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THE TITAJN OSCILLATING-FIELD CURRENT-DRIVE SYSTEMt

C. G. Bat like for t be TITAN’ Research Group, h .Alamos National Laboratory. La Ahmos. N\! 87’545

Abstract: The TITAN study uses ~illating-field current drive

(OLCD) for steady-state operation m ● reversed-field-pinch (RFP)

fus on reactor. A circui: rrmdel which simulates the plasma, first

wal’, blanket, ●nd coils has been developed ●nd applied to two
TIT AN reactor designs to assess OFCD efficiency ●nd power-supply

rqu kements. Methods for optimizing current-drive efficiency ●nd

mini[rrizing power-supply requirements have been identified.

1. INTRODUCTION

The TITAN fusion reactor study 1‘z is ●xploring the ooten-

tiz I of high power-density operation based on the reversed-f telcl

pinch (RFP), Steady-state plasma operation has been mandated

by considerations of total power balance, thermal cyclic fatigJe,

●nd tne costs ●ssociated with onsite energy stor~ge ●nd thermal

storage. The TITAN study has ●dopted oscillating-field current

drive (OFCD ) ●s tk means to sustain the 18-MA steady-state

tcsroida! plasma current, J@. Two high-power-density designs were

considered: ● Li /Li/V (breeder /coolant structure) poloidal loop

configuration (TITAN- I ) ●nd a LiN03 H~O ferritic-steel configura-

tion immersed in ● water pool (TITAN-II) The f wst option uses

the integrated-blanket-coil \ IBC ) concept,3 wherein currents are

driven in the Li breeder /cocslant to produce the toroldal magnetic

field. The second option U*S an ●queous-loop blanket with normal-

conductini{ Cu toraidal-f dd coils ( TFCS) ●ncasing the blanket The

different fFC locations ●nd reststwitles of the two designs Impact

the current-drive efficiency. The OFCD requirement for both de-

signs ●r? quantihed using ● umfted model

2. PLASMA/CIRCUIT MODELS

An inductive but oscillatory (i.e , not consumptive of electro-

magnetic flux) means of steady .state current drive has been pro.

posed for the RFP,4 T’k mimmum-energy RFF’ state IS defined””

primarily -by holding the toroidd flux, O, ●nd the magnet)c hellctty,

K ~ A Brf\F, invariant wtth!n a conducting shell surrounding

the plasma, where ,~{ ii ~ . A ) Ii the magnetic vectm potential

and the wrtegratism is performed over the plasma volume Intwwc

plasma processes related to turbuknce ●nd or reswttve mstabihtles

generate voltage ●nd current wlthm tk plasmu tn ader to increase

or reduce polotdssl flux to mamtain the khctty constant wsd the

piwwa in ● near-mmimum-energy state Thts nonlinear coupling

between plasma ●nd magnetic fields can be used to rectify current

oscillations created ●t ●xternal coils mt~ ● net steady -stat~ current

within tt e plasma. This process IS envisagwl to tramform [orotdd

magnetic flux (poloidal curremt) mto toroldal currwrts (polotdd

magrw~ IC flux ) through the plaslna relaxation rmpormbk for rnam.

tainmg I he near-minimum-energy cooflgurattotl

2.1, Pfmmo Model

Power. flow in OF C D can b- describt d by wwrgy bnlanr+:

rathe than helictty belance 4 A poww Aalancc tmpoaed ●t the

plasma surf,lce, ● deimkion of the pi4sma mtemal magrwtlc energy,

and ● positive Faradsy ’s Law (I; /{j dt ) Jr?!.! the fckwmg

●rpreeaion krr the torotdsd volmg~ m -Imd th~ piwmm, I ~
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wkre \ ~,a arc the toroldd ●nd polotsfal voltaget ●pphed to

the pfasma, Iir is tlw plasmo r~ststanc~, / ,, IS the plawwn

mtwnd mductanc? (not mcluthng va~ mm t modal flux) /

/l@(t’p) \/l@ , (+ /i#(l,, ! }Id , Ii, 8:, n f,’,, M ●n werag?

