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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Gov-
ernment. Neither the United States Government nor any agency thereof, nor any of their employ-
ees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views or opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.
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Abstract

A generalized Runge-Kutta method has been employed in the numerical integration of the stiff
space-time diffusion equations. The method is fourth-order accurate, using an embedded third-or-
der solution to arrive at an estimate of the truncation error for automatic timestep control. The ef-
ficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits
the sparse structure of the matrix system resulting from the space and energy discretized form of
the time-dependent neutron diffusion equations. Preliminary numerical e,_Juation using a one-di-
mensional finite difference code shows the sparse matrix implementation of the generalized
Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative
theta method.
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A Variable Timestep Generalized Runge-Kutta Method for the Numerical

Integration of the Space-Time Diffusion Equations

B.N. Aviles, T.M. Sutton, and D.J. Kelly, III

I. INTRODUCTION

Several time differencing methods have been developed for the solution of the space-time diffu-

_:°f_nTUacta°nfiSnEXena_Pmlee___16u,da_e_h_hethex_mneethntioda_ 3_n__o_nPm_e_edod_U.a_lSetan_y?a%et_mod;liScit_gen_
eralized Runge-Kutta (GRK) method developed by Kaos and Rentrop 8"9 has been applied suc-
cessfully to the solution of the point kinetics equations 10. The Kaps-Rentrop GRK method has
been shown to be more accurate and efficient than other time differencing techniques for point
kinetics transients due to its higher order and systematic variable timestep algorithm I1.This paper
describes a sparse matrix implementation of the Kaps-Rentrop GRK method that is suitable for
space-time diffusion applications.

II. KAPS-RENTROP GENERALIZED RUNGE-KWlTA FORMULAS

We begin with the following initial value problem:

y' (x) = f (y (x) ) (1)

where

y (x) = vector of N dependent variables,

y' (x) = vector of y (x) derivatives with respect to x, and

Y (x0) = Y0 •

To advance the system solution from x0 to x 0 + h, the Kaps-Rentrop GRK method 8"9 forms the
following general solution:

$

y (x o + h) = Yo + _., ciki (2)
where i = 1

h = step size,

s = number of stages,

c i = fixed expansion constants, and

k i = vector of expansion coefficients.

1 KAPL-4731



The k i vectors are found by solving a system of N linear equations for s different right hand
sides8:

y i_l ) i- 1El- yhf'(yo)3k i = hf o + °tijkj + hr(Yo) _., Tijkj, for i = 1, ...,s (3)
j=t j=l

where

I = identity matrix,

T, Tij, a o = problem independent fixed constants,
f (...) = explicit function evaluation, and

f' (Y0) = N x N Jacobi matrix of partial derivatives, _-_Y0"

The Kaps-Rentrop scheme employs a Runge-Kutta-Fehlberg method 12to obtain an embedded
estimate for 3' (x0 + h). This is accomplished by computing a lower order estimate, _ (x 0 + h),
using different expansion constants, _'i, for i - 1, ...,_, where _ < s, but the k i expansion coeffi-
cients remain the same. The smallest values allowing an embedded solution are _ -- 3 and s = 4,
resulting in a fourth-order method 8.

Expanding Eq. (3) for s = 4 yields the four linear equation systems to be solved for the k i vec-tors9:

(i) [l_Thf,(yo) ] k 1 = hf(Yo)

T21k =
(ii) [l-Thf'(Yo)] (k2+--_- l) hf(Yo+°_Elkl) + T21klT

(iii)
T31 k + T32 k " = hf(Yo+ff.alk + +)t31 T32[l- yhf'(y o) ] (k3 +

1 _ 2) 1 0_32k2) _kl + --k2T

(4)

T41 k T42 k T43 k3)(iv) It- Thf'(yo)] (k4+ T 1+ T 2+ T

+ a41kl + 0_42k2 + °_43k3) + T4--'IIkit + T4--22k2T+ _ k3 "
hf (Yo

Each integration step requires one L-U decomposition of the matrix II- Thf' (Y0) ] followed by
four back-substitution steps to determine the four k i vectors.

