuse to domain walls, 2) the impurities can diffuse along with
moving domain walls, and 3) the impurities can cluster. All of these features
can be seen by comparing Figs. 10 and 11, which show the temporal evolution of an
Ising model on a mquare lattice quenched from T=e to T=0 with ¢=0.01 and with D =
0 or 1, respectivaly,. The moet notable effect {s that, when the impurity
diffusivity {s finite, the final .r pinned domain size {s smaller than when the
{mpurities are static (Dw0). Additionally, in the pinned configuration of the
D=0 sgimulation relatively few impurities ars observed in the center of the
domsinsg ({.e., away from domain walls). The effeact of variations of D
(diffusivity), at fixed ¢, on the rate of domain growth is indicated in Fig. 12.
This figura clearly shows that increasing diffusivity leads to earlier pinning at
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smaller domain sizes. Similar results were obtained for all nonzero impurity
concentrations simulated.

A great deal can be learned by examining the time dependence of the density of
impurities on domain walls (see Fig. 13). While the fraction of impurities on
domain walls generally show a decrease with time, the density of impurities along
the domain walls (i.e., the numb%F of impurities per unit domain wall length)
increases with time, since <R>-t /2, at least at early times. These curves
appear to show a break that occurs at later times with decreasing D. This is
most clearly seen in the D=0.3 curve, where the edge fraction initially decreases
with time and then increases. At early times, the domains are small and the
domain-wall curvature 1s large, and, hence, the domain-wall velocity 1s large.
When the domain wall velocity is large, the impurities are not able to diffuse at
a sufficieatly high velocity to keep up with the domain wall. However, at later
times, the domain size has grown, the domain-wall curvature and velocity have
decreased, and, hence, the impurities can diffuse at rates sufficient to allow
tha domain walls to sweep impurities. The slower the domain wall, the more
impurities it collects, and, as a result, it moves even slower. This feedback
mechanism results in the catastrophic pinning of domain walls.

2. Analytic Results

To provide some theoretical insight into the above data, we [8] have performed an
analytical analysis of the interaction between moving domain walls and diffusing
impurities for a realistic form of the impurity--domain-wall interaction energy.
This {nteraction s=nergy is derived within the framework of the modified sine-
Gordon model with either misfit impurities (coupling to the gradient of the orde:
parameter) or elastic-modulus impurities (coupling directly to the order
parameter). This interaction potential is then employed in calculating the
steady-state impurity-concentration profile about a moving domain wall for
arbitrary domain well velocity and impurity diffusivity. At low velocities, the
concentration profile is nearly symmet:ic about the position of the domain wall.
As the velocity increases, the amplitude of the concentration profile decreases

and the profile bacomes increasingly asymmetric. The drag on the wall exerted by
the impurities is given by

Fdrag - Jja c(u) [{-dE(u)/du] du (6)

where c(u) is the steady-state impurity coucentration, E is the impurity--domain-

wall interaction energy, and u {s the separation of the impurity from the dumain
wall .

Eq. (6) can be evaluated analytically and then inverted to yield the steady
state relation between the applied force on a domain wall and its resultant
velocicy. In the high-diffusivity/weak-interaction limit, this reduces to a
linear force-velocity relation et small driving forces, an inflection at larger
forces follocwed by another linear region, and, finally, saturation to an
asymptotic velocity ccrresponding to the speed of sound in the material (Fig.
14s). The {nflectior in the curve is due to a transition from impurity-limited
domain-wall motion to & regime in which the diffusing impurities are essentially
incapable of keeping up with the domain wall. For strong-impurity--domain-wall
interactions ana lower {mpurity diffusivity, this inflection turns into a
bifurcation with both high- and low-velocity branches (Fig. l4b). As the domain
wall is quasi-statically accelerated from rest, it moves along the low-velocity
branch until a critical force is applied, sfter which the domain wall travels at
a velocity detormined by the upper branch. Similarly, when the domain wall {s
slowed from high velocity it traverses the upper branch and then discontinuously
moves to the lower one at a lower critlcal applied force. Reiatively simple
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expressions for the critical points on the hysteresis loop have been obtained in
different limits.

Application of these results to domain growth in the presence of impurities
conflrms the qualitative picture described above (at the end of Section 4).
Following the quench to low temperature, the domain-wall velocity is initially
high due to the large-curvature driving force at small domain size and then slows
as the domain size increases (decreasing driving force). If conditions are such
that the force-velocity relation depicted in Fig. 1%b is applicable, the domain-
wall velocity will decrease slowly during domain growth until its velocity falls
below a critical value where it is captured by the impurities and slowed very
drastically, if not effectively pinned. Since different domain walls will be
moving with different velocities during domain growth, the pinning of the system
is expected to occur one domain wall at a time until no walls are free. If the
tesperature is such that significant domain-wall velocities are possible in the
regime where the impurities are diffusing along with the walls (i.e., the lower
branch), then further domain growth can occur, although with an effectively
enhanced damping. It is interesting to note that, once the system finds itself
in the regime where the impurities can keep up with the domain walls, the
effective bulk concentration of impurities is reduced (i.e., a non-negligible
fraction of the impurities is on the walls), and a moving wall feels a smaller
impuricy drag than expected based on the total impurity concentration. It is
expected that this will lead to a rescaling of the steady state.

&. Concluaions

Recent Monte Carlo simulations on the effects of impurities on domain growth [5-
7] show that, at low cemperac&tsl. there 1s a rather abrupt transition from
normal domain growth (i.e., R~t / ) to a pinned state. The mean, pinned domain
size decreases with &nereasing degeneracy and with increasing impurity
concentration as Rf~c'1/ . This transition is less abrupt and, with increasing

temperature, it occurs at larger domain size and later times. When the
impurities are free to diffuse, they slow domain growth bty diffusing to and
diffusing along with moving domain walls. Increasing diffusivity results {in

decreased final domain sizes, at leagst at low temperatures. A one-dimensional
analytical analysis [8] shows that the presence of diffusing impurities can lead
to nonlinezriiles and hysteresis in the relationship between the driving force on
-a domain wall snd the resultant domain-wall velocity and, hence, non-classical
domain growth exponents,
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