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A NEW COMPUTATIONAL APPROACH FOR THE LINEARIZED SCALAR POTENTIAL
FORMULATION OF THE MAGNETOSTATIC FIELD PROBLEM

James H. Bramble and Joseph £. Pasciak

Abstract

We consider the Tinearized scalar potential
formulation of the magnetostatic field problem in
this paper. Our approach involves a reformulation
of the continuous problem as a parametric boundary
problem. By the introduction of a spherical
interface and the use of spherical harmonics, the
infinite boundary condition can also be satisfied
in the parametric framework. The reformulated
problem is discretized by finite element
techniques and a discrete parametri¢ problem is
solved by conjugate gradient iteration. This
approach decouples the problem in that only
standard Neumann type elliptic finite element
systems on separate bounded domains need be
solved. The boundary conditions at infinity and
the interface conditions are satisfied during the
boundary parametric iteration.

1. Introduction

We describe an algorithm for approximating
the soluytion of the linearized scalar potential
formulation of the magnetsostatic field problem in
this paper. Our approach is novel in the way that
the infinite boundary conditions and the interface
conditions are imposed. The boundary condition at
infinity is handled by the introduction of a
spherical interface and the use of spherical
harmonics for approximation. The interface
conditions are satisfied by boundary parametric
techniques. OQur method is based on rigorous
mathematical analysis in that asymtotic (as the
mesh size tends to zero) error estimates and
stability results have been proven. In addition,
conditioning estimates for the discrete boundary
parametric problem have been proven wnhich
guarantee rapid iterative convergence rates.

The problem of imposing the inffnite boundary
conditions has been addressed by many researchers
(4, 8, 11, 12, 14]. Approaches include boundary
integral and finite element coupling, mesh grading
and the introduction of "infinite elements" with a
variational formulation. Spherical harmonics are
“infinite elements” with approximation properties
of infinite order in the class of harmonic
functions on the complement of the sphere. Our
approach, which uses subspaces of spherical
harmonics in a boundary parametric framework, is
computationally superior to the variatfonal
approach. .

The outline of this paper is as follows. In

“Section 2, we reformulate the magnetostatic field

problem in the desired parametric framework. The
reformulated problem is discretized in Section
3. Section 4 describes some of the details for
iterative solution of the parametric problem.
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Finally Section 5 gives some numerical results for
an annular test problem.

2. The Linearized Magnetostatic Field Problem
and its Reformulation

Scalar potentfal formulation of the
magnetostatic field problem leads to elliptic
boundary interface problems in two and three
dimensions [12]. Typical problems {nvolve an iron
region Q. submersed fn a field produced by current
carrying‘conductors. The magnetostatic field
problem is the computation of the fields due to
conductors and.those due- to magnetized iron. The
fields due to conductor sources H are given by
the integral

1 LI S SRt
H, * —= [ 4 d = 9 } dx {2.1)
- T R3 Ix=-x“} -

where J 1s the current density. Although
nontrivial for complicated current geometries, the
problem of computing the conductor fields can be
solved by analytical or numerical integration of
(2.1). Thus we shall focus on the problem of
finding the fields due to magnetized iron,

The fields due to magnetized iron can be
computed from a scalar potential ¢ satisfying the
differential interface equations

-Vuv¢ = f1 {h 8, (2.2}
8¢ =0 in n§ : (2.3)
TN
" 3% - 5% =g on Ty (2.4)
o -¢t =g onrT (2.5)
’ 2 1 .
$(x) + 0 as |x] + = (2.6)
Here rl is the boundary of QI and n §s the outward

nqrmal on Ty- 6 (resp ¢7) is the limit

of ¢ aS'rl is ‘approached from the inside (resp.
outside) of g,. The functions f;, gy and g,
depend upon which potential formulation is being
used as well as Hg and its derivatives [12].