The fixed expansion constants, Y, Tii, and o_ii, result from solving the "equations of condition"
associated with the Runge-Kutta me'thod. Ka'ps and Rentrop provide two sets of constants and
their associated regions of stability 8. The set chosen for this study, denoted as GRK4T, is
A (89.3 °) -stable for the fourth-order method and has been shown to perform better than other
constant sets in numerical tests 8. The constants are listed in Table 1.
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III. AUTOMATIC STEPSIZE CONTROL

The Kaps-Rentrop method exploits the availability of both third- and fourth-order estimates of
y (x 0 + h) to control step size automatically 8. If we denote:

4

Y4th = Y (XO + h) = YO + Z Ciki

and i- 1 (5)

3

Y3ra = .9 (x 0 + h) = Yo + _., _iki ,
i=1

then the exact solution, Yexact' can then be expressed, as:

Yexact = Y4th + hSgsth + "'" = Y3rd + h4g4th + "'" (6)

where gSth and g4th represent higher order terms. Thus, the maximum scaled truncation error for
the step is:

h4g4th + "'" (7)Err = max Y4th - Y3rd = max
Yscal Yscal

where Yscal is an appropriate scaling vector. For a successful integration step, we require the max-
imum scaled truncation error to be smaller than a specified error tolerance, e:

Err < e. (8)

In order for the next timestep, hnext, to be successful, we also require:

( maxlh4 )
nextg4th, next[ < e. (9)
Yscal

If we assume g4th,next = g4th, ali estimate of hnextCan be made:
1/4

h next < h

Finally, to reduce the number of steps that are rejected and to prevent a zig-zag behavior in suc-
cessful step sizes, a safety factor of 0.9 is included in the determination of hnext, and h_x t is
bounded:
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I/4

hnext<O.9"h _ , 0.5h<hnext<l.5h. (11)

IV. APPLICATION OF THE KAPS-RENTROP METHOD TO THE TIME-DEPENDENT DIF-
FUSION EQUATIONS

The next two sections describe the implementation of the Kaps-Rentrop method for space-time
diffusion theory applications. The few-group, time-dependent diffusion equations without group
skipping are written as:

- V

1 _l:_g 0 + E + (1-_)__Efe,Og,+ _,_E_,IC!_g'_ = D gV2 Og - _'g g g - l -_gOg -1 . ,

forg - 1,...,G

and (12)
_gCt - v

for/= 1, ...,L

where the spatial indexing has been suppressed for simplicity. In matrix form, Eqs. (12) become:

dy _F_Y (13)
where

y =

L g' g,...,O ,

C 1 "- col ,C ,...,C ,

M = total number of nodes,

G = number of flux energy groups,

L = number of delayed neutron precursor groups, and

[F_ = coefficient matrix arising from the time dependent diffusion equations.

Figure 1 presents the generic structure of the [F_ matrix for a three-dimensional, two flux energy
.group and six delayed neutron precursor group problem, lt is important to note that the difference
m the matrix structure for one-, two-, or three-dimensional geometries is manifested in the G
three-, five-, or seven-stripe diagonal flux blocks.
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The Kaps-Rentrop Jacobi matrix, [I- yhf' (Yo)l' retains the sl.ructure of the [F_ coefficient
matrix. Therefore, each timestep requires one L--Udecomposititm of a matrix with the structure of
Figure 1, followed by four back-substitutions to obtain the four k i expansion coefficient vectors.
lt is obvious that, for a large number of nodes, an L-U decomposition of the full matrix becomes
prohibitive. Iterative solution methods are not thought practical in this situation for two reasons.
First, four complete iterative solutions must be performed each timestep to obtain the four ki vec-
tors. Second, the k i vectors can be numerically very close to zero for mild transients and are iden-
tically zero for a null (ext,'nded steady state) transient. Iterating on near-zero values leads to slow
convergence behavior for standard iterative procedures. Therefore, a direct matrix solution proce-
dure tailored to the sparse matrix structure of Figure 1 has been developed and is described next.

