
at w Fermi National Accelerator Laboratory 

FERMILAB-Conf-89/135 

Remote Procedure Execution Software for 
Distributed Systems * 

Donald L. Petravick, Eileen F. Berman, and Gary P. Sergey 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinois 60510 U.S.A. 

May 1989 

* Presented at “Real Time Computer Applications in Nuclear, Particle, and Plasma Physics,” Williamsburg, Virginia, May 
16-19, 1989. 

GOP’ rated by Universities Research Association, Inc., under mntract with the United States Department of Energy 



REMYIEmocED~ EXECUTION SOFTWARE 
FOR DISTRIBUTED SYSTEMS (*) 

Donald L. Petravick, Eileen F. Berman, Gary P. Sergey 
Online and Data Acquisition Software Groups 

Fermi National Accelerator Laboratory 
Batavia, Illinois 60510 

Abstract 

Remote Procedure Execution facilitates the construction 
of distributed sofhwe systems, spanning computers of 
VtiOUS types. Programmers who use the RPX package 
specify subroutine calls which are to be executed on a 
remote computer. RPX is used to generate code for 
dummy routines which transmit input parameters and 
receive output parameters, as well as a main program 
which receives procedure call requests. calls the 
requested procedure. and retums the result. The package 
automatically performs datatype conversions and uses 
an appropriate connection oriented protocol. 

Supported operating systems/processors are VMS(VAX). 
UNIX(MIP.S R2000. R3OCKl) and Software Components 
Gmup’spSOS (680x0). Connection oriented protocols are 
supported over Ethernet (TCP/lF’) and RS232 (a package of 
our own design). 

I. BACKGROUND 

Experiment related computer systems at FERMILAB are 
evolving from single VAX processor systems to ones 
which use VAXstations in a Local Area VAX Cluster 
(LAVC). Fmnt end FASTEWS and VhlE based 680x0 
processors or MIPS/UNIX machines may also be part of 
this distributed system. Often individual VAXstations within 
the LAVC will perform sepamle tasks with the need 
toshamor transfer data between each other and the 
VME or FASTEWS processor. Consistent and reliable 
data transfer between these systems involves knowledge of the 
individual communication call interfaces (DECnet. Ethernet. 
Terminal Lines) and the different data representations. 
Errors occurring within this multi-processor system would 
be hard to diagnose, as badly behaved non-interactive 
processes introduce non-obvious software failure points It 
is essential that these processes detect ermr conditions and 
recover gracefully. Remote Procedure Execution is a 
high-level tool which provides all of these functions. 

I---___----_----_ 

(‘)spo~omd by DOE Contract No.DE-ACO2-76C1.103~ 

II. WHAT IS REMOTE PROCEDURE 
EXECUTION 

llte goal when writing the Remote procedure Execution 
(RPX) [451 software was to produce a reliable, easily 
portable package allowing transparent use of different CFW’s 
and communications media for development of network 
application programs. RPX accomplishes this goal by 
using a layered approach. Layering enables RPX to 
insulate the user from the communication and data format 
routines. The user makes subroutine calls with no 
knowledge as to where the subroutine will actually be 
executed. No extraneous modifications to the user’s source 
am reqttired and the user programs and routines are unaware 
that they are intended for use across a network. To 
accomplish this separation RPX uses a client/server model 
to send requests and execute remote procedures. 

While appropriate for new applications, RPX can be used 
to help migrate existing code to a new computer system. 
Isolating hard-to-port code behind procedure calls lets them 
continue tc run under the old environment. For new 
applications RPX can be used as a prototyping tool. 
Since the software interface is specified as a procedure 
call. preliminary software can be pmtotyped and tested on 
a single computer. As the system grows the interface can 
&ported 

A. Current Applications 

Currently at FERMILAB hvo applications are using the 
RPX software. The fit application is a MIPSjUNIX 
based program which accesses a VMS based calibration 
database. The database can beinitialiied.opened.closed, 
read and written to from the UNIX machine across Ethernet. 
Thii application makes use of the greater computing power 
available on the MIPS machine for data manipulation. 

The second application is a pSOS based message 
reporting package (MRPT). pSOS is a multi-tasking 
operating system kernel for 68C00 family processor boards 
enhanced for FERMILAB’s specific applicationneeds. At 
FERMILAB, pSOS mns on a Motorola MVME133A (68020 
CPU) Vh4E processor board. The message reporting 
package is a subroutine library which is linked with 
pSOS application programs. Error messages generated by 



these programs are then passed to a VAX (via subroutine 
calls using RPX) where they can be displayed as desired. 

B. Supported Configurations 

The current release of the RPX software supports the 
following configurations - 

o VMS Client to VMS Server via TCP/lT’ across Ethernet 
o VMS Client to pSOS Server via TCP/IP across Ethernet 
o pSOS Client to VMS Server via TCPAP across Ethernet 
o UNIX Client to VMS Server via TCP/IP across Ethernet 

II. RPX INTERNALS 

An assemblage of application independent routines 
constitute the layered foundation of RPX. All 
communication, error handling. and data transformation 
modules are functionally grouped and sufficiently 
independent to facilitate easy adaptability to a variety of 
communication media and protocols. 

In an effort to simplify the RPX communication layer. 
I/O packages supporting connection oriented protocols are 
used. This design removes much of the overhead 
involved with network communications from RPX 
concerns, including flow control, assurance that data 
transferred is received, and notification of the demise of a 
partner. 

