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A Three-Dimensional Free-Lagrange Code
for Multimaterial Flow Simulations

by

Manjit S. Sahota and Harold E. Trease
Computational Physics Group

Applied Theoretical Physics Division
Los Alamos National Laboratory

Los Alamos, New Mexico

ABSTRACT

A time-dependent, three-dimensional, compressible, multicomponent,
free-Lagrange code is currently under development at the Los Alamos Na-
tional Laboratory. The code uses fixed-mass particles (called mass points)
surrounded by median Lagrangian cells. These mass points are free to
change their nearest-neighbor connections as the_ follow the fluid motion,
which ensures accuracy in the differencing of equations and allows us to
simulate flows with extreme distortions. All variables, including veloc-
ity, are mass-point "entered, and time-advancement is performed using the
finite-volume techmque. The code conserves mass, momentum, and en-
ergy exactly, except in some pathological situations. We utilize the Voronoi
connection algorithm for Delaunay tetrahedralization of the median mesh
during mesh generations and mesh reconnections. The code is highly vector-
ized and utilizes all eight processors on a Cray YMP. Also, we have recently
mapped the code to a massively parallel Connection Machine.

Some of the applications for the free-Lagrange method include atmo-
spheric and ocean.circulation models, oil-reservoir and high-velocity impact
simulations. These applications are in addition to our standard model prob-
lems of high.explosive driven shock-wave problems that involve high degree
of deformation, shear flow, and turbulent mixing.

NOMENCLATURE

D/Dt = substantial derivative, 0/0t + _'. V, 1/s
e = specific total energy, J/kg
j7 = body-force vector per unit mass, N/kg
G = shear modulus, N/m 2
I = specific internal energy, J/kg
I = unit tensor
k = thermal conductivity, J/s - m - K
p = pressure, N/m 2
_' = velocity vector, m/s
qm = heat-generation rate per unit volume, J/s - m 3
S = material-stress tensor, N/m 2
t = time, s
T = temperature, K
u,v,w = coordinate velocities, m/s
z,y,z ---:coordinate directions, m
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Greek symbols

/_ = fluid viscosity, including artificial viscosity, kg/m- s
p = density, kg/m 3
o" = overall stress tensor, including pressure, viscous-stress tensor,

artificial-viscosity tensor, and material-stress tensor, N/m 2
_" = viscous and artificial-viscosity stress tensor, N/m 2

a3 = vorticity vector, 1V x _', 1/m

Subscripts

x,y,z = coordinate directions

Superscripts

* = transpose of a tensor

INTRODUCTION

Conventional Lagrangian methods have been proven to be very useful for solving the hy-
drodynamic equations, especially for problems requiring resolution of sharp fronts. These
sharp fronts may be the result of shock waves in explosively-driven flows, saturation fronts
encountered in oil-reservoir simulations, fronts associated with deformations and detached
rings of the Gulf stream in ocean-acoustic applications, or material interfaces in gas-liquid-
solid flow systems. The ability of the mesh to adapt to changing flow situations, and the
absence of advection terms in the applicable differential equations because of mesh move-
ment at the fluid velicity, render the Lagrangian methods far superior to the Eulerian
techniques, both in terms of speed and accuracy. However, mesh-tangling in conventional
Lagrangian methods has been such an impediment that it severly restricted the usefulness
of the method for problems of practical import, except for one-dimensionM flow situations.

Free-Lagrangian methods possess the same desirable features offered by the standard
Lagrangian methods. However, mesh tangling is avoided because of the ability of the mesh
to reconnect a_s it distorts. Of course, such reconnections reqire fluxing of the intensive
variables through the mesh as fluid crosses the mesh boundaries. However, fluxing trunca-
tion errors due to differencing of equations are minimal because mesh reconnections occur
only in regions of distortions.