V. SPARSE MATRIX L-U DECOMPOSITION ALGORITHM

The structure of the Jacobi Matrix (Figure 1) lends itself easily to a block factorization L-U
decomposition technique. The sparse structure is of a doubly-bordered block diagonal form 13.
This section describes an efficient block factorization technique, referred to in reference 13 as
"one-way dissection," that can be used to solve a system having a doubly-bordered block diagonal
form. This method reduces the solution computational time when compared to a standard L-U
decomposition of the full matrix system. Also, storage reduction techniques that reduce the
amount of required memory have been implemented.

We begin by breakinlz the Jacobi matrix into blocks denoted by [Ai_. in Figure 2. Because the
are they can vector ratherstructures of the [,4,2_,[A91_, and matrices known, be stored inthan matrix form:

1) The diagonal matrix [A2_ (M. L x M-L) is stored in a vector of length M. L.

2) The matrix [A :2] (M. G x M. L) is stored by row in a vector of length M. G. L.

3) The matrix [A2_ (M. L x M. G) is stored by column in a vector of length M. G. L.

Currently, storage of the [AI_ matrix remains full (M. G x M. G), although its sparse structure
can also be exploited to rC_duEestorage.

Given the matrix system with multiple right hand sides, [A]k i = bi, the one-way dissection pro-
ceeds as follows:

1) Decompose the system matrix, lA1, into blocks as described above. Note that the con-
" stint vector and the unknown vector will each be split into two pieces, bli,b2i,kli , and

k2i, respectively.

-1

2) Compute: [O11 ] : [A I13 -[m 12] [A22] [A2J" (14)

Note that this operation can be performed efficiently because inverting the FA22_
matrix is trivial and the product operations involve only vector multiplicati6n. The

[Dll_ matrix retains the structure of the original LA,,]block.
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3) Perform an L-U decomposition on the ID 1,] matrix. Currently, an L-U decomposition
is performed on the full [D 117matrix. _or _arge problems or many neutron energy
groups, the sparse structure o-1r this matrix must also be exploited with an appropriate
decomposition technique.

For each of the four ki vectors and associated constant vectors, b i, from the Kaps-Rentrop equa-
tions (Eq. 5):

4) Compute q2i IA22_-1= b2i. (15)

so,ro - Ea, q2, bybacksubstitu.on
-1

6)Thenkl i = qli and k2 i = q2i_ [A22] [A21_kli " (17)

In summary, for each Kaps-Rentrop inte_ation step, steps (1) through (3) must be performed
once to arrive at the L-U form of the lD 111matrix. Steps (4) through (6) must then be performed
four times to compute the k i vectors. Th/_most CPU intensive step of the sparse matrix algorithm
is the L-U decomposition in step (3).

VI. METHOD EVALUATION USING A ONE-DIMENSIONAL FINITE-DIFFERENCE CODE

The sparse matrix block factorization implementation of the Kaps-Rentrop method (denoted as K-
R Sparse) was evaluated using a one-dimensional finite-difference code. Tile K-R Sparse algo-
rithm was compared to the Kaps-Rentrop method with an L-U decomposition performed on the
full Kaps-Rentrop Jacobi matrix (hereafter referred to as K-R Full). The K-R Sparse algorithm
was also compared to an optimized Theta method employing a block successive over-relaxation
(block-SOR) technique 14.The Theta method was optimized for the one-dimensional finite-differ-
ence code by (1) using an explicit solution method for the (I-D) tridiagonal flux blocks 15, (2)
computing an optimum over-relaxation parameter from the spectral radius of the Jacobi iteration
matrix, (3) choosing the implicit method (0 = 1) for both fluxes and precursors and (4) employ-
ing a step-doubling technique for error control and automatic timestep selection 15.

Several transient comparisons were made for a one-dimensional geometry based on the ANL
benchmark problem BSS-616. The geometry and group constant data are presented in Figure 3
and Table 2, respectively. Ali transients were initiated from a tightly converged solution obtained
using the finite-difference option of the KAPL Nodal Expansion Method code, NODEX 17.Ali
reported CPU times are for a single processor on a CRAY YMP/8.