Extensive measures were taken as part of the design 
phase, to identify all problematic situations that may arise 
during the execution of an RPX application. The resulting 
error handling layer not only encompasses detection, but 
utilizes a centralized reporting and recovery mechanism as 
well. For example, a lost connection or bad component 
thread would be reported and successfully recovered from 
so that subr+%quent requests could be handled without incident. 

The transfer of data between various computers is 
complicated by the fact that binary representations of data 
may vary from machine to machine. For example, bytes of 
integer data may be ordered in memory from tbe least 
significant byte to the most significant byte or conversely 
from the most to the least significant byte. 

RPX utilizes a set of macros to convert the internal 
representations of various datatypes into a standard transport 
form and also return the standard form back to the native 
machine representation. Datatypes supported include bytes, 
characters, 16 and 32 bit integers, and 32 bit floating 
point values. Arrays. pointers, and complex structures of 
the aforementioned are supported as well. 

32-bit Integer Transformation 

n-n- 
10 11 1 11 2 11 3 J 

Floating Point Transformation 

Fraction Expon. Fraction 

Fig 1. Transformations on Binary Dati 

III. CLIENT/SERVER MODEL - USER 
INTERFACE 

The underlying communication context for all 
RPX transactions may be viewed simply as a requesting 
process (or client) communicating with a receiving process 
(or server) at some remote network luxation. To attain this 
process-to-process relationship, client/server “stub’ modules 
are created and linked with application code and the RPX 
run-time library. Tailored to the specifics of the designated 
remote procedures, the stubs efficiently bridge the gap 
between RPX internals and user written applications. 
Manipulation of parameter data to/from transport buffers, 
coordination of communications, and direction of data flow 
to appropriate destinations, are all managed by the stubs. 

Theclient stub, which is linked with the user written 
mainline to form the client process, is comprised of routines 
which mimic the calling sequence of each subroutine that is 
to be called remotely. The server stub contains corresponding 
“shell” routines from which the actual application 
subroutines are invoked. The server process is created by 
linking the stub with the user’s subroutine library. 



3 

N. CLIENT/SERVER FLAVORS 

The sequential nature of subroutine execution is 
simulated in the RPX environment by forcing the client 
process to remain idle until the server has completed the 
remote request and returned any parameter data. For most 
applications this scenario is acceptable, however the 
client/server model of RPX affords a degree of parallelism 
which was taken advanrage of in the design and resulted in 
several options or flavors of procedure calls. 

A. Concurrent Procedures 

“Concurrent” procedures apply to remote subroutines 
which return no data. In this instance the client need not 
remain idle and hence is freed to execute simultaneously with 
the server. 

B. Early Return Procedures 

In certain situations it may be desirable to continue a 
remote procedure even after parameter data have been retumed 
to the client. A user callable RPX routine is available to 
force an “early return” of parameters, allowing the client 
and server to run in parallel. The parameters are returned only 
OllO% 

C. Deferred Procedures 

Useful in applications such as resource managers. 
“Deferred- procedures provide an opportunity to set aside a 
particular call until further notice. The procedures may 
be resumed under program control or after timeout of a 
specified interval. This is decidedly non-transparent, but still 
within the RPX framework. 

D. ClientlServer Conjigurations 

The multiple client/sewer conligurations highlight the 
distributed system capabilities available with RPX. 
Servers readily field calls from both single or multiple 
clients distributed across a network. So too, may clients 
invoke procedures residing on separate network server 
destinations. The configurations are dictated by the specific 
needs of the intended application and are limited only by 
the constraints of the network involved. 

Fig. 2. Potential Client Server Conrigurations 

V. CONCLUSION 

RPX provides a consistent, transparent, easy to use 
method for executing procedures located on a remote node. 
Communication and data representation problems are 
completely handled by RPX removing them from the 
user’s concern. Due to its layered approach, RPX is easily 
ported to new operating systems. Future plans include 
implementation of the following - 

0Support for connection oriented terminal 
line communications. 

o Support for DE&et communications. 
o Support for the GPM (a Struck General Purpose 

FASTBUS Master with Motorola 680x0 processor). 
0 Support for MIPS/UNIX servers. 
o Automated stub creation. 

VI. ACKNOWLEDGMENTS 

During research at the onset of the RPX project, 
extensive evaluations of the CERN Remote Procehure Call 
(RPC) package and the SUN Microsystems RPC package 
were conducted [1,2,31. We are especially grateful to Tim 
Bemers-Lee for his help wirh examining CERN’s RPC 
package and for the ideas behind the Client/Server stubs, 
concurrent procedure calls and early return. 

VII. REFERENCES 

[I] T. Bemers-Lee. “RPC User Manual”. CERN DDKX: 

[Z] T.Bemers-Lee. “RPC System: Implementation Guide”. 
CERN DDIOC. 



[31 Sun Microsystems (Trademark). “Remote Procedure 
Call Programming Guide”. 

I41 E. Berman, D. Peoavisk. G. Sergey. “Design Outline 
For RPX”. Fermilab Computing Department Note DS- 

166. 

c.51 E. Berman. D. Penwick. G. Sergey. “RPX User’s 
Guide”. Fermilab Computing Department Note PN-384. 


