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A NEW CCJ-IP lJT A TIONA!. APPROACH FOR .THE LINEARIZED SC.otAR POTENTI.ot 
FORMll.ATION OF THE MAGNETOSTATIC FIELD PROBLEM 

James H. Bramble and Joseph E. Pasciak 

Abstract 

We consider the linearized scalar potential 
formulation of the magnetostatic field problem in 
this paper. Our approach involves a reformulation 
of the continuous problem as a parametric boundary 
~roblem. By the introduction of a spherical 
1nterface and the use of spherical harmonics the 
infinite boundary condition can also be sati;fied 
in the parametric framework. The reformulated 
problem is discretized by finite element 

- techniques and a discrete parametric problem is 
solved by conjugate gradient iteration. This 
approach decouples the problem in that only 
standard Neumann type elliptic finite element 
systems on separate bounded domains need be 
solved. The boundary conditions at infinity and 
the interface conditions are satisfied during the 
boundary parametric iteration. 

1. Introduction 

We describe an algorithm for approximating 
the solution of the linearized scalar potential 
fo:mulation of the magnetostatic field problem in 
:h,s _pa~e~. Our approach ~s novel in the way that 
~he 1nf1n1te boundary cond,tions and the interface 
con~i~ions are imposed. The boundary condition at 
inf1n1ty is handled by the introduction of a 
spherical interface and the use of spherical 
harmonics for approximation. The interface 
conditions are satisfied by boundary parametric 
techniques. Our method is based on rigorous 
mathematical analysis in that asymtotic (as the 
mesh size tends to zero) error estimates and 
stability results have been proven. In addition 
conditio~ing estimates for the discrete boundary' 
parametr1c problem have been proven which 
guarantee rapid iterative convergence rates. 

The problem of imposing the infinite boundary 
conditions has been addressed by many researchers 
~4, 8, 11, 12, 14]. Approaches include boundary 
1ntegral and finite element coupling, mesh grading 
and the introduction of "infinite elements" with a 
variational formulation. Spherical harmonics are 
"infinite elements" with approximation properties 
of infinite order in the class of harmonic 
functions on the complement of the sphere. Our 
approach, which uses subspaces of spherical 
harmonics in a boundary parametric framework is 
computationally superior to the variational ' 
approach. 

The outline of this paper is ·as follows. In 
Section 2, we reformulate the magnetostatic field 
problem in the desired parametric framework. The 
reformulated problem is discretized in Section 
3. Section 4 describes some of the details for 
iterative solution of the parametric problem. 
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Finally Section 5 gives some n1.111erical results for 
an annular test problem. 

2. The Linearized Magnetostatic Field Problem 
and its Reformulation 

Scalar potential formulation of the 
magnetostatic field problem leads to elliptic 
boundary interface problems in two and three 
dimensions [12]. Typical problems involve an iron 
region n

1 
submersed in a field produced by current 

carrying conductors. The magnetostatic field 
problem is the computation of the fields due to 
conductors and.those due to magnetized iron. The 
fie 1 ds due to conductor sources Hs are given by 
the integra 1 

H
5 

= -k- f 3 ;(x -vi__l_") dx'" c2.1l 
R lx-x'"l · 

where J is the current density. Although 
nontrivial for complicated current geometries, the 
problem of computing the conductor fields can be 
solved by analytical or numerical integration of 
(2.1). Thus we shall focus on the problem of 
finding the fields .due to magnetized iron. 

The Ji e 1 ds due to magnetized iron· can be 
computed from a scalar potential ;. satisfying the 
differential interface equations 

-17\IV'f = f1 in n
1 

(2.2) 

d+ = .0 in nc 
I 

(2.3) 

- + 3+ a; -
gl on r 1 

(2.4) ~~----an an 

- + (2.5) Q - + = g2 on r 1 

,p(x) + 0 as lxl + .. (2.6) 

Here r1 is the boundary of oi and n is the outward 
normal on r1• ,-cresp ;•l is the limit 
of+ as r 1 is ·approached from the inside Cresp. 
outside) of o1• The functions.f1, g1 and g2 
depend upon which potential formulation is being 
used as well as Hs and its derivatives [12]. 

