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ABSTRACT

A digital image processing inspection system is under development at Oak Ridge National Laboratory that
will locate image features on printed material and measure distances between them to accuracies of 0.001 in.
An algorithm has been developed for this system that can locate unique image features to subpixel
accuracies. It is based on a least-squares fit of a paraboloid function to the surface generated by correlating a.
reference image feature against a test image search area. Normalizing the comrelation surface makes.thesr
algorithm robast in the presence of illumination variations and local flaws. Subpixel accuracies better than 1/
16 of a pixel have been achieved using a variety of different reference image features.

1. INTRODUCTION

An algorithm has been developed at Cak Ridre Natic nal Laboratory that can be used to locate a veriety of
features or obpcts in a digiuacd wiigs 1T subpiici ducliracics. Tue clgorithm uses a set of normalized
correlation data’ generated by correlating a stored reference template against a test image search area that is
believed to contain the feature of interest. A three-dimensional paraboloid surface is fitted 10 the data to
interpolate the precise point of maximum correlation or degree of similarity.

Applications for this type of searching algorithm are numerous. Almost every image-processing/machine
vision system is concemed with the spatial registration of the inspected object, and this algorithm is robust
enough to find a large variety of objects. This algorithm also has the advantage that high accuracies can be

achieved without large magnification optics at the front end of the system because of its subpixel
measurement capabilities.

This paper presents the theoretical background for the algorithm as well as a step-by-step discussion of how
to actually implement it. Also, experimental results from extensive testing done with a machine vision
system will be presented.

2. IMAGE CORRELATION

Consider a reference template of image data, R(x,y), and a test image search window, T{(i,j), as shown ii
Fig.1. One way 10 locate the feature of interest in T(i j) is 10 load the iemplate R(x,y) with the image data that
represents the feature of interest. Then place R(x.y) at every possible location on 77i.,j) and calculate the
correlation, or degree of similarity, between the two. Depending on the type of correlation used, & mazimum

or a minimum correlation value will occur when the template lies directly on top of the matching feature of
interest,

The type of correlation can be as simple as a pixel-by-pixel subtraction of the reference and test tempiates.
An ideal match in this case would be zero. The type of data used in the propossd algorithm is generated by
calculating the normalized correlation between the teinplates, The square of the nomxalmed correlation, £,
bctwecn R(x.y) and T(ij) for some position ({.m) in T where i< i~x and m<j -y is given by
NN
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Fig. 1. Correlation concept illustration.

In this application of equation (1), the substitution z (/, m) = ¢ (I, m) was made to provide a larger falloff in
the correlzuon value. The normalized correlation equation (1) will produce a value ranging from zero to 1
with one meaning a perfect maich and zero meaning no correlation at al.

To find the best match between the two features to the nearest pixel, the maximum normalized correlation
value for the whole window mus: be found. Evaluating equation (1) at (i-x)(j-y) different points can be very
expensive in terms of computation time. chcral different types of correlation could be used to quickly find
the neighborhood of the best registration.? Once the general location of the best maich is known, the
normalized correlation can be used to pinpoint the feature of interest 1o the nearest pixel. The subpixel
registration algorithm presented here is based on the normalized correlation values obtained at the peak of
the surface as well as the eight surrounding points as shown in Fig. 2. The following description of the
subpixel algorithm assumes that the nearest integer pixel maich has already been located.

Fig. 2. Correlation surface with peak and surrounding points marked.



3. SUBPIXEL IMAGE CORRELATION

Thiz sceuon of the paper develops the subpixel technique for the general case. The application of the
tevhnique to three different cases of image features will then be discussed. The first and simplest case
considers an object that is symmetric with respect o the x and y axes and lies on a zero background. The
second case expands the first case to an object that is not symmetric. The final case describes the effects of
having a nonzero backgrmund in the scene. The assumption is made in developing the algorithm that the
template containing the feature of interest is square to simplify the math, but this procedure can be
generalized to include any size rectangle.

