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Abstract

We show that the time-dependent Hartree-Fock approximation is approxi-

mately equivalent to a purely classical pseudoparticle simulation. In this

simulation, a collection of pseudoparticles are introduced to discretize

the phase space of spatial and momentum coordinates. The dynamics is com-

pletely determined by following the pseudoparticle trajectories which are

the same as the trajectories of real particles moving in the self-

consistent field. An application of these concepts to nearly-head-on

heavy-ion collisions leads to a better understanding of the origin of the

low-Jl fusion window obtained in the TDHF calculations.

I. Introduction

We seek a classical transcription of the TDHF approximation to help

guide our intuition in order to understand the underlying physics. The

procedure we take is a very well-known one. If we start from the

SchrSdinger equation, go to the Wigner space, interpret the Wr'gner function

as a classical distribution function and take the limit of K •*• 0, than we

obtain from quantum mechanical equations of motion purely classical
1-4

equations of motion. By following a similar procedure for the TDHF ap-

proximation, we are guaranteed to obtain classical equations of motion for

the dynamics. What emerges out of such a transcription is the approximate

equivalence of the TDHF approximation with a pseudoparticle simulation

where the dynamics is completely determined by the motion of classical

pseudoparticles following classical collisionless trajectories.

This paper contains a brief summary of the main results and their ap-

plication to the discussion of the low-S. fusion window in heavy-ion col-

lisions. The details of the discussion, as well as other extensions and



applications, are given elsewhere.

II. Pseudoparticle Simulation as an Approximate Transcription of TDHF

The equation of motion for a single-particle state in the TDHF ap-

proximation is given by

iB it *x(*'c) [7
where p is the density and [/ (p) the mean-field potential.

In order to study the TDHF approximation from a classical viewpoint,

we go to the Wigner space. The Wigner function is given by

= j d
3
s eiP-s/l' £ *x(r - s/2,t)*x<? + s/2,t) (2)

where the summation over A extends over the occupied states. As is well

known, the Wigner function is analogous with, but not identical to, the

distribution function in classical statistical mechanics. Because of the

usefulness of the distribution function in providing great insight and

in guiding our intuition, we shall adopt the approximate interpretation of

the Wigner function as the classical distribution function.

The equation of motion for the Wigner function in the TDHF approxima-

tion is 1" 4

I K'Kl LAP<r,t))f (rp.t) - 0 (3)

where the superscripts v and f refer to the functions on which the gradient
v f

operators apply. One can expand the sine function in powers of KV *V .

One expects that when the number of nucleons becomes large, the variation

of the potential and the Wigner function in the interior region is rela-

tively small so that the higher-order derivatives of v and f are unimpor-

tant. They are large only at the edge of the distribution where th>:

density is however small. Thus, for large nuclei, we can retain only the

term lowe

equation

term lowest order in nV "V in the expansion. We obtain the Vlasov

,t) - V 7/W|f (tp.t) +|-V f(rp,t) - V 7/W))-Vf(rp,t) - 0. (4)

This equation, together with the equation of continuity for f» implies that



the phase space Wigner fluid in this approximation is incompressible. Be-

cause of the Pauli exclusion principle, the equilibrium distribution func-

tion has a uniform density in the phase space within a certain domain. The

incompressibility of the phase space fluid guarantees that in the subse-

quent dynamics, the density of the fluid in phase space remains uniform, as

would also be required by the Pauli exclusion principle*

The transcription of the Vlasov equation to a pseudoparticle simula-

tion can be readily made. One follows the coordinates of the fluid element

initially located at a representative point r , p at time t . The loca-

tion of the fluid element at time t is denoted by R(r p ,t) and P(r p ,t).
o o o o _̂

In terms of the fluid elements ("pseudoparticles") initially located at r

and p , the distribution function can be decomposed to be

f<rp,t) = | d?odpof(ropo,to)6[r4(ropo,t)]6[p-p*(?opo,t)] (5)

where f(r p ,t ) is the initial distribution function at time t . By sub-
o o o o_ _̂

stituting Eq. (5) into Eq. (4), one finds that the coordinates R and P

satisfy the following Newtonian equations of motion

( 6 )

and J»=

These equations are the classical equations of motion for a single particle

of mass m moving in a self-consistent potential well ly. Thus, when the

distribution function is given at time t = t , the dynamics is completely
o

solved by following the classical collisionless trajectories of all the

points (pseudoparticles) in the Wigner space using Eqs. (5-7).

