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Abstract

We show that the time-dependent Hartree-Fock approximation is approxi-
mate.y equivalent to a purely classical pseudoparticle simulation. Ir this
simulation, a collection of pseudoparticles are introduced to discretize
the phase space of spatial and momentum coordinates. The dynamics is com-
Pletely determined by following the pseudoparticle trajectories which are
the same as the trajectories of real particles moving in the self-
consistent field. An application of these concepts to nearly-head-on
heavy-ion collisions leads to a better understanding of the origin of the

low-£ fusion window obtained in the TDHT ralculationms.

I. Introduction

We seek a classical transcription of the TDHF approximation to help
guide our intuition in order to understand the underlying physics. The
procedure we take is a very well-known one. If we start from the
Schr¥dinger equation, go to the Wigner space, interpret the W:gner function
as a classical distribution function and take the 1limit of h + 0, then we
obtain from quantum mechanical equations of motiocn purely classical
equations of motion.1_4 By following a similar procedure for the TDHF ap-
proximation, we are guaranteed to obtain classical equations of motion for
the dynamics. What emerges out of such a transcription is the approximate
equivalence of the TDHF approximation with a pseudoparticle simulation
where the dynamics is completely determined by the motion of classical
pseudoparticles following classical collisionless trajectories.

This paper contains a brief summary of the main results and their ap-
plication to the discussion of the low-% fusion window im heavy-ion col-

lisions. The detalls of the discussion, as well as other extensions and




applications, are given elsewhere.5

II, Pseudoparticle Simulation as an Approximate Transcription of TDHF

The equation of motion for a single~particle state in the TDHF ap~

proximation is given by6

;] 3t w;\('f.t) - —- V +?/(o(r t))] wA(r t). (1)

where p is the density and’Z}:;) the mean-field potential.
In order tc study the TDHF approximation from a classical viewpoint,

we go to the Wigner space. The Wigner function is given by

> 3 i;-;/ h oce > > -> >
f(xrp,t) = | d7s e z wl(r - s/2,t)wl(r + 8/2,t) 2)
A .

where the summation over A extends over the occupied states. As is well

known, the Wigner function is analogous with, but not identical to, the
Because of the

insight and

distribution function in classical statistical mechanics.
usefulness of the distribution function in providing great
in guidirng our intuition, we shall adopt the approximate interpretation of
the Wigner function as the classical distribution function.

The equation of motion for the Wigner function in the TDHF approxima-

tion is1™4

L @0 + G/w) v @0 - 2 sin [—;ﬁ _\5:-337/(9(;.t))f(;3.t) =6 (3

where the superscripts v and f refer to the functions on which the gradient
One can expand the sine function in powers of ﬁv:'vﬁ'

operators apply.
One expects that when the number of nucleons becomes large, the variation
of the potential and the Wigner function in the interior region is rela-
tively small so that the higher-order derivatives of v and f are unimpor-
They are large only at the edge of the distribution where th.:
Thus, for large nuclei, we can retain only the

tant.
density is however small.
term lowest order in ﬁVZ-Vﬁ in the expansion. We obtain the Vlasov

equation

( P,t) +R v f(rps ) - ¥ ?/(p(r)) v f(l’Ps t) = 0. 4)

This equation, together with the equation of continuity for £, implies that



the phase space Wigner fluid in this approximation is incompressible. Be-
cause of the Pauli exclusion principle, the equilibrium distribution func-
tion has a uniform density in the phase space within a certain domain. The
incompressibility of the phase space fluid guarantees that in the subse-
quent dynamics, the density of the fluid in phase space remains uniform, as
would also be required by the Paull exclusion principle.