toroidal field within the plasma mmor radws, r,,, and 1.,, IS the

vacuum toroidal inductance

Oscillations of I ~.e in proper phase ~t frequency less than

-- 2rr 7R can gwe ● nettime-averaged current. /,, wnh If

= O (i.e no net fhsx change) where 7R IS the tnstabllity relaxation

time responsible for poloidal-flux generation Hence, a non-mtruswc

means to drive current using primarily the mam confmmg cod system

in a low-frequency, low-amphtude mode becomes posslblc

In ●valuat ing Eq. (1) to determme the f Iux changes, fwld

oscillations, ●nd power flows ●ssociated with OFC D as apphed to the

RFP, the relationship between J’ ●nd 0, as well ●s the dependence

of fwkl, B, ●nd current, ,~, profiks on (-) in order to determme 1.,,

●nd HP, must be determined A circularized. one-dimensional M H D

modal dascr$sed in Ref 8 IS used The der-wty, temperature. ●nd

N ~ P,,,) B ‘ B2 pfofiks rquired ●s input to the MH D model ●re

based on csrsedimenwonal plasma s,mulattons rtsported In Ref 1

Given a polotdal beta, de, ●nd f~. ttw MH D model determtne$ the

cmresponding F ●nd G) An F (-) curve ,s generated by varying /i

From tk MHD-model produced ~ ●nd,1 profdes, the w dependency

of LP ●nd I?P ●lso is obtained

The ●lgorithm for finding steady-state solutions to Eq ( 1 ) IS

to fix the ●mplitude, 401 @O, of a ninumldal toroldal-fh.tx function

●nd iterate upon the ●mplitude, h i ~ I j,,. of ● smusoldal toroldal -

voltage function until the plasmt-currmt becomes perlochc. I e

1$( ( ) :- )d(t A 2rr, ~,) Tlw toroldal-flux ●nd -voltage functions

●re in phase to produce the maximum current drwe An mtlal

guess for 41~ ~I ~,, is obtained from the constraint that the tlme-

●veraged klicity is cons~ant ( dli df O) which ydds the

following condition on tfw ●mplitudes of the toroldal-flux ●nd

-voltage oscillations (h@, 0,, ) (h\’@ 1’0(, ) 2 The plasma current

is reset to the desired value at the begmnmg of ●ach wmuktlon

period, Tk tmw scak ●lso is ●djusted to ensure that the mean

current during ● period IS the same ●s the current ●t the begmnmg

of the period

2.2> CIRCUIT MODEL

An ●ssessment of OFCD eftictency requwt the modelmg of the

circutt ekments ●xternal to the plasma m ●dsht ton to the plsrsma

itself to ●ccount for ●ll power dmslpatlon ●s schematically deplrttd m

Flg I Tk govewrmg matrtx ctrcult equation IS written ●s follows

l’(;,1“4 il’ l’, IL’)

