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Determination of Optimal Core Fissile Loadings in the TREAT Upgrade Reactor

S§. K. Bhattacharyya, R. M. Lell, A. J. Ulrich and S. Yang

The TPEAT Upgrade (TU) reactor (1) design is presently nearing completion.

The reactor will be used to test LMFBR fuel under simulated accident con-

ditions. Such simulations are done by operating the reactor in complex power tim=
histories of several second duration which include, adiabatic super-prompt critical
bursts. The physics of the TU core is complicated by a number of factors

related to the planred application of the facility. 1In this paper .we report on

the design approach used to produce the core fissile loading spatial

distribution needed to satisfy the requirement to test a number of different

test clusters in various test loops in a transient operating mode.

The TU core consists of a driver comprised of the pre Upgrade Zircaloy-clad
TREAT fuel assemblies and a central converter region of new Inconel-clad fuel
assemblies surrounding the test loop location. Separating the two concentric
zones is a buffer zone that is made up of new Inconel clad assemblies operating
at lower temperatures than the converter region (see Fig. 1, inset). The fuel
in all regions is a dilute dispersion of enriched U0, in a graphite matrix. 1In
order to meet the demanding functional regquirements, it was necessary to
maximize the energy deposited in each fuel rod in the converter during the
transients within a maximum allowable clad temperature constraint, i.e.,

t : : imit
f pP(t)dt + maximum for each rod with Tcjag < T:11a<31 e . (1
o

where P(t)is the time dependent power in each rod. The de_.ree of freedom in
the design is the fissile loading in each fuel rod (characterized by a C/U atom
ratio) within the fabrication cost constraint of a limited maximum number of

different C/U loadings permitted.

Such a maximization condition can be satisfied exactly for a single spatial
core configuration and a single transient shape. The need to accomxodate an
ensemble of test locps with different degrees of absorptiveness makes it
necessary to adjust the fissile loadings in the vicinity of the loops to
compensate for the specific perturbations caused by the individual loops.
Since there is a coupling of neutron source throughout the core, the effect
propagates throuchout the core, decreasing with increasing distance from core

center.

The transient shape effects arise due to power shifts that occur during the
transient because of control rod movements and spatially non-uniform effects of
core heating (dynamic & /v absorption effects and temperature feedback effects).
The time integral in Egq. 1 makes the optimization specific to individual tran-
sient shapes. 1In order to determine the fissile loadings in each fuel rod, the
design calculations had to be performed in considerable spatial detail. Thus,
detailed time-dependent optimizations were ruled out from computing cost
considerations. The following approach was devised to perform general design
optimizations using static neutronic analyses that most closely approximated
the ccndition of Egq. 1.



The need to accommodate an ensemble of test loops was treated by the use of

three specific core "inserts" consisting of a 5x5 array of fuel assemblies
designed to match the major classes of test loops geometrically and neutronically.
The balance of the modified core was designed to operate with any insert. This
was a cost-effective solution that maintained a high performance level for the

enserble of planned test clusters.

The dynamic effects were treated by performing the static optimizations at
conditions corresponding to the peak of the burst. At this time the inverse
period, o, is 0 and the a/v poisoning term vanishes. Additionally, all of the
transient-producing control rods are out of the core, allowing an essentially
unrodded optimization. Space-time calculations using the Fx-2(2) code
established the fact that the several dynamic effects are compensatory and
therefore that approximate methods are acceptable. Scoping gquasistatic
analyses (using simple core models) showed that this approach gave the best
approximation to the more detailed time-dependent analyses.

For the design analyses, an 18 energy group cross-section set was used. The
cross-sections were generated from basic ENDF/B IV nuclear data using the AMPX
cross-section generation package(3) at the temperature corresponding to the
peak of the burst. The S(a,B) scattering matrix representation was used for
graphite. From kinetics analyses of all of the desired classes of transients,
it was established that the temperature at the peak of the burst was within
100°C for all of the different transients planned. The optimization was done
for the most demanding case since the performance margins over requirements
were the smallest for this case. The design calculations were performed by a
modified DIF3D(4) diffusion theory code in which a transport slot treatment was
imbedded (3) . an auxiliary cnde was written to perform the fissile loading
optimizations such that the condition of Eg. 1 was satisfied for each fuel rod
to within the tolerance which could be achieved given the constraint of a
limited number of possible C/U loadings. The optimization and diffusion
calculations were performed iteratively.

The primary result of the analyses was the specification of the optimal fissile
loading in each fuel rod within the modified core and the insert configurations.
An indicator of how well the design approach worked is the distribution of
relative energy derositions in each fuel assembly in the modified core. Aas
shown in Fig. 1 for one of the core inserts, the energy distribution in the
converter is very flat. Similar flat distributions were obtained for the other
core inserts. This is important from considerations of clad life degradation
over the period of reactor operation. Inset in Fig. 1 are cross-sectional
views of the entire core and of a typical fuel assembly showing the range of
C/U loadings within a single assembly. Overall, in the core there are 46
different C/U loadings ranging in value from 511 to 5284. The intra assembly
energy deposition distribution within each assembly (characterized by a
max/average or max/min ratios) is also acceptably flat.

Fuel fabrication is in progress at Los Alamos National Laboratcry. It is
anticipated that fabrication of all fuel rods will be completed in 1984.
Initial criticality of the TU reactor is expected in early 198S5.
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