The basic theme of the numerical method
developed in this paper is the reduction of (2.2 -
2.6) to the solution of Neumann problems on
bounded domains. We shall first introduce the
Neumann solution operators T;f = u and
GIg = w solving the boundary value problems

-Tuu = f in QI
' (2.7}
u %% + au = 0 on rl



and
~Tuvw = Q ) 'i;‘l'QI
(2.8)
u g%;+ aw =g on ry

The nonnegative constant ay is introduced so that
the corresponding form

A luw) = IQI uvu-Iwdx + frlaluw ds

is positive definite. Later we shall require that
ay satisfy additional hypothesis. We note that

problems (2.7) and (2.8) have natural boundary
conditions and are readily approximated using
Galerkin projections with conforming elements.

To handle the boundary condition at infinity

we introduce a sphere a_ of radius Ry properly
containing the iron reg;on nI. Let ro denote the
boundary of the sphere and set 91= ns/nI and

Qd = ﬁ: where ¢ denotes complement.

We next change variables and reduce the problem to
the solution of an interface problem with the
~desired form. Let:

=T/ f - GI(gl+algz) on a, (2.9)

UI=
up ¢ on a, (2.10}
Jug b on 94 (2.11)

then the functions uj, uy, and ug ‘satisfy the
differential interface equations

“Tufuy = 0 in 2 (2.12)
au, = @ inqQ (2.13)
i 1
Auo'= 0 in QO {2.14)
3u1’ ) au1
u 3h * ul UI - (%n— + alul) =) on I'l (2.15) :

au, 3ug

-éﬂ— + GO Ul '(-a—n—+ Gouo) =0 on ro (2.16)
Up-uy= g = g)- TIfl-GI(g1+ °192)°n ry {2.17)

Uy - up = 0 on ry (2.18)
uo(x) -0 as [x| » = (2.19)
Here a; is a positive constant less than 2. e

constant a, 15 chosen small enough (depending
on ao) so that the form B {*,*) to be later
defined . is positive definite. In practice one
sets ag and finds that for 2 below a certatn
threshold everything works fine.

The reformulation (2.12 - 2.19) Yeads to a
parameterization of the solution ("I' uy, ug) in
terms of the parameters R

3y

220 ' : ‘
9y = uggt oy L nn»I‘1 . (2.20)
ug )
00 s - I (XOUO on ro (2.21)

We shall next formulate a boundary probiem
which determines % gnd gy - First we define
solution operators for additional problems. Let
Gy denote the solution operator defined by
Goa = w where w is the solution of the boundary
value problem ’

aw = 0 . ~in sy

WM w4 on T (2.22)
an 0 0 srEE

wix) - 0 as Ix| » =

We also consider the following two boundary value
problems on Q

10
Aw = 0 in 91
_— %%-- aw = & onr, (2.23)
oW [
Ty + W = 0 on ro
and
Aau =0 in Ql
au = (2.7
-yt G 0 un rl 2.24)
u _
si-i- c.ou- 50 on ro

The gquadratic form 3a(',‘) corresponding to the
boundary value problems (2.23) and (2.24) is given



by
B,lvy,v,) = Inl Ty Iv,dx - [r1°1vlvzds

+ [rccov 1Y 2dS

The solution operator for problem (2.23) (resp
(2.24)) shall be denoted by G, (resp Gy). The
operators G, and Gy are of course defined

by G261 = w and Gléo = u where w and u are
solutions of (2.23) and (2.24) respectively. From
the definition of the parameters (2.20 - 2.21) and
(2,12 - 2.16), it is obvious that the functions
up, Uy and ug are given by ’

uy = GI oy A (2.25)
Uy = 'G2°1 - Gl°0 (2.26)
ug = G0 9 (2.27)

Using (2.17) and (2.18) we also have

(G, + Gz) gy ¥ 60, g on N {2.28)

Gy oy * (Gl + GO) 9 =0 on Ty, (2.29)
The boundary problem (2.28 - 2.29) defines
(al, ao) from data g. )

Thus we have reformulated the magnetic field
problem as a boundary parametric problem. That is
"~ we could solve (2.2 - 2.6) by first computing
g and then solving for the parameters '

a, and g from the equations (2.28 - 2.29).
Finally 4 could be reconstructed using (2.9 -
2.11) and (2.25 - 2.27). We base our numerical
method on the above approach, replacing the
continuous operators TI' GI’ Gy, Gl and GO by
discrete approximations.