We present a solution of the coupled hydrodynamic equations on a median mesh for
a transient, three-dimensional, compressible, multimaterial, free-Lagrangian code. The
solution algorithm uses fixed-mass particles (called mass points) that move at the fl'_id
Lagrangian velocity and are surrounded by median Lagrangian cells constructed from
Delaunay tetrahedra. These cells are free to change connectivity, which ensures accuracy
in the differencing of equations and allows the code to hasldle extreme distortions. Details
of the reconnection algorithm are provided by Fraser (1988), Marshall and Painter (1990),
and Trease (1990). All variables are mass-point centered, and momentum and energy
are conserved exactly except in some pathological situations. The Lagrangian nature of
the median mesh makes fluxing through the mesh unnecessary except in the regions of
reconnections.

A high-order finite-volume approximation has enabled us to successfully run several
problems of interest on very coarse grids. A new artificial-viscosity formulation ha_sallowed
us to run most problems of interest in pure Lagrangian mode for the first half (or more)
of the transients, thereby minimizing the fluxing errors caused by reconnections.
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Currently, each computational cell represents a single phase and a single component,
and interface between material boundaries is automatically tracked because of the La-
grangian nature of the mesh. Ali thermodynamic quantities at a given point in space are,
therefore, unambiguously defined. Because phase change is allowed to take place in each
computational cell, multiphase flow topologies are easily modeled for undispersed flows.
However, the current algorithm is prohibitively expensive for modeling dispersed flows,
because of the enormous number of single-phase single-component cells required. We will
be implementing a mixed-cell model along with the solution of multiphase flow equations
with associated interphasic exchange rates in the future.

THE MEDIAN MESH

Figure 1 shows the median mesh in two dimensions. The two'dimensional analogy
,i

FIG. 1 Two-dimensionalmedian mesh superimposedoverthetwo-dimensionalDelaunay
mesh.

-3-



° Sahota and Trease ...............................................LA-UR-90-????

DELALJNAY
I!: IHAHEDRON

MEDIAN
MESH

FIG. 2.Three-dimensionalmedian mesh insidea Delaunaytetrahedron.

is used for easier comprehension. First we choose a nearest-neighbor set for each mass
point in the mesh ensuring rigorous reciprocity (that is if mass point A is a neighbor of

mass point B then mass point B must also be a neighbor of mass point A). This set isdefined by _,,e Voronoi mesh. Then we construct the Delaunay triangles (tetrahedra in
three dimensions) by connecting each mass point to its neighbors. This spans the entire
space. Details of Delaunay tetrahedralization are provided by Sahota (1990b). The median
mesh is then constructed by drawing a polygon around each mass point whose vertices
are the area centroids and the connection midpoints. Because we always move the mass
points at the Lagragian velocity, all the triangle (tetrahedron) verticies are Lagrangian.
Therefore, the connection midpoints and the centroids also are Lagrangian. Thus the
median-mesh boundaries move at the Lagrangian velocity and no fluxing is necessary due
to the convective terms in the applicable differential equations. However, at the time of
reconnections, the fluxing is required because the fluid crosses cell boundaries. It is clear
from Fig. 1 that the median mesh with all variables centered at mass points is equivalent
to a triangular (tetrahedral) Delaunay mesh with ali variables defined at the triangle
(tetrahedron) vertices.

The Delaunay triangles become Delaunay tetr'ahedra in three dimensions. Figure 2
shows a tetrahedron with median mesh superimposed over it. The three-dimensional
median mesh is drawn by connecting each connection midpoint to its two adjacent face
centroids, which axe then connected to the tetra_edron centroid. This results in the tetra-
hedron volume being shared equally among the four mass points. Again, since the mass
points are Lagrangian; the connection midpoints, the face centroids, and the tetrahedron
centroid are Lagrangian. Therefore, the boundaries of the three-dimensional median mesh
are Lagrangian.

To enhance computational efficiency, all hydrodynamic calculations are done at a tetra-
hedron level in super-vector loops, and contributions to accelerations from each tetrahedron
are accumulated (through indirect addressing) at each of the four mass points adjoining
the tetrahedron. This procedure is computationally more efficient than looping over the
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mass points, because a tetrahedron is computed only once even though it is shared by four
mass points.

GOVERNING EQUATIONS

The hydrodynamic equations solved are the mass, momentum, and total energy equa-
tions. The internal energy is calculated by subtracting the kinetic energy from the total
energy. These equations are given below.