3.1 General case reference and search areas

Consider a square template, R, of size n, that is given by

ro'o ro'! vee ’n'._l

RB ’l.o "Ll ay . (2)

Now the search for R will be made in a square search window, 7, of size m where m is larger than n and is
given by
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It is important 10 notice at this point that the object R lies somewhere within the region of T as shown in
equation (3). If R is placed directly on top of its match in T, the correlation would have a value of 1 since the
image features are identical by definition. Then, 10 generate the other eight surrounding points, R is
translated one pixel in all eight directions (left, right, up, down, and diagonally) from its current position and
the normalized correlation is found according o equation (1). For example, if R were slid up one pixel from
its original position, the normalized correlation, z; o, would be given as

A=-1 =1 a=1 2
S Coa) (ierjed + T (1) o9+t T (aetd) (Famad)
=0 a=0 a=0
o= 'Yy Yy ’ @
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where the subscripts of z represent the x and y direction of lemplate movement and
a=] a-1
Sk' = 2 Z rf, (5
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The numerator of equation (4) is simply the dot product between R and the region of T that lies directly
undemneath it. The denominator consists of the dot product of R against itself multiplied by the dot prodoct
of the test region covered by R agamsmself The second term in the denominzator of equation (4) is found by
tahngthewstremondotprodmtsr and adding the new 1ow of T covered as a resuit of sliding the template
uponepuel.andthensubuacungoutmemwauhebwomofthetanphmmatwasumovaed (see Fig. 3).
It is also helpfal to note that Sz? = §7% in this case becanse T contains the identical feature, R.
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Fig. 3. Calculating the zy o correlation term.

It is evident that if R was moved down one pixel from its original position that the resulting correlation
value, 2.1 g, would be

2
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The general case equations (4) and (7) are used to illustrate the theory behind the subpixel surface fit.

3.2 Symmetric reference feature on a zero background

Consider the case where the reference template given in equation (4) is symmetric with respect to the x and
y axes. That is,

Pei=Tacloxi Vx=0,1,..,n-1 8)

and

Tiy = Tia-1-y . Vy=01,..,n-1 )

In other words. the left half of the reference is a mirror image of the right, and the top is a mirror image of

the bottom. Examples of this type of image feature would be a square, circle, or rectangle of uniform
intensity.



Also in this case, assume that the background of T is all zevo. It can then be shown that 2,  is exactly equal
10 1.) 0 by looking at equations (4) and (7). Noucedmxhetamsmthennmmofeacheqmm
conunnanywnmuwxllgowwobecanseofd\ezaobackmmd.mumakmﬂwnmnmmofeqmm
(4) and (7) equal. Also notice that the terms in the denominatar involving ¢ fall out. Finally, the terms in each -
denominator that subtract a row of the reference template are equal because of the symmetry of the reference -
template. The top row, 7 q, is the same as the last row, 7,1 o, as illustrated in equation (8). This leaves-

A1 A= a=-1 2
13 (ro,0) (1,0 + Y, (ry,0) (o0 + oot Z (r__“)(r,_,."))
=0 om0 am0
2,0 =240 v . (10)
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Note that rg in the denominator can be replaced by r,.;. Because of the x and y axis symmetry, it can be
shown that in general

2= Eeiep | an-

which says that ail of the normalized correlation pairs on opposite sides of the peak must be equal to each
other for the case of a symmetric feature on a zero background considered here.

33 Nonsymmetric reference on zero background

This section shows that the type of reference temprly:: ¢coi be expanded to ;~.'ude features that are not
syinmetric, and the paraboloid surface fit will still be very accurate under centain conditions.

Consider the case where T has a zero background, but the reference template is any general feature, The
only difference between this case and the previous one is that equations (8) and (9) no longer hold true. In

this case, 2y g and 2., g are not egual because the subtracted terms in the denominators of (4) and (7) are not
the same. That is,

a=1 a~1
Y (o2 Y (ra_y 02 (12)

x=0 z=0

Notice that even Lhough these terms are no longer equal, their value, which is the dot product of or+ row (n
pixel intensities) in the template, would in most cases be very small compared to the Sr ter a, which
consists of the dot products of the remaining n-1 rows summed together. So if the reference template is
sufficiently large, 2y o will be approximately equal to z.; 5. Most of the testing done with the algorithm has
been with n greater than or equal to 20 pixels. The analysis just described can be applied to all of the enght
pomts surrounding the peak. The difference between 2y _; and zy 3 will vary slightly more because movmg R
in a diagonal direction introduces a new row as well as a new column 1o be subtracted from terms in the
denominators of the equations. But in the final analysis, the extra row and column of data have a negligible
effect on the total value of the correlation. An example of a correlation data set is given in Fig. 4.