where / ●nd \: ●re column vectcws r?prcarntmg thr currwtts ●nd

volta8es, respectwely, 1{ IS ● diagonal matrtx of remtances, ●nd /

is the inductance matrtx The induct ● rites m Eq ( 2 ) ●re ●ssumml

to be time independent Clrcult squatlons ●rc derl, rd for pololdal

●nd torotdal current paths ●nd ●re labeled I N Ifi I ●t cmdlng t o tlw

current dwectlon

A skll model IS used to detcrmtrw th~ mcfuctanc~s and th~

resistances wed m the matrlce. The sdf mdurtarwm m the toroldd

●nd polotdal dtrectlon for the ,‘ h ●kment ●r~ gwen lsv tlw following



rmpectively, where ~J = r, ‘R7 ●nd lo = r(, ‘fl T, the vacuum

magnetic permeability is /lO. the major ●nd mmor radii of the shell

are RT ●nd r,, respectwely, ●nd the inner ●nd outer minw radii

of the shell ●re 7, ●n. #.>. respectively. The internal inductance IS

ignored in Eq (3) The mutual inductance between the I(h ●nd

j’h ekmems, ~f,j is the smaller of the i’h ●nd ]’~ aeif-mductances

in the shell model The mutual inductance bet-n two elements

then is the self-mductance of the ●kment with the ar-rmlkr minor

radius for poloidal currents ●nd the seff. inductance of the ●kment

with the larger minor rsdws for tmosdal currents The r~tstance of

the I’h ●lement is given byR, = V, RTI(r~ –r;) where q, IS the

reaistivity of the material m the conducting shell

The circuit ●kmerws simulated are the plasma, first wall,

the t~oidal-fseld coils ( TFCS), ● pmtmn of the wmdmgs of the

ohmic-heatmg coils ( OHCS), ● por!ton of the blanket. ● primary

equilibrium.field coil (PEFC) set, ●nd ● secondary quillbrlum-

field COII (SE FC ) set ( Fig I), Wtslch represent the Iwcest pmr

dmmpatms The current vector ~of Eq ( 1), then, has components

corresponding to ●sch circutt ekmen( listed ●bove The plasma

current in tfw toroidal-circuit , the I@ aolutlon to Eq (1) The

plasma current m the polo)dal circutt is ● model ●-trfact reqtllred

for mductwe trm-mfer of macneitc fseld ener~y to the plasma from

the ●xternal ●lements ●nd ●cts like, but II not, ● plasma akm current

The TFC for TITAN-I ~ms been separated mto six md,wdual

current -carryms ●kments that phywcally correspond to the six

radial rows of IBC tubes, because the tube rows we connected

●kctncally in paralle11112 ●nd the current Persetrstton skm depth

●I the frequencies cormdered ( -.25 Hz) IS comparabk to t k tube

diameter The plasma remstance IS t-hen ●s zero m Eq (2), becouse

!t IS ●lready included m Eq ( 1 ) The pkcma inductances m Eq (2)

●re only the ●xterr!al inductances, because the wstvml inductances

●lready ●ppear m Eq (1 )

The voltage vector of Eq (2) contains the voltage somcet for

the ●lements repreaentmg tk cods which ●re connect cd to poww

suppltes The voltage on the TFC is determlrwd by r?quwtng tl~e

toro}dal freld ●t the plasma surface be produced by ●II the ●lements

with contmuouc pololdal current pathc The voltage of the OHC IS

derived from the solut!on fm 1< from Eq ( I ) In th~ case of th~

PEFC, the voltage IS mmntamed ●t ● constani value correspondll)g

to the mean ●quillbrturn fteld The SEFC voltage is determmed

by requwmg tk EFCS to track the oscdlctlng ●qudlbrwm-fwlcl

requwcmmt of ttw plasma 1# Fw the pa,slwe ●lernentl, fw~l wall

●nd Lsknket, the voltagec ●e zero In the toroidal version of Eq

(2) tk plasma voltage It taken to be I ~, becauw I j IS ● wolIagF

drop ●o Wr!tten In Eq ( 1 ) In the pololdal. clrcult ●quattor, the

plasma voftagc 10 taken to be Ii, because ● posttwe Faraday’s law

10 used

TOROIDAL POLOIDAL

Fig 1, Schematic dmgrnrn of tk O~CD POWW flow dq.sic! q th~

malor Dower dmamalors

Cdcuiatlons wtth ● continuous flint wall described in Scc 3

indicate ● need to model passIvc ekmen:s with reststlve breaks or

gaps Tk model derlued here for cwcult ●lements w,th gaps IreaIs

●ach passive ●kment ●s conststlng of ●n Inner ●nd outer currrnt

path, ● is shown m FIg 2 The current IS ●ssumed to flow (n th?

anmlkr of ●ither half of the radial budd of the pass)ve ●kmrnf or a

current Penetration akin depth The self. mductanc- Of (he gapped

ekment is thedifference of the aeff. inductances of th~ :nner ●nd

outer current path ●kments, The mutual Inductance betwern ●

gapped ●kment ●nd n continuous ●kment IS the difference between

tk minimum of the self-mductances of the Inner current path

●kment ●nd thecontinuous ekment ●nd tlw muaimum of the ~elf.