3. The Discrete Problem

In this section we shall discretize problem
(2.28 -42.29). First we use finite element
approximation for the operators TI' Gy, G and
Gy. Gy Ts approximated by using subspaces of
spherical hannonigs Hy on.ro. Ffinally, a finite
element subspace S:< of boundary functions on rl is
defined and the discrete version of (2.28 - 2.29)
is posed on‘éka HN' ‘ ‘

To define the finite element discretization

of Ty, GI’ G, and Gy, we shall need subspaces of
approximating functions on 8, and . These
subspaces can be constructed by, for example,
"trianguiating” the respective domains and
considering subspaces of piecewise polynomials on
the triangles. For more details on the definition
and approximation properties of these and other

finite element type subspaces see (1, 5]. The

finite element approximation subspaces
on 2y (resp. 91) shall be denoted S1,h (resp
sl,h)" Here h is a mesh parameter which is
related to the approximation assumptions.on the
subspace, '
To -define the discrete operators
approximating Ty, Gy, G, and G, we use the
standard Galerkin projection. For example,
applying Green's 53ent{§y to (2.7) gives that for
u = T4f, ' ’

Aa(u,x) = [ fy dx.

f
The discrete operaﬁor TI,h approximating Ty is
defined by Ty .f = U where U'is the unique
function in S1.p satisfying

ALLUS) = [nlfédx for all 2eS; . (3.1)
Similarly, the operator T is defined

by G; ,o, = W, where W satisfies

A(W,8) = [ a0 ds for all %Sy p (3.2)

1

The definition of Gz,h and Gl,h are analogous to
the definition of Gy , except that one

uses Ba(‘,') and Sl,;' Note that the boundary
conditions for Ti» Gp, Gp and Gy are natural and
thus the subspaces SI,h and Sl,h need not satisfy
boundary conditions. The solution of any one of
the above operators involves the solution of a
sparse positive definite system of linear
equations, For our method we assume that such
systems can be solved economically [7,13].

Next we discretize GO' The subspace Hy is
defined to be the subspace of harmonic polynomials
of degree less than or equal to N. For the
definition of spherical harmonics and their
properties see [6,10]. In two dimensional
cé]culations, Hy s replaced by the subspace of
trigonometric nolynomials of degree less than or



equal to N. On Hy, the operator Gy can be
computed exactly. Indeed if

g=1r4g
i=1 i
where g; is a homogeneous harmonic polynomial of
degree i, then

G9 =t (i/Rg- ag)lgy. (3.3)

Finally, we shall need subspaces of
approxiqating functions {ék} onT,. We shall
assume Sk satisfy inverse assumptions [1,5]. For
two dimensional calculations N is one dimensional
and examples of finite element subspaces on r1 can
be constructed by using smooth splines on a
uniforﬁ grid parameterized by arclength.

Let Py and.Po denote the L2 projection
operators onto Sk and Hy respectively. The
discrete analogue of (2.28 - 2.29) is given by

PGy n * 65 p) 91w 61 p%,nd
(3.4)

= Plgh on rl

(6 + Go) °0,h]= 0 on 1y (3.5)

PalS2,n%1,n" G on

where
9y 29y - Ty fL - Gppfep * 90

The system (3.3 - 3.4) defines a matrix operator
M, operating on §ke L= 2ir = r urz)

with-range Sk 8 HN' In the next section we.shall
~discuss the solution of (3.4 - 3.5}, Of course
after %1 h and %,h are computed, the final
approximation to (2.2 - 2.6) is given by

on = Gpn O1n F Tronfy * G pf9y ¥ o8p)in g

#n = By 0 v1 0 7 B1n Y0,n ina,

= G459, in 2.

