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I. Summary

A typical high energy physics experiment re-
quires both a high speed data acquisiton and proces-
sing system, for data collection and reduction; and a
general purpose computer to handle further reduction,
bookkeeping and mass storage. Broad differences in
architecture, format or technology, will often exist
between these two systems, and Interface design can
become a formidable task.

The PDP-11 series minicomputer is widely used in
physics research, and the Brookhaven FASTBUS is the
only standard high speed data acquisition system
which Is fully Implemented in a current high energy
physics experiment, this paper will describe the
design and operation of an interface between these
two-systems. The major issues are elucidated by a
preliminary discussion on the basic principles of Bus
Systems, and their application to Brookhaven FASTBUS
and UMIBUS.

II. Whys and Wherefores of Busses

The simplest data transmission system would in-
clude a HASTES device, a SLAVE device and an inter-
connecting link. (The terms "Master" and "Slave"
have come into general use in spite of their negative
human connotations. They are, however, technically
preferable to "Driver"/"Receiver" or "Talker"/"Lis-
tener", etc. because a "Master" may initiate a "Read"
Operation in which the "Slave" is actually the sender
of Che daca.) At a oinlaum, two kinds of information
oust appear on the connecting link: the DATA itself,
and DATA TRANSFER CONTROL information which is neces-
sary both to specify the direction of data flow, and
to synchronize its transmission and reception. (See
Fig. 1A.)

In a larger system, use of individual links
between all potential Master-Slave pairs could in
principle support very high speed parallel operation.
However, the resulting network would require vast
amounts of cable and connectors, and Impose a major
arbitration problem on each module. In practical
terms, the cost of high-speed micro-electronics has
been declining both absolutely and relative to the
cost of connections. In addition, master and slave
devices may often be collected into groups in which
data transfers must occur in sequence: in other
words, where there would be no benefit from concur-
rent transmissions in a network. (See Fig. lb.)

For all of the reasons mentioned, it is desir-
able to use Interconnecting lines which arc shared
among many potential masters and slaves. These lines
arc commonly multiplexed as a function of time be-
tween successive master-slave pairs, and arc referred
to collectively as a BUS. (See Fig. 1c.) Note that
a single physical device may appear as both "Master"
and "Slave" ac different times. Bus interconnections
require ac least two additional types of Information
besides DATA and DATA TRANSFER CONTROL. ARBITRATION
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CONTROL signals are needed to determine which of many
potential masters will actually assume mastership
during a particular time slot on the bus. ADDRESS
Information is used to select which of many potential
slaves will actually respond io the current master.

A. ONE-TO-ONE

B. NETWORK

C. BUS

Fig. 1.

Data Transport Structures

A fifth type of information, though not logi-
cally essential, is very convenient to include In
practice. SYSTEM CONTROL lines arc used to force the
system into a well-known initial condition, and to
broadcast other types of system-wide information,
such as power failure, real-time clock, etc.

The interface described below serves as a link
between two very general bus structures: Brookhaven
FASTBUS and UNIBUS. When a muster on a tWTFt.'S re-
quires a FASTBUS operation, it addresses the inter-
face as a slave on UNIBUS. The interface then be-
comes a master on FASTBUS, and complects the trans-
action after addressing the desired FASTBUS slave.
The reverse transaction Is initiated by a master on
FASTBUS; in this case, the interface appears as a
slave to FASTBUS and a master to UNIBUS. (Sec Fig. 2.)
It is obvious from the diagram that if FASTBUS
modules and UNIBUS modules could communicate
directly, there would be no need for an interfacet

Why is there a multiplicity of bus structures?
Specifically, why are there both a UNIBUS and a
Brookhaven FASTBUS? The answers are both historical
and technical. UNIBUS was Introduced by DEC in 1970
to support its PDP-11 line of minicomputers, and It
reflects the state of technology and architectural
thinking of that time. Its continued use is partly a
result of the wide profusion of UNIBUS devices. In
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addition, it has been cheaper to compensate for
shortcomings of the bus by adding logic circuitry
than by replacing the bus itself. An example is the
use of memory napping in later PDP-ils to compensate
for the lack of address space on the bui.

A. UNIBUS-INITIATED

UB

r

B. FASTBUS-INITIATED

Fig. 2

Interface Function

Srookhaven FASTBUS, by contrast, is a product of
the technologies and daca handling needs of the Phys-
ics community of the late 1970s. It features far
higher speeds, greater architectural flexibility and
wider address and data spaces than does UNIBUS.