VI.A. Transient 1: Ramp Reactivity Increase

The first transient involved a 1% linear decrease of Region 1 thermal absorption cross section in
1.0 second (ANL BSS-6-A2) 16. Each model consisted of 120 nodes. The initial timestep size was
1.0E-3 seconds and the relative truncation error tolerance, e, was chosen to be 1.0E-2 for both the
Kaps-Rentrop and Theta method to ensure accurate solutions. Table 3 summarizes the results and
Figure 4 is a plot of power versus time. From Table 3, it can be seen that both the Kaps-Rentrop
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and Theta method are very accurate (error in total power at t---4seconds is less than 0.4%), but the
K-R Sparse method required fewer timesteps due to its higher order accuracy and required signif-
icantly less CPU time than did the Theta method. The effects of the block factorization technique
and the improved vector storage can be seen in the K-R Sparse versus K-R Full results. The two
implementations of the Kaps-Rentrop method produce identical results, but the sparse matrix
implementation executes the transient in 1/40th of the CPU time and requires 1/25th of the stor-
age.

VI.B. Transient 2: Sinusoidal Reactivity Perturbation

The second transient was a sinusoidal reactivity perturbation due to a sinusoidal variation of
Region 1 thermal absorption cross section by 1% with a period of 1.0 second continuously for
four seconds. Node size, error tolerance, and initial timestep size remained the same as in Tran-
sient 1. Table 4 and Figure 5 present the results of this simulation. Both the Kaps-Rentrop and
Theta method exhibit similar accuracy, forced by the truncation error tolerance requirements. The
results of this tran:;ient highlight the benefit of the fourth-order Runge-Kutta method over the
first-order Theta method. The Kaps-Rentrop method required only 92 timesteps and 8.8 seconds
to complete the transient, whereas the Theta method required 2.7 times as many steps and over
forty times more CPU time.

VII. EXTENSION OF KAPS-RENTROP METHOD TO OTHER PROBLEM SIZES

The results presented in this paper involve a one-dimensional geometry with 120 nodes. A ques-
tion arises as to how well the Kaps-Rentrop method performs for larger problems. For the 1-D
finite difference cases, a parametric study was performed comparing CPU time per timestep ver-
sus problem size for the Kaps-Rentrop method and optimized 1-D Theta method. Because both
Kapsa-Rentro p methods use a direct L-U decomposition, the CPU time per timestep scales roughly
as NJ, where N = M. (G + L) for K-R Full, and N = M. G for K-R Sparse. The iterative
block-SOR Theta method scales approximately linearly with N, where N = M. (G + L). There-
fore, at some problem size (roughly 600 nodes for the sinusoid problem), the K-R Sparse algo-
rithm requires more CPU time per timestep than does the Theta method. However, recall that
Kaps-Rentrop took three times fewer steps to complete the transient, indicating that the K-R
Sparse method would still require less total CPU time for a 960 node problem.

For three-dimensional geometries, the Kaps-Rentrop CPU time per timestep curve would remain

basically the same because we are performing an L-U decomposition on the full _Dll1 flux matrix
(M. G x M. G). The Theta method will necessarily become more expensive b_ause the flux

blocks will lose the desirable tridiagonal structure. Therefore, the CPU time per timestep compar-
ison would favor the Kaps-Rentrop Sparse method for 3-D geometries. For very large three-
dimensional problems, a more efficient L-U decomposition algorithm exploiting the structure of
the EDll_ matrix must be employed.

VIH.CONCLUSIONS

This paper has described a variable timestep Generalized Runge-Kutta method suitable for time-
dependent diffusion theory applications. The basic method, timestep control, and sparse matrix
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implementation are derived from sound mathematical theory. The method utilizes a direct matrix
solution algorithm, therefore its CPU time per timestep behavior is invariant to the type of tran-
sient and depends only on the problem size. The sparse matrix implementation of the Kaps-Rent-
rop GRK method is fourth-order accurate and very efficient for the range of 1-D test problems
investigated. The Kaps-Rentrop sparse matrix method took consistently fewer timesteps and less
CPU time when compared to an optimized 1-D Theta method.
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TABLE 1. GRK4T Expansion Constants (reference 8)