The basic theme of the numerical method 
developed in this paper is the reduction of !2.2 -
2.6) to the solution of Neumann problems on 
bounded domains. We shall first introduce the 
Neumann solution operators T1f = u and 
Gig = w solving the boundary value problems 

-V'JlV'U = f in n I 
(2. 7) 

au + 
~~-an (11 u = 0 on r1 



and 

(2.8) 

The nonnegative constant a1 is introduced so that 
the corresponding form 

A (u,w) : f0 ~vu-Vwdx + fr ~uw ds 
a I l . 

is positive definite. Later we shall require that 
a1 satisfy additional hypothesis. We note that 
problems 12.7) and (2.8) have natural boundary 
conditions and are readily approx imate<i ysi ng 
Galerk.in projections with conforming elements. 

To handle the boundary condition at i nfi ni ty 

we introduce a sphere o~ of radius Ro prQoerlv 
" containing the iron region n1• Let r0 denote the 

boundary of the sPhere and set o1 = ns /11 1 and 
no = r.~ where c denotes complement. 

We next change variables and reduce the problem to 
the solution of an interface problem with the 
desired form. Let· 

ul ~-Tlfl- G!lg1+alg2) on n1 
(2.9) 

u1 " 41 on o1 (2.lU) 

u = ? . 0 on n0 
(2.11) 

then the functions UI' u1,. ancl ua satisfy the 
differential interface equations 

-V~'lu 1 = 0 in o
1 12.12} 

t.u. 0 in n1 (2.13) 
1 

t.uo ·= 0 in n0 12.14) 

(2.15) . 
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on r0 (2.18) 

as lxl ~ ~ (2.19) 

Here a0 is a positive constant less than R01• The 
constant a1 is chosen small enough !depending 
on a0) so that the form B a C ·, •) to be 1 ater 
defined is positive definite. In practice one 
sets a0 and finds that for a1 below a certain 
threshold everything works fine. 

The reformulation (2.12 - Z.l9) leads to a 
parameterization of the solution Cu 1, u1, u0) in 

tenns of the parame~ers .· 

q1 
au 1 uan- + a1 u1 nn rl (2.20) 

0'0 = 
au0 -an-· aauo on ro 12.21) 

We shall next fonnulate a boundary problem 
which determines o0 ~nd o1• First we define 
solution operators for additional problems. Let 
G0 denote the solution operator defined by 
G0a = w where w is the solution of the boundary 
value problem 

t~w .. 0 in 11
0 

(2.22) 

wC x) • 0 as lx I + <D 

We also consider the following two boundary value 
problems on n

1
• 

llW = 0 in n1 

aw 
·rn-a1w= 01 on r1 (2.23) 

Jw , 
on + aaw = 0 on r0 

and 
~u ~ 0 in n

1 

au 
- Tn' - a1 U ::: 0 on r 1 12.24} 

~+au on o = 50 on r0 

The quadratic fonn S 1·,·) corresponding to the 
a 

boundary ·1alue problems 12.23} and (2.24) is given 



by 

Balv1 ,v 2l = JQ
1 

7v1·9v2dx- Ir 1~v1 v2ds 

+ I r a0vlv2ds 
0 

The solution operator for problem 12.23) (resp 
!2.24)) shall be denoted by Gz (resp G1l. The 
operators Gz and G1 are of course defined 
by Gzo1 =wand ~o0 = u where wand u are 
solutions of (2.23) and 12.24) respectively. From 
the definition of the parameters (2.20- 2.21) and 
(2,12- 2.16), it is obvious that the functions 
u1, u1 and u0· are given by 

u = 1 Gl o 1 

ul = -G2ol - GloO 

uo = Go oo 

Using 12.17) and 12.18) we also have 

(2.25) 

(2.26) 

(2.27) 

on r 1 (2.28) 

on r0• !2.29) 

The boundary problem (2.28 - 2.29) defines 
lo1, o0l from data g. 