III. An Insider's View of the Busses, with a
Glimpse of the Interfacing Problem

A. Data and Address Fields

Figure 3 compares the data and address fields of
UNIBUS vlth those of FASTBUS. Figure 3A indicates
that data and address are multiplexed in space on
UNIBUS, i.e., they occur at the same time but in
different physical space; and multiplexed in time on
FASTBUS, i.e., they occur in the sane space but at
different times. Note that time multiplexing on
FASTBUS allows the use of much larger address and
data spaces within the same physical space-

Figure 3B shows how the data space of the two
busses is actually used to transport data of various
types. Figure 3C shows the mapping which assigns a
unique address location to a segment of the data
space on each bus.

Figure 3 makes evident those tasks Che interface
must perform in transforming the data and address
fields:

1. (Up the 18 bit address space of UNIBUS into the
32-bit field on FASTBUS and vice versa.

2. Convert space-multiplexed address and daca
fields into a time-multiplexed field, and vice
versa.

3. Transform UNIBUS daca types into FASTBUS types
and vice versa; for example, convert 32-bit
words on FASTBUS into 2 16-bit words on UNIBUS;
move 8-bit FASUUS words into the proper hlgh-
or low-order byte locations on UNIBUS, etc.

4. Generate address sequences which observe the
correct mapping to data space on either bus; for
example, a stream of 32-bit words occupying N
VASTBUS locations will occupy 4N locations when
tupped into UNIBUS address space.

B. Data Transfer Control

A convenient scheme for classifying
synchronization methods Is given by Levy.1 The
control signals may be periodic or aperiodic; and
they may originate from the master, from both master
and slave, or from some centralized location
elsewhere, \ccording to this classification, both
Brookhaven FASTBUS and UNIBUS fall into the same
category: their data transfers are synchronized by
aperiodic signals which arc issued by both master and
slave. (A partial exception is the nonrhandshake
block transfer mode on Brookhaven FASTBUS; see
below.) This type of data transfer is known as a
handshake: A master having data to send or receive
sets a synchronization bit; the recognized slave
raises a bit of its own to indicate receipt or
transmission of the data; the master then lowers its
bit; followed by the slave, which follows suit, .
completing the data transfer cycle. The two busses
are also similar in their method for specifying the
direction of the data transfer. In both cases there
is a control bit which accompanies the address and
indicates whether data is to be transferred to or
from the slave (i.e., read or written).

Beyond these basic characteristics, Brookhaven
FASTBUS provides several Important features in its
data transfer protocol which are absent from UNIBUS.
Time multiplexing of address and data requires a
separate handshake for each font of information. The
double handshake on FASTBUS is far sore powerful than
the single one on UNIBUS in providing for error de-
tection and recovery.

A variety of factors may prevent the successful
completion of a data transfer within e reasonable
time span. There may be no slave which recognizes
the address put up by the master; or, the addressed
slave may be busy, empty of data, or slow in pro-
ducing or accepting it. UNIBUS provides no way for
distinguishing among these possiblities; the only
possible Indication of an anomaly in data transfer is
the failure of any slave to return the second part of
the handshake.

On Brookhaven FASTBUS, by contrast, the various
conditions are separable. Two options are
Immediately apparent: every slave may fail to return
the address part of the handshake, indicating
non-recognition of address; or, a slave which has
completed the address handshake may fail to return
the data handshake, signaling its Inability to read
or write data. Three other possibiltics are
Introduced by the addition of two more bits, which
may be returned by a slave with its data handshake.
One of these bits shows a BUSY condition; the other,
an EMPTY condition; both together are used to sark
the last word of a block transfer.