3.4 Including nonzero background effects

This scciion uses the same approach as the last section ¥ show that nonzero tackground in T will have &
small effect on the symmetry of the carrelation surface if the refereaoe templaie is large enough.

As the nonsymmetric template R is moved over a template T with a nonzero background. the denominator
cffects introduced in the last section still apply, but new terms are introduced in the numerator of the
correlation equation because the reference template moves onto some nonzero background as it is translated
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(4) and (7) must now be included.

The contributions of these extra rows and columns to the final result are minimal compared to the dot:
product of the remaining n-1 rows and columns. As R moves further away from the best match: (the..
correlation peak), more and more rows and columns are introduced to add to the difference in slope on-:
opposite sides of the correlation peak. But since this algorithm requires only that the reference be moved one -
pixel in each direction around the peak, it is accurate to model opposite points as being equal.

Fig. 4 shows an excerpt from a normalized correlation data file: that shows the peak of the surface (having a=:
value of 1) and several other values around the maximum. These data were taken by comelating &
nonsymmetric reference feature against a test search area with nonzero background. These data show that=:
the approximations given in sections 3.3 and 3.4 hold true for this case. The correlation values on opposite..
sides of the peak vary only in the fourth significant digit even with the nonsymmetric feature and nonzero-.
background. ‘

-
R Y

8.951822 ©.959333 9,964479 8,957287 0.964564 8.958956 8.959671
8.953285 @8.569528 0.976865 8.988583 8.976653 8.869197 8.959110
8.965685 8.977852 8.967385 ©.993811 8.987366 0.976713 8.964791
8.966576 8.975449 0.991520 1.808886 ©.991275 8.978717 8.956824
8.9654989 B.977848 8.987364 8.933356 B.986755 B.975718 8.9563891
0.953558 ©.969578 ©.976486 ©.958873 B.976468 8.958355 B,958348
©.951582 9.959323 0.964331 ©.957243 0.965818 8.959177 8.9508823

Fig. 4. Example of normalized correlation data.

4. MODEL]NG A SURFACE TO FIT THE DATA

4.1 Constructing the paraboloid

The model of the surface that fits the set of normalized correlation data points is now considered. In a one-
dimensional case it can be shown that if there exists some maximum point, 29,0, and points on either side of
29 g that are of equal value and are equidistant from 2,6, then the smallest degree curve that will pass through
the three points and have a mathematical maximum at 2 is a parabola of second degrec:3 (see Fig. 5).

Tt follows that one-dimensional parabolas can be fitted through the maximum correlation value of the surface
in Fig. 2 and any two other points on opposite sides of the peak. The only difference between all of the
parabolas is their widths due to different surface gradients depending on the correlation pair (z; 5 2.i,-j) being
considered.

This behavior can be modeled in three dimensions by a paraboloid of one sheet that has the following
general equation.

1(x,)) = aP+by+cxy+dx+ey+f. (13)

R 25
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This surface can be visualized by taking a one-dimensional parabola and rotating it about its axis of

symmaywhkaﬂowmgbewﬂﬁwvmmmuufmammmemnlmhobdmmndm
base as shown in Fig. 5.
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Fig. 5. Three-dimensional paraboloid.

4.2 Fitting the paraboloid to the correlation peak

The solution for the .oefficients of e parzboloid can be found by solving the sysiem of equations

Ax = b, (14)
where
2
X3 Yo %Yo %o Yo 1
2 2
A={R1NxN X 1| (15)
3 Y ny x 1
"
b
x= ||, (16)
d
¥
and
)
4
b= an
g

The correlation data points in b have been redefined from 20, 29 1, 2 0. €1C., 10 2o through zg 10 be consistent
with the A matrix format. Because there are only six unknown values in the coefficient matrix, x, and nine
correlation data points are supplied by the correlation maximum and the eight surrounding neighbors as



given in b, the system of equations is overdetermined. Because A is a rectangular matrix and cannot be
inverted in the normal fashion 10 solve for x, & least-squares regression must be used. This approach has an..
advumgemthnallmnepomumconmbutewdnpomuonandskmpeonhemmlnngpmabolad.

Apphcanonofapswdo-mvasenmbod‘canbeawuedmmesysmmﬁmnepmomulnplybmhndu
ofeqmnon(M)byA the transpose of A.