The transcription of the Vlasov equation to a pseudoparticle simula-
tion can be readily made. One follows the coordinates of the fluid element
initially located at a representative point ;;, E; at time to. The loca-
tion of the fluid element at time t is denoted by i(;;;o,t) and i(;;;o’t)'
In terms of the fluid elements ("pseudoparticles") initially located at ;o

and ;&, the distribution function can be decomposed to be
> > > > > > > > > > >
£(zp,t) = J dz_dp £ p_,t )s[*-R(x B ,t)16[p-F (T _P_,t)] ()

where f(?;;;,to) is the initial distribution function at time t . By sub-
stituting Eq. (5) into Eq. (4), one finds that the coordinates R and 3

satisfy the following Newtonian equations of motion

R _P
3t - m (6)

and -:-f --% %(ﬁ)). )

These equations are the classical equations of motion for a single particle
of mass m moving in a self-consistent potential well . Thus, when the
distribution function is given at time t = to, the dynamics is completely
solved by following the classical collisionless trajectories of all the

points (pseudoparticles) in the Wigner space using Egs. (5-7).

IXI. Pseudonucleon Dynamics in a Single Nucleus

A good approximation to the Wigner function of a nucleus in its ground

state, with the neglect of the diffuseness of the edges and oscillationms,

is
£(79) - 8 (k~[B)DO®R -]T]) (8)

where ﬁkf is the Fermi momentum, Ro the radius of the nucleus, and 6 the

step function. Such a uniformity of distribution in phase space is a



consequence of the Pauli exclusion principle.

When one looks at the distribution function as a whole, it is time in-
dependent, but if one follows an elementary volume (pseudonucleon or simply
"nucleon™) in the (?,;) space as a function of time, it exhibits classical-
type motions and traverses in the pi:ase space following a unique
trajectory. Each of these pseudonucleons traverses in nearly straight line
in the interior of the nucleus and suffers an elastic re-

When static equilibrium is achieved, the motion

trajectory

flection at the surface.
is such that for every group of nucleons leaving a phase space cell, it is

replenished by another group of nucleons from some other location.

IV. Pseudonucleon Dynamics in Heavy-Ion Collisions

We consider first a head-on collision of two equal nuclei. When the
common boundary between the two nuclei disappears, there are two effects on
the dynamics of the nucleons. Those nucleons originating from a point near

the boundary and coming to the boundary will follow straight line tra-

jectories and proceed to the other nucleus. Secondly, in the absence of

the boundary and the subsequent change of the trajectories of these

nucleons, part of the original Fermi sphere near the boundary points are

not replenished by nucleons from the same nucleus. In place of these

vacated phase space points now arrive the nucleons from the other nucleus,
the most energetic ones being the first to arrive.

At a time approximately ZRO/(Fermi velocity) after the removal of the
common boundary, the most energetic pseudonucleons from one nucleus arrive

at the far surface point of the other nucleus. They are not expected to

suffer much loss of energy. They are now ready to give an assault to the

"walls" at the surface points.
most energetic nucleons depends on the "height" of the wall and the energy
Furthermore, besides these nucleons that have just

Whether or not the wall can contain these

of these nucleons.
arrived, a large array of energetic nucleons originally from the other
nucleus have positioned themselves at more distant points to prepare for am

assault of the wall at a later time. Such a "collective" behavior of the
nucleons 1is a consequence of the initial condition of colliding nuclei.

Hew the dynamics will proceed further depends on the containment of these

most energetic nucleons by the wall.



V. The Low-% Fusion Window in TDHF Calculations

From the TDHF resu1t8,7’8 we know that the 2-window occurs at a

threshold energy of Elab = 54 MeV for the 160 + 16O system and that the
fL-window can be specified by * an absence of fusion vhen
2 1/2
2y E. _-E
I e [1"2’ °] )