Time-multiplexing of address and data lines has
one inherent lioitation: two fundamentally distinct
transactions must occur in order to transfer a single
word of data. Most cise-aultiplexcd busses,
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including Brookhaven FASTBUS, overcome this limitation
by allowing for block transfer, in which a single
address cycle is followed by multiple data cycles.
The address cycle transfers the starting address; the
remaining addresses are generated sequentially in the
slave by counting up or down. Each data cycle of a
block transfer is typically faster than the combined
address/data cycle of a non-multiplexed bus, because
the counting operation is inherently faster than full
address recognition. Brookhaven FASTBUS implements
two block transfer nodes: with and without hand-
shake. The former is, as described above, similar to
a single handshaked address-word transfer followed by
many handshaked data-word transfers. In "non-hand-
shaked" mode, only the address cycle observes full
handshaking. During the data cycles, only the syn-
chronization signal'issued by the master is meaning-
ful; the return signal sent by the slave is ignored
on a word-by-word basis and loss of words can be
detected only on sn aggregate basis. Non-handshaked
block transfers sacrifice reliability to speed;
because the speed of even single-word transfers on
FASTBUS far outstrips that of UNIBUS, there is no
reason to include non-handshake mode in the
interface.

The preceding discussion of data transfer con-
trol methods on Brookhaven FASTBUS and UNIBUS sug-
gests a number of problems the interface must solve
in order to tie the two busses together:

1. Decompose a single address/data transmission,
including handshake, on UNISUS, into address
transmission followed by data transmission, with
double handshake, on FASTBUS, and vice versa.

2. Compose a 32-bit word on FASTBUS from 2 16-bit
words on UNIBUS, and vice versa, with miniaum
usage of either bus.

3. Decompose a block transfer of 16- or 32-bit
words on FASTBUS into a stream of 16-bit words
on UNIBUS, with proper sequencing of addresses.

4. Hake available to UNIBUS information from
FASTBUS about the failure to complete a data
transfer in the normal way.

C. Arbitration and System Control

The job of arbitration is the problea of se-
lecting at most one device to serve as bus master at
any particular time. System control is concerned
with making certain kinds of information available to
all the devices in the system simultaneously, fre-
quently for the purpose of forcing thea into a coaaon
state. Stated thus, both functions scea relatively
straightforward; but in fact both are intimately
connected with the far more subtle issue of prograa
control: the Initiation and overall coordination of
processes and algorithms which use the bus for trans-
fer of data. (The tera "intelligence", though some-
times used in this context, reflects far too narrow a
view of huaan reasoning abilities.) Our discussion
of arbitration and system control will therefore
begin with a few coaaents about program control.

The design of UNIBUS is based on the underlying
assumption, due orginally to von Neumann, that all
program control will orginate from a single central
processing unit (CPU). Under control of the CPU,
UNIBUS is intended as a link primarily for the trans-
fer of instructions and data between the CPU on the
one hand, and memory and peripherals on the other.
This assumption has several implications for UNIBUS.



Th« CPU is bus usctr by default, i.it., when no other
device requests aastcrship. The arbitrator and the
origin of Che system control functions are physically
located in the CPU; the CPU is the only device which
can change lta own priority for access to the bus.
Host importantly, the ability of bus aastera other
than the CPU to affect the flow of progran control is
severely Halted.

Brookhaven FASTBUS makes none of these assump-
tion*, although there would be no problem in devel-
oping a von Neumann-like conputer using FASTBUS.
Interestingly, the two systems are superficially
similar in assigning a distinct priority level to
every potential Baiter and in having a central arbi-
trator to grant bus mastership to the requesting
device of highest priority. However, UNIBUS allows
only two very specific modes of mastership to devices
other than the CPU:

1. INTERRUPT, in which a device can alter the flow
of program control by placing a single address
on the bus which directs the CPU to the location
of the interrupting routine in memory; and

2. DIRECT MEMORY ACCESS (DMA), in which a device
cay transfer data directly to or from memory or
peripheral, without affecting program flow
directly.

DMA transactions can occur at highest priority, pre-
cisely because they are "t.anspaisnt" to program
control. Interrupts, on the other hand, may occur at
several levels of priority, and the processor may
vary its own priority with lespect to the various
levels. Brookhaven FASTBUS, as noted above, neither
defines any one device as the central processor nor
imposes any restriction on the kinds of mastership
allowed to non-processor devices.

In the area of system control, Brookhaven
FASTBUS also maintains far greater flexibility, free
of Che von Neumann orthodoxy. Brookhaven FASTBUS
also allows for far greater variety of system archi-
tecture than does UNIBUS. Despite the best efforts
of certain DEC-compatible manufacturers, it is dif-
ficult to link more than one UNIBUS segment into a
coherent system, because the original design gave
little if any thought to multi-bus systems.
Brookhaven FASTBUS, by contrast, is designed to
support tree-like structures in which both the
branches and nodes consist of individual FASTBUS
segments.2 The computer interface sits at Che root
node, and may issue system control commands for its
own and other FASTBUS segments in th« system. The
BROADCAST bit, when enabled, permits a source of
system control information to use the entire data
space and forces all devices on a single bus segment
("local" broadcast) or on all bus segments ("global"
broadcast) Co respond.3 Broadcast commands, however,
need not originate from che interface, UNIBUS or its
CPU; any device on FASTBUS may trigger a broadcast by
writing into a special FASTBUS-addressabJs register
in the interface.

