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The recent discovery of two types of metallic copper oxide compounds which are

superconducting to above 90K has renewed Interest in the search for new high

temperature superconducting materials. It Is significant that both classes of compounds,

La2_xSrxCu04 „ and YBagCugO^ are Intimately related to the extensively studied

perovsklte family. Both compounds contain highly oxidized, covalently bonded Cu-O

sublattices, however, they differ In geometry. In this paper we discuss the relationship

of these features to the superconducting properties.

Superconductivity above 30K was first discovered in La^BajjCuO^y with the

l<2NiF4 tetragonal structure1 ~^. Subsequent work revealed that Tc could be raised to

37K by replacement of Ba by Sr5!. The undoped La2Cu04 compound, which forms in an

orthorhombically distorted variant of the r^NiF4 structure Is non-metallic at low

temperatures and shows no superconductivity. Recently it has been shown that in the

stoichiometric material, the Cu ions order antiferror nagnetfcally6"8!. There are also

reports that this compound can be made superconducting by special post-synthesis

procedures9!, however the superconductivity might not be bulk and the reason for its

existence is not yet understood. As Sr is substituted for La, superconductivity appears

with Tc increasing until La1 8 5Sr0 1 5Cu04 . y . The basic structure of tetragonal

La2_xMxCuO4.y (M-Sr, Ba) is shown In Figure 11°1, however, at low temperatures

there is evidence for a slight orthorhombic distortion11!. This distortion has little effect

on the structural properties we will be discussing below. The most prominent feature In

this structure is the presence of two-dimensionaS (2D) Cu-O planes with short (1.888

A) distances within the plane. The Cu atoms are octahedrally coordinated with two

relatively distant oxygen atoms above and below the planes (2.416 A). All of the

La2_xSrxCuO4_y compounds have very low carrier concentrations12i13l. consistent with



La/Ba

Figure 1. The structure of L a g ^ ^ ^ y
The Sr-aubstituted compouod has the same
structure (ref. 10).

each Sr atom producing a single hole. From a chemical standpoint, the addition of Sr can

be considered as increasing the formal oxidation state of the copper. Assuming C"2, La+ 3

and Sr*2 , and a composition of La1 Q^STQ 1 5 C U 0 4 for the compound with the maximum

Tc, the calculated formal charge state of Cu is +2.15. Partial substitution for the Cu

atoms in this structure rapidly depresses T c to OK within a few percent, while magnetic

rare earth substitution for La leads to a slow decrease in T c
1 4 l Full substitution of rare

earth ions is not possible in this compound because of a structural phase transition which

completely destroys superconductivity15'.

The current confirmed record-holder for T c (-90K) Is YBa2Cu3O7^, which was

discovered as a minority phase in attempts to raise the Tc of La2.xBaxCu04.y by

replacing La with Y 1 6 l Subsequently, the single phase composition was found to be

YBa2Cu3O7^1 7"1^ with the orthorhomblc structure shown In Figure 2 ^ l This

structure is composod of dimpled 2D Cu-0 planes and one-dimensional (1D) Cu-0 chains

separated by fairly large distances. The Cu-O bond lengths are 1.928 A and 1.962 A

within the 2D planes and 1.943 A along the ID chains. Furthermore, the Cu1-O4

distance above and below the chains is quite short (1.850 A). Various neutron

diffraction studies find the exact composition to be YBa^UgOg g^ corresponding to a

formal charge state of +2.23 for Cu2 0 '2 3! . At high temperatures, this compound

undergoes a phase transition to a tetragonal structure (Figure 3) 2A^si. in-situ



Figure 2. The ortfiorbombic structure
of superconducting YBa 2 Cu 3 O 7 ^
(ref. 20).