inductoncm of the outer curr~t path ekemenr ●nd the continuous

ekwsent. If tk continuous ekment has ● smaller Af-inductance

than ●itkr tlw inner or outer current path ●kments [hen a zero

mutual inductance results m tk shell model Tk resistance of the

gapped ekrnent IS tk sum of tk resistances of the Inner ●nd outtr

current path ●kments

The tl-dependent current ●nd voltage solutions to the

torotdal ●nd pdodml versions of Eq (2) ●rc solved In conjunction

wrth tk I@(/) aolutlon to Eq (1) The ●lectrical time constan~s of

tk ●xternal cwcults me mfflcwntly short so that per!odlc sollltlons

to Eq (1) ●nd (2) we obtained simultaneously The d,ss,pat~d

powers ●nd peak reackwe pawers of the ●nrwe syst~m ●r~ cler, ved

from tk calculated current ●nd voltage wave forms

3 RESULTS

Tk ftrst ●pphcarton of tfvz ●lsorrthms descrrbml In Set 2

wm to the TITAN- I design d-mwn m FIg 3 wtth ● continuous

first wall, but the blanket PEFC, ●nd 5EFC clrcult ●lenwntt wwc

not included m thz mmumtlons The most promlnel~! result of

thw reduced circuit simulation IS the Iarg* ( 120.MW) first -

wall disslpttlon Efforts to reduce the dissipated power Inltlally

focused w vwymc tk toroldal flux swing AC c, ●nd the drive

frquency, j The ftrst-wall dmlpation displays ● shallow nlln,mum

in 6CI do lowering the frequmcy reduces the $trst-wall dls~lpatlon

but dlsupatlons below 100 MW ●re ●trainable b~caum rFvetsaI IS

lost - ‘ - “’
. . . . .,
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dissipation, PFII . which scales ●s Pr II x RF {,. but the fwst-

wall resistance cannot be changed because the first-wall design

is determined by thermalhydrauhcs considerations To Increase

fwst-wall resistance, ● more resistive first-wall matertal IS required

However, ● more resistive material with good thermal ●nd strur t~ral

properties was not found. 14 In ●ddlt,on the nommal fl, St wall ~ts

the requirements for plasma wall stabilization which ●re dependent

only on the first-wall reststiwty ●nd dwnenslons Consequently, the

only means ●vailable to ●liminate the OFCD reduced currents m the

first wall is with gaps or msulatmg breaks

Tk gap model was ●pplied to the same reduced ctrcult model

of the TITAfJ - I design described ●bove The primary effect of the

first-wall gap is to reduce the ftrst-wdl dissipation from A.120 MW

to -0.01 MW, The introduction of gaps improved the curr+mt-drtve

efficiency from 0.09 A ‘W for ● continuous first wall to O 33 A ‘W

Consequently, the use of gaps in ●ll passtve ●lements was ●dopted

The full cwcutt model was tkn exercmed on the TITAN. I ●nd

-1 I designs shown in Ftg 3 Imtlally the SEFCS were not simulated

which resulted in ●n -. 7-GW reactive power in the PEFCS The

SEFCS, subsequently, were simulated to reduce the EFC reactwe

power because the power supplies ●re costed ●t -10 MS per GW

of reactwe power 1$ The results of ● $CI O(. parametrization ‘w ‘he

full ctrcult simulation of TITAN- I ●nd TITAN-II ●re shown In Ftg

4. The operating window of 4CI o,, is bounded ●bove ●nd below

because of ● loss of fteld reversal The upper bound IS the result of

too large oscillations in o ●t ● shallow reversal (1’ -- (.I I ) The

lower bound is the result of too large oscillations m /e ( . 5°0) ●nd,

hence, @ which result m loss of reversal because ●dherence to ●n

F - @ curve IS requtred Tk do CIO operatm~ window completely

disappears between 5 ●nd 10 Hz The TITAN. I design dm)pates

slightly more power than TITAN-II but has smaller coIl reactive

powers

A more detailed comparison of TITAN- I ●nd -II IS provided m

Table I The first-wall dlsslpattons ●re the same because ●ach destgn

uses the same gapped fwst wall Tk gapped blanket d,sslpatlon IS

larger m the T lTAN - I prmanly because of ● lower blanket !estst ante

A \ ‘ ‘ \ ““NMODELED
PAf?ASl~C

L \Y:’Y%

c=+’” \

Yr_..~:;;”---------
Fig 3, Ctoss. smttonal w~ws of TITAN I ●nd 1 ITAN II showml

the cIrcuIt elcmw-rt t stmulatcd ●nd t hwt Io( ●t lorm

F 4
. .

t-

TITAN-II --.;

. . . . . . . ““

t .,
1
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Fig. 4. Plots of the coil reactwe power f’.. ~hcre I denotes

tk EFCS, OHCS, ●nd TFCS, ●nd total dtsstpated power ●xcluding

dtsslpatlon m tk power supplies f;, versus toro’dal”flur sw’ng

400. . tor TITAN- I (solid curves) ●nd TITAN-~1 (dashed CLJWCS)at

● drive frequency of 25 Hz

Because the blanket m TITAN. I IS positioned out sldt of t hc T F Cs

none of the pololdal cwcwt ●lements couple to the blanket ●nd no

power IS dtsslpated m the blanket m that cwcult The d:sslpatcd at,d

rcactwe powers m the coIls of the toroldal clrcult (I c OHC F’FFC
snd SEFC) ●re sltghtly larger for TITAN .11 because the torodal