ATAx = ATp. (18

Gamanelmnnuneouldbeapphedtoeqnamn(l%).ormﬂh is a square matrix, it can be inverted by
a numerical algorithm to solve for x as shown mequanon(l9)

x= (ATA) " ATb. Qa9)

Once the coefficients of the surface are known, the maximum of the paraboloid car be found by taking the
gradieat of z(xy) in equation (13) with respect to x and y and setting them equal to ziro &s follows:

8- -

i 2ax+cy+d=0; 0)
bz
5 = 2by+cx+e = 0. @n

The values for x and y at the peak can be solved for #*rectly as

(2ab-ce)
=" 22
(c*-4ab) @)
and
- L2oemd) 23)
(c” - 4ab)

Note that this is a closed form sclution for the maximum. No iterative steps are involved, and the execution
time is therefore deterministic,
The application of the algorithm can be summarized as follows:

1. Determine the best integer pixel match between the reference template and the feature of interest in the
search window.

2. Find the normalized correlation at the pesk and eight surrounding points (zg, ..., zg) 7 equan’on .

3. Sct up the matrices for the sysiem as shown in equations (14) through (17) using the correlation data
points and their associated (x, y) positions.

4, Solve for the coefﬁcxems of the paraboloid, a, b, ..., f using a numerical method on equation (18).
5. Use the coefficients md cquations (22) and (23) to calculate the position of the surface maximum.
6. Add this subpixel value 1o the integer pixel location found in step 1 10 precisely locate the feature.

S. EXPERIMENTAL RESULTS

The pnmary application of the algorithm described in the previous sections is to locats a muqne feature
within an image on a printed sheet. A mean accuracy of at least 1/8 of a pixel (pixel size is 0.0058") is
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required for our particular application. Several simulations of the algorithm indicated that an accuracy of
better than 1/16 of a pixel was possible. An experiment was designed to determine the accuracy andx-
repeatability of the alg-zithm using actual imagery. ‘ :

A test stand was constructed for use in the experiment that consisted of two translation stages mounsed on an
optical table. The translation stages were assembled to allow travel in the x and y directions and were-
positioned with precision micrometers. A mechanical fixture to bold the printed sheet was mounted on top of -
the transiation stages. The images were digitized with a high-resolution (1320 x 1035) charge coupled.
device (CCD) camera.

The first step in the experimental procedure was to acquire a reference image for use in the comrelation:
process. After storing this image in memory; a unique. feature was selected as the reference templasen fopx:
correlation purposes. The position of the reference feature was defined as the origin of a cartesian coordinase=-
system. The transiation stages were used to shift the graphic material in 0.001” increments in x, y, snd -
combinations of both. A total of 560 images were acquired at 10 different locations. At each new pogiticr:

the subpixel cross correlation algorithm was used to estimate the amount of shift from the starting position..:

The calculated shift was compared to the actual shift as measured by the micrometer. This experimentwass:, =~
designed 1o determine both the accuracy and the standard exror by precisely positioning the printed sheorsnddl®
by acquiring many images at each ion.

The results of this experiment are shown in Fig. 6. In this plot, the axes represent the fraction of a pixel
which the printed sheet was shifted in the x and y directions. The circles are centered at the ten positions
where data were acquired, and their radius represents 1/16 of a pixel. The squares are centered at the mean
positicn calculated using the subpixel correlation, and their width and height correspond to one standard
error in the x and y directions, respectively.

0.500 © +

0 ©
olon
QOO

Fig. 6. Plot of calculated translations of a printed graphic imca;ﬁe. circles centered at ideal location with
a radius of one-sixteenth pixel and squares centered al mean of calculated location with width and. height
representing one standard deviation in x and y, respectively.
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pixeL Results from this experiment proved that the algorithm was sufficient for the needs of the application= e Ty
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6. CONCLUSION - R

A subpixel registration algorithm has been developed for a digital inspection system at Oak Ridge Natiopal .
M.mwmmuwmmmoimmmmm;
‘WymmmemmWMManbmmﬂ&H
Pxxelqavmyofmﬁumufnagefmwitmhelpp&dmmydiﬁmmdmadﬁmvﬁm~
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which allows a deterministic execution time and can be fast enough o implement in an oo-line inspection=_ ~~©

eavironment without a large investment in expensive image-processing hardware..
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This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
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bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
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