Thus we have reformulated the magnetic field 
problem as a boundary parametric problem. That is 
we could solve (2.2 - 2.6) by first computing 
g and then solving for the parameters 
o1 and o0 from the equations (2.28- 2.29). 
Finally ~ could be reconstructed using 12.9 -
2.11) and 12.25 - 2.27). We ba5e our numerical 
method on the above approach, replacing the 
continuous operators T1, G1, G2, G1 and G0 by 
discrete approximations. 

3. The Oi screte Prob 1 em 

In this section we shall discretize problem 
12.28- 2.29). First we use finite element 

approximation for the operators T1, G1, Gz and 
G1• G0 is approximated by using subspaces of 
spherical harmoni:s HN on r0• Finally, a finite 
element subspace Sk of boundary functions on r1 is 
defined and the discrete version of (2.28 - 2.29) . . 

is posed on Sk&1 ~l' 

To define the finite element discretization 
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of T1, G1, G2 and G1, we shall need subspaces of 
approximating functions on Ql and n1• These 
subspaces can be constructed by, for example, 
"triangulating" the respective domains and 
considering subspaces of piecewise polynomials on 
the triangles. For more details on the definition 
and approximation properties of these and other 
finite element type subspaces see [1, 5]. The 
finite element approximation subspaces 

on Ql (resp. n1l shall be denoted s1,h lresp 
s1, h l. · Here h is a mesh parameter which is 
related to the approximation assumptions .on the 
subspace. 

To define the discrete operators 
approximating T1, G1, G2 and G1 we use the 
standard Ga 1 erk in projection. For example, 
applying Green's ;"denti~y to ·t2.7) gives that for 

u = r.1f. 

A ( u, X) = f f X dx. 
a Ql 

The discrete operator Tl,h approximating T1 is 
defined by T 1 h f = U where U i·s the unique 

• 
function in s1,h satisfying 

Similarly, the operator Gr,h is defined 
by G1,hol =W, where \I satisfies 

(3.1) 

The definition of Gz,h and G1,h are analogous to 
the definition of G1 h except that one . 
U5C~ Ba(·,·) ant:! sl,h' Note that the boundary 
conditions for T1, G1, G2 and ~l are natural and 
th~s the subspaces s1,h and s1,h need not satisfy 
boundary conditions. The solution of any one of 
the above operators involves the solution of a 
sparse positive definite system of linear 
equations. For our method we assume that such 
systems can be solved economically [7,13]. 

Next we 1i screti z.e G0. The subspace HN is 
defined to be the subspace of harmonic polynomials 
of degree less than or equal to N. For the 
definition of spherical harmonics and their 
properties see [5,10). In two dimensional 
calculations, HN is replaced by the subspace of 
trigonometric polynomials of degree less than cr. 



equal to N. On HN, the operator Go can be 
computed exactly. Indeed if 

~~ 

g = l: 9 
i=l i 

where gi is a homogeneous harmonic polynomial of 

degree i, then 

(3.3) 

Fina11y, we_shall ne;d subspaces of 

approxi~ating functions {Sk} on r1• We shall 

assume Sk satisfy inverse assumptions (1,5]. For 
two dimensional calculations r

1 
is one dimensional 

and examples of finite element subspaces on rl can 

be con~tructed by using smooth splines on a 
uniform grid parameterized by arclength. 

Let P1 and.P0 denote the L2 projection 

operators onto Sk and ~ respectively. The 
discrete analogue of (2.28 2.291 is given by 

(3.4) 

where 

. gh: gl - TI,h fl - Gl,h!gl + c;_g2). 

The system (3.3 - 3.4) defines a matrix operator 

Mh operatin~ on Sk6l ~s; L2Cr: r1 ur2 > 

with· range Sk ~ HN. In the next section we- shall 
discuss the solution of (3.4 - 3.5). Of course 

after al,h and aO,h are computed, the final 
approximation to (2.2 - 2.61 is given by 

We have analytically investigated the 
stability and convergence of the approximation 
method described in this paper [3). Specifically, 

we have ~hown that if h ' ~{k + N-l} then 13.4 -
3.51 has a unique solution. In fact, we have the 

stability result: For oh ~ Sk G ~~, 

2 . 
'fr!t\ohl &hds' c1 lohl l;

2 
13.6) 

where I 1112 denotes the Sobol ev norm of order 1;2 
on r [9] and the constants c0 and c1 are 

independent of k, N and h. 