Mass

Dp -pV _ (1)---- . .

Dt

Momentum
D_' -.

p-ffi= v . cr+pf , (2)
where the stress tensor, o', is defined as,

a=-pI+r+S , (3)

where the viscous-stress tensor, "r, is defined as

_v. _') + +- _ _ _-
oy au 2( av o,J awr = # _-£+ _ _ - IV. _') _- + -_ , (4)
ow O,J Ow oy 2( ow_+_ _+_ _z- lv._ ')

and the material-stress-deviator, S, is calculated from

DS G
= -r +_ × S +(_ ×S)* , (5)

Dt #

where the vorticity terms (terms containing 5) represent the rigid-body rotation. The
vorticity vector, _, is defined as

Ow _ OyI

1 1-'. "* Ow

= __v xq= _ _- _ . (6)
_-_

Total energy
De -.

p-_---_= V. (er. q-')+ V. (kVT) + pf. _ + q'" . (7)

To obtain closure, we need an equation-of-state, which follows.

p=p(p,z) . (s)

NUMERICAL METHOD
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Because the computations are done on a Lagrangian mesh, equation (1) is trival to
solve, i.e., the density is calculated by dividing mass by volume. The momentum and energy
equations are solved by integrating them over cells and applying the divergence theorem.
The stress-deviator equations (5) are solved similarly. Currently, ali time-advancements
are carried out in an explicit manner except for V. (kVT) term in the energy equation,
which is evaluated following a hybrid explicit-implicit technique (Sahota, 1990a ).

A single-step time advancement of equations (2) and (7) using the old-time values of
o" and _' is known to be unstable without the use of a linear artificial viscosity (in addition
to quadratic artificial viscosity). However, stability can be achieved by computing o" and
q in the middle of a time cycle, without the use of linear-artificial viscosity. This approach
also makes the time advancement second-order accurate. Details of the numerical method
are provided by Sahota (1989, 1990a).

RESULTS

Calculated density profiles for the infinite spherical shock explosion problem of Nob
(1985) are compared with the analytic result in Fig. 3 at 0.6 #s. The calculations were done

7o I1

50 I /"'" ill ..........Regular hydro II

' /" tll --Srrtot l/
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FIG. 3. Comparison of the calculated density profiles with the exact solution for the spher-
ical Noh (1985) problem at 0.6 #s.

on a row of 100 points surrounded by a 40-degree cone of reflective boundaries represented
by four rows of 50 points each. The figure shows two calculations. The first calculation was
done using the proposed free-Lagrange technique. The second calculation was done using
a conventional artificial-viscosity approach typically used in two-dimensional codes with
success. The comparison between the proposed technique and analytic result is excellent.
However, conventional artificial-viscosity calculation is far inferior upstream of the shock,
and unacceptable downstream of the shock, with a peak density of only _ 24g/cm 3. This
gross error is the combined result of a spring-type artificial viscosity and coarse angular
zoning (20-degree zoning), which is typically the case in three dimensions. The conventional
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artificial-viscosity form does not recognize the mass points approaching each other due to
physical spherical convergence; and due to large angular zoning, the artificial viscosity
exerts a large repulsive force that tends to destroy the compression process. This is a
first-order error in space and its effect disappears as the angular zoning becomes finer.
We use a traceless form of the tensor artificial viscosity that does not result in anomalous
repulsive forces (Sahota, 1989).

One of our primary concerns was that, since we could not generate symmetric meshes
in three dimensions, how symmetric our predictions would be for physically symmetric
problems? Figure (4) shows a fully three-dimensional calculation for the Noh problem with

FIG. 4. Initial and final mesh plots for the spherical Noh problem computed on an asym-
metric three-dimensional mesh.

initial and final mesh configurations superimposed over each other. Clearly, the problem
stays symmetric. We also have performed calculations for a spherically expanding wave
under an initially uniform pressure, and have simulated several other spherically symmetric
problems, which also stay symmetric on asymmetic meshes.