By comparison, UNIBUS provides for only the mosc
primitive syscem control functions: initialization
of all devices into a well-defined starting state
(also provided by Brookhaven FASTBUS) and indication
of power- line status.

Based on our discussion of arbitration and
system control, the following tasks emerge as
functions Che Interface mist perform:

1.

2.

3.

Cain mastership on UNIBUS for interrupt and DMA
transactions initiated from FASTBUS.

Gain mastership on FASTBUS to complete UNIBUS-
initiated data transfers.

Issue local and global broadcast caooands initi-
ated by either bus.

IV. Putting It Together: the Design of the
Interface

The basic design goals and requirements of the
interface have already been outlined in the previous
section. Once the problem was clearly understood,
finding a solution was fairly straightforward. In
this section we will outline briefly the overall
architecture of the interface. We will then focus on
the three most challenging aspects of the design:
address napping, status and error logging, and inter-
rupt handling.

The guiding design principles are as follows:

1. For simplicity, there are no internal data reg-
isters, except as needed to guarantee Che integ-
rity 32-bit word transfers; wherever possible,
data is transferred by clamping the two busses
together.

2. Consistent with #1, minimum overhead use is made
of either bus; for example, a 32-Lit transfer to
or from Brookhaven FASTBUS will occupy it abouc
the same time as one of the two corresponding
16-bit transfers on UNIBUS.

3. Within the context of a simple system, maximum
attempt is made Co preserve status and error
information, and make them available to either
bus.

4. Data transfers Initiated by FASTBUS normally
gain control of UNIBUS via DMA. The interrupt
pathway is reserved for special 16-bit FASTBUS
messages and for various categores of error
messages.

5. The interface is selected as the mosc convenient
location for the central arbitrator of its own
FASTBUS segment. .

A simplified block diagram of the interface,
showing all data and address pathways, is shown in
Figure 4. Address transformations from UHIBUS Co
Brookhaven FASTBUS are performed by the address map,
which will be described in detail below. In the
opposite direction, they are handled by a shift ma-
trix and counter which produces the correct address-
to-data mapping and generates sequential addresses
for block transfers. Every 32-bit transfer on
Brookhaven FASTBUS will correspond to two 16-bit
transfers on UNIBUS. In order to avoid tying up
FASTBUS between UHIBUS words* temporary storage is
provided in the high-word latch (HHL) and low-word
latch (LWI.), for data originating from FASTBUS and
UNIBUS, respectively. Multiplexing of high- and
low-order 16-bit words, composition, decomposition
and byte shifting are performed by a combinational
data multiplexer. Multiplexing of address and data,
and bidirectional multiplexing are performed on an
Internal bus. A FASTBUS interface section does
TTL/ECL level shifting and bidirectional buffering
between the internal bus and the FASTBUS address/data



lines. Two registers are included to handle
broadcast commands: che FASTBUS broadcast register
(FER) for FASTBOS-initlated eonmands and the
UNIBUS-addressable Low-order Broadcast Register
(L8R). The high-order 16-bits of a DNIBDS-initiated
broadcast are transmitted directly to FASTBUS by
writing to a dummy location; the concents of che LBR
are appended on to the explicit high-ocder part.

Not shown in Figure 4 are two control sections,
which govern all data transfer control bits, requests
for nastership, and control of multiplexers, drivers,
address counters and data latches. One of these ,
circuits controls FASTBUS-initiated transfers and is
triggered by synchronization bits issued by the
Brookhaven FASTBUS master; the other plays a
corresponding role during UNIBUS-initiated transfers.
Each is implemented using a Mbore-Cype machine with
pseudo-synchronous clock-input control.1*

We turn next to the problem of address mapping
from UNIBUS to Broolchaven FASTBUS. Only 4096 loca-
tions (12 bits) of the 18-bit UNIBUS address space .
are allotted to Brookhaven FASTBUS.