We have also shown that under sufficient 

smoothness assumptions on the domain n1, the error 
satisfies 

II' .- 'hll 1 +II ' - 41 hll 1 +II ' - 4>hll 1 ' H !n
1 
l · H tn

1
1 H !n

0 
l 

where r and 

St, h and Sk 
the radius of 

(3. 7) 

r ariihe ~pproxi~ation orders of 

respectively_. t !! R/Ro_where _Rs is 
the smallest sphere 

containing n
1 

with the same center as ns. The 
constant C in !3.7) depends on certain norms of 

the data f1, g1 and g2 and on r, r and j but is 
independent of h, k, and N. 

4. Iterative Solution of (3.4- 3.5) 

A straightforward calculation using the 

def1n1t1ons of tne operators defining Mh shows 

thd: Mh is symmetric and positive definite 

on Sk ~ ~· We propose solving !3.4 - 3.51 by 
conjugate gradient iteration. Note that to apply 
the conjugate gradient method to (3.4 - 3.5) one 

need ~nly evaluate the action of~ on functions 

oh in \ G_ ~. Thus the matrix for i~h need never be 
computed. 

To evaluate Mhoh we must evaluate three 
types of operators. First, we must calculate the 

. act~on of GI,h• Gz,h and Gl,h' These operators 
involve the solution of matrix problems 

corresponding to standard elliptic finite element 

problems and are the most time consuming part of 

the Mh calculation. Uext, G0 can be evaluated by 

using 13.31. Finally, Po and P1 must be 
evaluated. Both P1 and P0 require the evaluation 

of L 2 inner products. · In addition P1 requires the 

sol uti on of another sparse system with fewer 

unknowns than the systems corresponding to Tr,h• 

Gr,h• Gz,h or Gl,h' 
·~e note that from ( 3 ~ 5 l 1 t readily 1'o1 1 ows 
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that the condition number1 for the matrix Mh is 
bounded by C max lk-1, N). If k-1 and N are not 
too large, conjugate gradient iteration converges 
fast enough. If k-1 or N is large, equivalent 
well conditioned problems can be defined by 
introducing discrete boundary operators, see [2] 
for details. 

5. A Numerical Example 
As an example, we consider the computation of 

magnetic fields on an annular region in two 
dimensions with constant permeability. We assume 
that the field Hs is given by the Fourier series 

.. 
H

5 
= l: cJ . .J1cos je,- sin je). 
j=O 

Then the total scalar potential ~ can be 
analytically calculated by Fourier series 
analysis. 

( 5.1) 

For this geometry, we use·subspaces of 
trigonometric polynomials on both iron-air 
interfaces and finite element subspaces in the 
interior of the annulus. Our program runs with 
second, third or fourth order elements in the 
interior which are isoparametric images of smooth 
splines on the periodic strip. OUr numerical 
results illustrated in Table 1 are in basic 
agre~nent with the theoretical error bounds of 
[3 ]. For our examples, we found that· because of 
the re 1 ati ve ly sma 11 number of trigonometric 
polynomials employed, iterative solution of (3.4 -
3.5) converged rapidly without

2
conditioning. 

In Table 1, we give the L error in the 
annular region and on the two boundary interfaces 
as a function of h and N. The coe~ficients Cj 
defining fis were given by Cj : e -3J The 
boundary of the annul us ·.,as at r=1 and 2 and the 
·permP.abil i ty was 10. 

TABLE 1: L2 Error for the Mnular calculation 

h Order N el 21r=1) eL21R=2) eL 21n.) 
' 

.OS 2 3 2.3 X 10-4 3.5 X to-4 1. x 10-3 

.04 2 4 1.5 X 10-4 2.3 X 10-4 6.6 X l0-4 

.0666 3 4 9.4 X 10-6 2.5 X 10-5 6.6 X 10-5 

.05 3 4 3.9 X 1o-6 1. X 10-5 2.7 X 10-S 

T The condition number for a positive dt:!finite 
symmetric matrix :·h is defined to be the ratio 
of the largest to smallest eigenvalue. 
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