Figure (5) shows a comparison of the experimental and calculated interface growth
rates for the shock-tube experiment of Andronov e_ al. (1976). The instability was initi-
ated by propagating a weak shock through a perturbed interface between two fluids at
different densities. The calculation and the data agree within ,,_ 10%. The calculation also
compares favorably with Youngs' (1984) two-dimensional calculation of single-wavelength
perturbation (not shown). Figure (6) shows the calculated instability in the heavier fluid
at 1 ms.

To test the material-strength model, we simulated a strength-dominated vibrating-
shell problem, whereby a perfectly-elastic spherical shell is given an initial radially inward
velocity and is allowed to vibrate. Figure (7) shows the radial position of a point as a
function of time. The calculated time period of 28.8_8 matches favorably with an analytic
value of ,-_28_us.

The free-Lagrangian algorithm is capable of modeling a wide range of physics problems.
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FIG. 5. Comparison of the experimental and predicted mixed-region growth histories for

the shock-tube experiment of Andronov et al. (1976). The time is measured froi,a
arrival of the first shock at the interface.

FIG. 6. Computed instability for tile shock-tube experiment at 1 ms.

The previous examples demonstrate how well we simulate shock-driven fluid flow problems.
Figures 8-10 show the development of a metal jet from a shape-charge calculation. In this
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FIG. 7. Calculatedradial-positionhistoryofa pointforthevibrating-shellproblem.

FIG. 8.Initialmesh plotfora shapecharge.

calculationthejetismade ofaluminum,thebackplateismade ofcopperwith a charge
ofhighexplosivebetweenthem. The highexplosiveisdetonatedatone pointon axisat
theinterfacebetweenthecopperand thehighexplosive.The copperisnot axisymmetric
about thecenterlineoftheshape charge,but hasbeen formedintoa squareshape.This
makes thecalculationthree-dimensional.The resultofthissquarepieceofcopperisto
producean aluminum jetthatissquare,but thecornersaxe90 degreesout ofphasewith
respecttothecornersoftheoriginalpieceofcopper.Thisprocesscanbe clearlyobserved
ina movieofthecalculation.

We areexploringthefeasibilityofusingthefree-Lagrangetechniqueforglobalatmo-
sphericand ocean-circulationmodeling.Figure11showsthefree-Lagrangemesh structure
at thesurfaceofthe earth. These surfacetrianglesform thebasesoftetrahedrathat
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FIG. 9. Formation of aluminum jet for a shape charge at 11.5 #s.

FIG. 10. Formation of aluminum jet for a shape charge at 27.0 ps.

extend up through the atmosphere to the next layer of mesh points. In this example we
have twenty vertical layers of points. It can be noted that points axe placed on the earth's
_urface such that they map the topography. Here we see that the land masses and the
oceans have been zoned with different amounts of resolution. This demonstrates the static,
variable zoning capability that the unstructured grid provides. We also can dynamically
add and remove mesh resolution by comparing locally the length scales resolved by the
mesh and the physical length scales determined from spacial gradient information. If these
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FIG. 11. Mesa plot of earth showing variable-zoning capability of the free-Lagrange method.

length scales differ by too large a factor then the code will automatically add or remove
resolution. A good example of this process occurs when a tropical cyclone forms. The
code will detect the lack of resolution to resolve vorticity near the source of the cyclone
and will automarically add more zones. This process continues until the cyclone starts to
dissipate, then mesh resolution will be removed automatically by the code. Figure 12 is
an example of the wind shear at the surface of the earth.

CONCLUSIONS

The free-Lagrangian methods provide the accuracy of standard Lagrangian approaches
and the robustness of Eulerian approaches because of the ability of the mesh to reconnect.
Because the mesh is not allowed to distort, the finite-volume truncation errors are expected
to be even lower than the Lagrangian methods for complex flow situations. The method
presented uses a completely unstructured grid, and as a result, the technique is inherently
adaptable to arbitrary geometries and flow structures. Because this mesh adaptability
allows the use of much fewer grid points for equivalent accuracy, far better computational
efficiency than the structured mesh schemes is obtained for complex geometries. Because
of its Lagrangian nature, the free-Lagrange method introduces no artificial diffusion due
to advective terms in the differential equations. This lack of artificial diffusion leads to far
better accuracy in handling high-shear flows as compared to standard Eulerian approaches.
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FIG. 12. Calculated wind-shear pattern tor atmospheric circulation model.