ctrcult blanket inductance IS IarCer for TITAN. I I meanmg the blanket

is less transparent to the power flovwng through Its sur-faces T hc

TFC reactive pcwver IS Iarget m TITAN-II than TITAN I becauw

the TFCS m TITAN-II ●re poslttoned furthw from the plasr:ca The

TFC dtsstpatlon, hovvmwr IS smaller m TITAN II ●vm t bough the

DC powers ●re nearly ●qual because the TFCS ●r< sw,es wound

and have ● unlfwm curre~t density. whereas tht T FCS m TITAN I

●re connected m parallel with ●n overall radial build great~, than

tl.e current penetratwn skm depth whtch results m ● radial praklng

of the current denstty The TITAN .11 dcwgn dwslpatm I*SI IIOWFI

m the fwst wall, blanket ●nd coIls than TITAN. 1, but has a larg~r

termmal react we power Whm the power. SUPPIV ●fftc wnc v ( Q

100) IS tncluded m the current-drwe ?fflctency both designs opwat~

ct comparable ●fflclencm of .-1 3 A W

4 CONCLUSIONS

A cwcutt model was developed thct stmulatm th? WI~I~M

elements ●ssociated wtth OFCD which ln)~~t ●tld of dmwptt~

power The model was used to determme ti!at toroldal ●nd polrwdal

gaps or insulat m~ breako ●rc required of thow st tuct ures sur h ●s thr

fwst wall whtch WIII have mduwd currmts ●S t h? wsultt of OtC L) t u

●chreve ●t xptable currtnt.d!lv? cfllcwscl~s ( 1 3 A W) htallpd

●rwlysu of tht TITAN I ●nd II d~stgns rcv~al~d ● pt~fwwv r frw

wws wmdmg of ●ll OF C D rods th~ posltlollmg of tlww roll~

● , CIOW to the plasma ●t posstblc ●nd III thr caw of rml ml

wtth small ●rnphtudc osrdlatmm ●boltt lrrrg~ avc~ag? cwtmts III*

sphtt)ng of th~ coil @ mto ● A devoted t{ th~ osc Illat IrII! ●!!ri

● wcond s?t to ptodttc? tfw mean CIITWIII FIlt tlrr wwh shot Id

focus on •ff~ctc of fdcf wro!i wrttocfm?d bV gapt dij!lr>g ~urrwIt

oscdlat mr~s
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TABLE 1, OFCD COMPARISON OF TITAN-I AND TITAN-II

TITAN I TITAN II 1’—. ——. .

Aver~ge Pl~sma Curwst, I@ (MA)

Drive Frequency, j{ H: )

ToroidSi-flux swing, /IC) O.

e Varia.,on

F Varmt ion

Toroidsll’Poloidal Circuit ( M W)

Plasma Poynt ing power, r;

Plasma disstpat ton, Pfl

First-wad dtssipatlon. PFM

Blw-ket dissipat Ion, PEI

1782

25

0 C35
1499-1616 2

-0.032--0.173

3.

3,95999’24731

2855’00 2855 00 4.

Ooc’ool 000001

1.04’0 001‘o19

Terminal Reactive Power, P,- ( Af I!” )

OHC 7492 10199
TFC 50388 1,41317

PEFC -. 0 -.0
SEFC 11344 14716

Coit Dissipptlon, P, ( JIJ Ii’ )

OHC 013 017
TFC 47,38 3569

PEFL -. 0 --a

SEFC 195 249

Real (lost) Termmal Power, 1’7,,1 ,!1 II” I

OHC 162 115

TFC. 7400 6250

PEFL --o -o

SEFC 344 346

DC TFC power, f~~(.!fll”j 2915 2913

Power-supply dissipation, Pp,s ( .!1 I I” ) ‘”’ 6 Q? 1662

Total dwsipat ton P. ( ,!/ 1I I 8598 8374

Current drive power, I)C r} (M W) 5683 5461

Current-drwe ●fficiency. I@ Pc r,(.4 It I ‘~’ O 31 033
—.. —— --—

[ o ) Assumes the power supplies are 99’0 ●t hclent

( b J Thts efhcienc y IS based on total power consumed m th? syst?m

An equtvalvent ●stimate for ~ f current drwc III tokamaks IS O 06

A ‘W ●ssummg ● conversion ●fflctency of O 3

5.
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