We have analytically investigated the
stability and convergence of the approximation
method described in this paper [3]. Specifically,
we have shown that if h < e{k + N''} then (3.4 -
3.5) has a unique solution._ In fact, we have the

stability result: For éh € Sk 2 W‘,

e - ol
LA L P

2 ' : N
o l§hl1@ < [p(48,) 8,ds < C 15,1 1&(3.6)

where | |1, denotes the Sobolev norm of order %@
on T (9] and the constants Cq and Cy are
independent of k, N and h.

We have also shown that under sufficient
smoothness assumptions on the domain 2, the error
satisfies
y el

I

e -ogll, <
1) H (no)

. (3.7)
cnml T Yy Ny

where r and ; aré'ihé”épproximafion orders of

: respectively. < a Rs/Ro.where Rg s

the radius of the smallest sphere

containing QI with the same center as ns. The

constant C in (3.7) depends on certain norms of

the data f;, g; and g, and on r, rand j but is

independent of h, k, and N.

SI,h and Sk

4, Iterative Solution of (3.4 - 3.5)

A straightforward calculation using the
definitions of the oOperators defining M, shows
that M, fs symmetric and positive definite
on'ék 9 Hy- We propose solving (3.4 - 3.5) by
conjugate gradient iteration. Note that to apply
the conjugate gradient method to (3.4 - 3.5) one
need gnly evaluate the action of M, on functions
5h1n Sk Q.HN' Thus the matrix for M, need never be
computed.
ﬁdh we must evaluate three
types of operators. First, we must calculate the
'actjon of Gy s G and Gy . -These operators

To evaluate M

involve the solution of matrix problems
corresponding to standard elliptic finite element
problems and are the most time consuming part of
the M, calculation. MNext, Gy can be evaluated by
using (3.3). Finally, Py and Py must be
evaluated. Both P1 and Po require the evaluation
of L% inner products. - In addition P; requires the
solution of another sparse system with fewer
unknowns than the systems corresponding to TI,h'
Gr,he S2,n 07 Sy e

4e note that from (3.58) 1t readfly follows



that the condition nunber! for the matrix My s
bounded by C max (k~!, N). If k~! and N are not
too large, conjugate gradient iteration converges
fast enough., If k-l or N s large, equivalent
well conditioned problems can be defined by
introducing discrete boundary operators, see [2]

for details.

5. A Numerical Example
As an example, we consider the computation of
magnetic fields on an annular region in two
dimensions with constant permeability. We assume
that the field He is given by the Fourier series

» .
Ho =L ¢, r (cos j8, - sin jo). (5.1)
=0 J

Then the total scalar potential ¢ can be
analytically calculated by Fourier series
analysis.

For this geometry, we use-subspaces of
trigonometric polynomials on both iron-air
interfaces and finite element subspaces in the
interior of the annulus. Our program runs with
second, third or fourth order elements in the
interior which are isoparametric images of smooth
splines on the periodic strip. Our numerical
results illustrated in Table 1 are in basic
agreement with the theoretical error bounds of
f3]. For our examples, we found that because of
the relatively small number of trigonometric
polynomials employed, iterative solution of (3.4 -
3.5) converged rapidly without_conditioning.

In Table 1, we give the L¢ error in the

annular region and on the two boundary interfaces
as a function of h and N. The coefficients C
defining W, were given by Cj = el me

boundary of the annulus was at r=1 and 2 and the

b

‘permeability was 10.

TABLE 1: L2 trror for the Annular Calculation

- e 2, .

h° Order N “L7(r=l) ¢ 2(p=2) eLZ(Ql)
05 2 3 2.3x107% 3.5 x107% 1. x 1073
06 2 4 1.5x100% 2.3x100% 6.6 x 1074
0666 3 4 9.4 x10% 2.5 x10°% 6.6 x 1075
05 3 4 3.9x10% 1.x 100 2.7 x 1075
1

_* The condition number for a positive definita
symmetric matrix i, is defined to be the ratio
of the largest to smallest eigenvalue.

(1]

(2]

(3]

(4]

{51

(6l

{73

- (8]

{9

{10}
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