The results presente3 for several problems of interest are very encouraging. We also
have performed several other calculations of interest that compare very favorably with the
analytic results and the experimental data. We had recognized from the start that we could
not generate perfectly symmetric meshea in three dimensions. In spite of our inablity to
generate symmetric meshes, we have found that we are able to calculate symmetric results
for physically symmetric problems even on comparatively coarser grids compared to the
grids conventionally used in two-dimensional simulations.

We use a tetrahedron-centered traceless form of tensor artificial viscosity (Sahota,
1989), which has eliminated anomalous repuls;-'e forces among mass points in spherically
converging geometries. We have been able to run problems with tetrahedron aspect ratios
of several hundred to one.

The free-Lagrange algorithm was parallelized on the Cray family of supercomputers
since its inception, and has been recently mapped onto the massively parallel Connection
Machine (CM-2). In spite of its unstructured grid, the algorithm is naturally amenable to
massively parallel architectures by collecting tetrahedron-related data and assigning each
tetrahedron to a virtual processor.

We also are investigating the applicability of the free-Lagrange method to oil-reservoir
simulations, because of its ability to resolve saturation (sharp) fronts encountered in such
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applications.Thiswould,ofcourse,requireimplicitizingmore termsintheapplicabledif-
ferentialequations(especiallythepressure),and explicitlyusingthemultiphasemulticom-
ponentformulationswith a mixed-celltreatment,and replacingthemomentum equation
withDarcy'slaw (asimplification).

ACKN OWL EDG EIvlEN T S

This work was performed under the auspices of the U.S. Department of Energy by the
Los Alamos National Laboratory under Contract W-7405-ENG-36. We thank Jim Painter,
Jean Marshall, and John Fowler for calculational assistance.

REFEREI'_CES

Andronov, V., Bakhrakh, S. M., Meshkov, E. E., Mokhov, V. N., Nikiforov, V. V.,
Pevnitskii, A. V., and Tolshmyakov, A. I., 1976, Soviet Physics, JETP, No. 44, pp 424-
427.

Fraser, D. M., 1988, "Tetrahedral Meshing Considerations for a Three-Dimension Free-
Lagrangian Code." Los Alamos National Laboratory report, LA-UR-88-3707.

Marshall, J. C., and Painter, J. W., 1990, "Reconnection and Fluxing AlgoI:_:;ms in a
Three-Dimensional Free-Lagrangian Hydrocode," Proceedings of the Next Free-Lagrange
Conference, Jackson Lake Lodge, Wyoming, June 3-7, 1990, Springer-Verlag Press, to be
published.

Noh, W. F., 1985, "Errors for Calculations of Strong Shocks Using an Artificial Viscos-
ity and an Artificial Heat Flux," Lawrence Livermore National Laboratory report UCRL-
53669.

Sahota, M. S., 1989, "Three-Dimensional Free-Lagrangian Hydrodynamics," Los
Alamos National Laboratory report, LA-UR-89-11-79.

Sahota, M. S., 1990a, "An Explicit-Implicit Solution of the Hydrodynamic and Radia-
tion Equations," Proceedings of the Next Free-Lagrange Conference, Jackson Lake Lodge,
Wyoming, June 3-7, 1990, Springer-Verlag Press, to be published.

Sahota, M. S., 1990b, "Delaunay Tetrahedraliza_;ion in a Three-Dimensional Free-
Lagrangian Multimaterial Code," Proceedings of the Next Free-Lagrange Conference, Jack-
son Lake Lodge, Wyoming, June 3-7, 1990, Springer-Verlag Press, to be published.

Trease, H. E., 1990, "Mesh Reconnection on a Massively Parallel computer," Proceed-
ings of the Next Free-Lagrange Conference, Jackson Lake Lodge, Wyoming, June 3-7, 1990,
Springer-Verlag Press, to be published.

Youngs, D. L., 1984, "Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor
Instability," Physica, Vol. 12D, pp 32--44.

-1.3-