Figure 3. The high-temperature,
non-superconducting tetragonal
structure of YBa2Cu3O7.5 (ref. 26).

neutron diffraction shows that as the temperature is increased, the oxygens in the 1D

chains disorder into the formerly vacant positions along the a-axls26l Figure 4 shows

the site occupation of oxygen in the basal plane as a function of temperature under 100%

O2. At 750°C, site occupations become equal and the compound becomes tetragonal. The

total oxygen stolchlometry of this compound depends on temperature and oxygen partial
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pressure as shown in Figure 6. The temperature at which the structural phase

transition occurs Is Indicated by the vertical lines and Is found to correspond to an oxygen

content of 6.5. Independent of oxygen partial pressure. It should be noted that this

stolchiometry corresponds to a formal charge state of +2.00 for Cu. Studies of quenched

samples have shown that T c decreases monotonlcally to zero at the phase transition27!.
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Figure 5. Total oxygen content in YBa2CugOx

as a function of temperature for varying
partial pressures of oxygen. The vertical
dashed lines mark the temperature of the
orthorhombic-to-tetragonal phase transition
(ref.26).
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Substitution of Y by trfvalent rare earth elements does not affect Tc despite the rare

earth magnetic moments being introduced into the structure28'29!. Of the three rare

earths which have stable tetravalent states (Ce, Pr and Tb), only Pr can be substituted

for Y In this compound30!. Figure 6 shows the temperature dependent relative

resistivity for various concentrations of Pr in V1 .xPrxBa2Cu307^. If Pr enters as a

tetravalent ton, the observed transition from metallic to semiconducting behavior could

be understood as a reduction of the formal charge state of Cu to below +2.00.

Structural Considerations and Superconductivity

The origin of superconductivity In the La2.xSr](CuO4_y compounds is clearly in the

20 Cu-O planes, while there Is some question as to whether the 1D chains or the nearly

2D planes In Y B a ^ g C y ^ are more important for superconductivity. It is surprising

that the addition of 1D chains more than doubles the superconducting transition

temperature. Some insight can be gained by considering the results of magnetic rare

earth substitution into both these structures. In La2_xSrxCu04_y, the magnetic ion lies

adjacent to the planes carrying the superconductivity (see Figure 1. La/Ba positions)

and depresses Tc . On Ihe other hand, the YBa2Cu3O7^ structure is quite Insensitive to
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Figure 6. Relative resistivity
as a function of temperature
for compunds in the series
Wx
(ref.30).

magnetic rare earth Ions whose location is adjacent to the 20 planes but far from the 1D

chains (see Figure 2, Y positions). This result seems to indicate that superconductivity

may reside In the 1D chains. However, h Is also possible that the chains may only serve

to stabilize a structure in which two Cu-O 2D planes are much closer together (3.50 A)

than the equally spaced planes in La2_xSrxCu04_y (6.65 A). The effect of dimensionality

on superconductivity in these materials is far from being understood and will require a

great deal of additional experimental and theoretical effort.

Superficially, one of the most striking differences in the two compounds is that

La2.KSrxCu04,y is basically a solid solution, with La and Sr sharing the same

crystallographlc suWattice. In contrast, WB^Cu^Oj^ Is a stofchiometric compound with

Independent Y and Ba suWatttoes. When one considers the defect nature of these

compounds, however, they are electronically quite similar, being low carrier density

"doped semiconductors". Both L^CuC^ and YBagCugOg^, which contain only divalent

copper, exhibit semiconducting behavior at low temperatures10'. In both these

materials, metallic-like behavior and superconductivity occur when the copper is

oxidized to greater than a divalent state. In La2_xSrxCu04_y this is accomplished by

doping with divalent Sr while in YBagCugO^, the same effect is obtained through

increasing the oxygen content Because of the strong covalent nature of the Cu-O

subiattices in these materials, it may be inappropriate to consider formal oxidation

states of the copper. Indeed, while these compounds are oxidized In a chemical sense, the



holes Introduced by doping are deteallzed over the entire Cu-0 sublattices. In light of

this "doped semiconductor" picture, it Is not surprising that defects play a major role In

determining the electrical, magnetic and superconducting properties of these compounds.

A good example is the "unintentionally doped" L^CuO,, compound which exhibits a wide

range of magnetic and superconducting properties caused by the incorporation of as yet

unidentified electrically active defects.
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