R

where y is the reduced mass, RB is the interaction barrier radius, and Eo
is the threshold energy. Threshold energies for cther colliding systems

have also been obtained.g’lo

In order to understand the phenomena of the f£-window in the TDHF cal-
culation, we examine the dynamics of the nucleons at the time when the most
energetic nucleons from one nucleus reaches the far surface of the other
nucleus. If these nucleons are bound inside the potential, they are then
reflected backward after proceeding to the classical turning point znd are
therefore contained. The containment of these nucleons will eventually
lead to a fused compound system. On the other hand, if the cnergy is such
that they are unbound in the mean~field potential, these nucleons will pro-
ceed forward and emerge outside of the surface point. When this happens,
they will lower the potential at the new points because of the self-~
consistency effect. The turning points of many of the other nucleons are
shifted so that more nucleons emerge out of the far side of the surface.
This will lower the potential even more to allow more and more nucleons to
emerge outward. It is reasonable to expect that such a coherent flow-
through motion will continue on and may perhaps be the origin of the non-
fusion (break-up) events in the low-f fusion window of the TDHF calcula-

tions.
A flow-through motion occurs when the most energetic nucleons become

unbound. That is, when

2 2
5] 2 h 2
2 [kf +m volﬁ] 2 o= kf + B (10)

where v_ is the velocity of one of the nuclei in the center-of-mass system,
B is the separation energy of the ground-state nucleons. Here, the
velocity of the wall at the surface points is neglected. In terms of the
Fermi energy €p and B, the threshold energy is




2
lav?s[a+ B/eF)1/2 -11 e (11)

2 o — F*

Upon using a separation energy of B = 8 MeV and €& = 35 MeV, one finds the
threshold energy per nucleon in the center~of-mass system given by

$av ? > 0.411 Mev. 12)

The foregoing consideration can be generalized to non-head-on col-

lisions of unequal nuclei in the presence of Coulomb repulsion. One finds

the threshold energy as given by

2
Z. 2. e A (A +A)) 2
Eqq(threshold) = L2+ 2L 2" 1 4 pe )2 - 1) o (13)
Ry A
and the f-window below which no fusion occurs as
2  2MRy lezez A, (A 44) 12 2
25 < —5= {Boy - -3 [(1+B/ep)™ " - 11 e (14)
i Ry 1
where 4, > .
2 2% 16, , 16, 28_.
For o+ 770, Si +
2851, 160 + 4OCa, and also
TABLE I. <Threshold energies for the onset of no fusion 40 40
4n head-on collisions. Ca + Ca, we use the above
Threshold Energy | Threshold Energy equation (13) and obtain the
Ec. in MeV from Eu in MeV from
Systens Eg. (13) TDHF threshold energies as given
in Table I. They compare
16, , 16 a)
o+0 28-40 z favorably with those obtained
2 2 b)
%51 + %51 61.76 55 from the TDHF calculations.
160 + “%ca 85.86 200" For the lzc + lzc system, a
“0cq + “ca 103.08 92.5%) different interaction was
12, 4 12 36,59 35.0% usedlo and the important
8) Ref. B. parameters of B and € which
. 12,
:: ::: . are interaction-dependent and
O et tone ore eed 1o Ref. q0.f " LT enter into the estimates of
€) Ref. 10. the threshold energies should

rather be B ~ 12 MeV and €e -
23 Mev.ll When this set of parameters is used in Eq. (13), one obtains
the threshold energy which agrees well with the results from TDHF calcula-

t:ions.:lo Besides the threshold energies, the functicnal dependence of the




% window given by (14) agrees with that of (9) obtained from TDHF calcula-
tions. These agreements indicate the approximate validity of the simple
picture presented here.

It is of interest to note that the low-% fusion window can be well
utilized to provide an experimental test on the validity of the 1DHF ap-
proximation. If the collisions of nucleons are allowed, there is a finite
probability for the most energetic nucleons to suffer a loss of radial
kinetic energy before reaching the far surface. What in the collisionless
IDHF case will lead tc the flow-through motion and the subsequent break-up
may become a case of fusion in the presence of particle collisions. One
expects therefore that with the inclusion of the particle collisions, the
onset of the occurrence of no fusion in a head-on collision will meove to a
higher energy. A careful search for the #-window for various systems and
a subsequent comparison with the results from TDHF calculations will indi-~-

cate either the validity of the TDHF approximation or the need to introduce

particle collisions.
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