3' = 0.231 3'21= -0.270629667752

3'31= 0.311254483294 3'32= 0.852445628482E-2

3'41= 0.282816832044 3'42= -0.457959483281

3'43= -0.111208333333

0_21= 0.462

0t31= -0.815668168327E- 1 £t32-- 0.961775150166

_l = -0.717088504499 _'2 = 0.177617912176E-1

c3 = -0.590906172617E- 1

c 1 = 0.217487371653 c2 = 0.486229037990

c3 = 0.0 cn = 0.296283590357

TABLE 2. ANL BSS-6 Initial Two Group Constants (reference 16)

Constant Region 1,3 Region 2

D 1 (cm) 1.5 1.0

D 2 (cm) 0.5 0.5

Zr1 (cm "1) 0.026 0.02

Z,2 (cm "1) 0.18 0.08

Xi -_2 (cml) 0.015 0.01

vZfi (cm"1) 0.010 0.005

v'Zf2 (cm "1) 0.2 0.099

Xi 1.0 1.0

X2 0.0 0.0

v 1 (em/s) 1.0E+7 1.OE+7

v2 (cm/s) 3.0E+5 3.0E+5

Removal cross section includes capture, fission, and downscatter.

Delayed Neutron Parameters

Group _ 2L(s"l)

1 0.00025 0.0124

2 0.00164 0.0305

3 0.00147 0.1110

4 0.00296 0.3010

5 0.00086 1.1400

6 0.00032 3.0100
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TABLE 3. Comparison of Kaps-Rentrop and Theta Method Performance: 1-D Ramp
Transient

Method Referencel K-R Sparse K-R Full Theta Method

Number of Nodes 120 120 120 120

Error Tolerance 2 --- 0.01 0.01 0.01

Initial Timestep Size (s) 0.001 0.001 0.001 0.001

Total Number of Timesteps 4000 28 28 41

Total CPU Time 3 (s) NA 2.7 109.1 81.5
4

Required Storage (MWords) NA 0.075 1.86 ---

Relative Power

t = 0.0 s 1.000 1.000 1.000 1.000

t = 0.1 s 1.028 1.028 1.028 1.028

t = 0.2 s 1.063 1.062 1.062 1.061

t = 0.5 s 1.205 1.204 1.204 1.202

t = 1.0 s 1.740 1.738 1.738 1.736

t = 1.5 s 1.959 1.957 1.957 1.956

t = 2.0 s 2.166 2.163 2.163 2.163

t = 3.0 s 2.606 2.602 2.602 2.599

t = 4.0 s 3.108 3.102 3.102 3.096

Regional Power Fractions at t = 4.0 s

Region 1 0.4424 0.4425 0.4425 0.4424

Region 2 0.4306 0.4303 0.4303 0.4303

Region 3 0.1272 0.1271 0.1271 0.1272

lreference for ramp is RAUMZEIT with a fixed 0.001 second timestep (reference 16)

2relative error tolerance used in automatic timestep control

3single processor on CRAY YMP/8

4Tl_eta method not optimized for storage

11 KAPL-4731



TABLE 4. Comparison of Kaps-Rentrop and Theta Method Performance: I-D Sinusoid
Transient

Method Reference I K-R Sparse K-R Full Theta Method

Number of Nodes 120 120 120 120

Error Tolerance 2 --- 0.01 0.01 0.01

Initial Timestep Size (s) 0.0001 0.001 0.001 0.001

Total Number of Timesteps 40,000 92 92 252

Total CPU Time 3 (s) 15,910 8.8 357.7 373.3 "

lreference for sinusoid is Theta method with a fixed 0.0001 second timestep

2relative error tolerance used in automatic timestep control

3single processor on CRAY YMP/8

KAPL-4731 12



FIGURE 1. Generic Structure of the Time-Depender, lt Diffusion Equation Coefficient Matrix

!=4
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FIGURE 2. Kaps-Rentrop Method Jacobi FIGURE 3. ANL-BSS-6 Geometry

Matrix in Block Form (reference 16)
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FIGURE 4: ANL BSS-6-A2, RAMP REACTIVITY
120 NODES, 2 FLUX, 6 PRECURSOR GROUPS
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FIGURE 5: ANL BSS-6, SINUSOIDAL REACTIVITY
- 120 NODES, 2 FLUX, 6 PRECURSOR GROUPS
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