The transformation from 12 to 32 bits is ac-
complished by programming each of 16 32-bit mapping
registers with a base address on Brookhaven FASTBUS.
The 4 highest order bits of the 12 then select one of
the mapping registers. The remaining 8 bits are
shifted 0, 1 or 2 bits to the right to Implement the
proper address-to-data mapping and the result is
logically OR'ed with the selected base address to
fora the actual Brookhaven FASTBUS address. This
scheme allows the programmer to reserve 16 blocks of
address space on Brookhaven FASTBUS, each with a
capacity of 64 contiguous 32-bit words, 128 16-bit
words or 256 8-bit bytes. In addition to the 32-bit
base addresses, each mapping register also contains
5 bits of control information, including a bit for
selecting 16 or 32-bit transfers.

The second topic which bears more detailed ex-
amination is the area of status and error logging.
There .are two registers, shown in Fig. 4, which are
used for this purpose: the lnterrupc register (IR)
and control/status register (CSR). Four CSR bits
answer the following question* about the most recent
transaction in the interface:

1. Was it initiated by FASTBUS or UHIBUS?

2. Was It part of a block transfer?

3. Was it a READ or WRITE operation?

4. Is the second UHIBUS word pending of a 32-bit
transfer?

For a transaction which does not terminate in the
usual way, additional information Is stored in the
IR. The four high-order bits contain a flag code
indicating the type of error or anomaly which occur-
red; the low-order 12 bits store the UNIBUS address
of the transaction in question. The flag codes dis-
tinguish among the following types of occurrence:

1. Failure of FASTBUS slave to return address hand-
shake within 4 atec.

2. Failure of FASTSUS slave to return data hand-
shake within 3 M C C .

3. 4, S. Presence of BUSY bit, EMPTY bit, or both
when slm returns data handshake.

6. Disagreement of the two UNIBUS words of a 32-bit
transfer as to READ/WRITE; i.e., alignment error.

7. Failure of any word transfer on either bus to
terninate vithin 10 msec; includes arbitration
failure.

8. Last word of DMA block transfer.

The Interrupt register is also used by masters
on Brookhaven FASTBUS to send messages to UNIBUS; in
this case, only the leading bit is a flag bit, and
the remaining 15 bits are available for data. This
type of event will be referred to as Case #9. In all
9 cases, an ERROR bit is set in the CSR, and two
additional CSR bits are used to distinguish between
Cases #1-7, Case #8 and Case #9.

Any or all of these classes of event may trigger
an interrupt, subject to the programming of 6 inter-
rupt enable bits in the CSR. BUSY/EMPTY' interrupts
are enabled separately using a control bit in each of
the 16 address mapping registers. A request for an
interrupt causes the CSR INTERRUPT bit to be set, and
the contents of the IR are locked in until the
INTERRUPT bit has been cleared by the processor.
Thus, if multiple interrupts occur, later ones may be
locked out until information from tne first has been
read by the processor. However, multiple Interrupts
will cause an INTERRUPT OVERFLOW bit to be set in the
CSR.

The appearance of an interrupt between the first
and second UNIBUS words of a 32-bit transfer can
corrupt the remainder of the transaction and cause
loss of aligmient for later transfers. An option was
therefore included which allows the programmer to
suspend interrupts until after the second word of a
two-word UNIBUS transfer. This option is programmab-
le separately in each of the 16 mapping register
control fields.

V. Conclusion

Our aim has been to show that design of an
Interface between UNIBUS and Brookhaven FASTBDS was
neither difficult to conceptualize nor hard to
implement once the fundamentals of bus architecture
were understood. The project lasted about seven
months, occupying an electronic engineer full-tine
and an electronic technician half-time. Physically,
the device is packaged in a 5-1/4" rackaount
enclosure, not Including power supplies. There are
four quad-size UNIBUS cards, a modified UNIBUS
backplane, two jingle-width standard DEC Modules and
a Brookhaven FASTSUS-size card. The interface is
completely self-contained, and connects to both
UNIBUS and Brookhaven FASTBUS via input and output
cables, or cable and terminator. Total component
cost was under $2000, and power requirements are
approximately 10A 3 +5v.; 10A 8 -5v; and 2A 8 -2v.
The interface has been in operation for one year and
is part of a CP violation experiment (Exp. 749) at
the Brookhaven ACS.
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