III. Pseudonucleon Dynamics in a Single Nucleus

A good approximation to the Wigner function of a nucleus in its ground

state, with the neglect of the diffuseness of the edges and oscillations,

is

f(?p) - 6(nkf-|p|)e(Ro-|r"|) (8)

where Rk- is the Fermi momentum, R the radius of the nucleus, and 6 the
r o

step function. Such a uniformity of distribution in phase space is a



consequence of the Pauli exclusion principle.

When one looks at the distribution function as a whole, it is time in-

dependent, but if one follows an elementary volume (pseudonucleon or simply

"nucleon") in the (r,p) space as a function of time, it exhibits classical-

type motions and traverses in the phase space following a unique

trajectory. Each of these pseudonucleons traverses in nearly straight line

trajectory in the interior of the nucleus and suffers an elastic re-

flection at the surface. When static equilibrium is achieved, the motion

is such that for every group of nucleons leaving a phase space cell, it is

replenished by another group of nucleons from some other location.

IV. Pseudonucleon Dynamics in Heavy-Ion Collisions

We consider first a head-on collision of two equal nuclei. When the

common boundary between the two nuclei disappears, there are two effects on

the dynamics of the nucleons. Those nucleons originating from a point near

the boundary and coming to the boundary will follow straight line tra-

jectories and proceed to the other nucleus. Secondly, in the absence of

the boundary and the subsequent change of the trajectories of these

nucleons, part of the original Fermi sphere near the boundary points are

not replenished by nucleons from the same nucleus. In place of these

vacated phase space points now arrive the nucleons from the other nucleus,

the most energetic ones being the first to arrive.

At a time approximately 2R /(Fermi velocity) after the removal of the

common boundary, the most energetic pseudonucleons from one nucleus arrive

at the far surface point of the other nucleus. They are not expected to

suffer much loss of energy. They are now ready to give an assault to the

"walls" at the surface points. Whether or not the wall can contain these

most energetic nucleons depends on the "height" of the wall and the energy

of these nucleons. Furthermore, besides these nucleons that have just

arrived, a large array of energetic nucleons originally from the other

nucleus have positioned themselves at more distant points to prepare for an

assault of the wall at a later time. Such a "collective" behavior of the

nucleons is a consequence of the initial condition of colliding nuclei.

Hew the dynamics will proceed further depends on the containment of these

most energetic nucleons by the wall.



V. The Low-A Fusion Window in TDHF Calculations

7 8
From the TDHF results, ' we know that the A-window occurs at a

threshold energy of E. , = 54 MeV for the 0 + 0 system and that the
7 8

{-window can be specified by ' an absence of fusion when

1/2

(9)

where p is the reduced mass, R_ is the interaction barrier radius, and E
JJ O

is the threshold energy. Threshold energies for other colliding systems
9 10

have also been obtained. '

In order to understand the phenomena of the ^-window in the TDHF cal-

culation, we examine the dynamics of the nucleons at the time when the most

energetic nucleons from one nucleus reaches the far surface of the other

nucleus. If these nucleons are bound inside the potential, they are then

reflected backward after proceeding to the classical turning point *nd are

therefore contained. The containment of these nucleons will eventually

lead to a fused compound system. On the other hand, if the energy is such

that they are unbound in the mean-field potential, these nucleons will pro-

ceed forward and emerge outside of the surface point. When this happens,

they will lower the potential at the new points because of the self-

consistency effect. The turning points of many of the other nucleons are

shifted so that more nucleons emerge out of the far side of the surface.

This will lower the potential even more to allow more and more nucleons to

emerge outward. It is reasonable to expect that such a coherent flow-

through motion will continue on and may perhaps be the origin of the non-

fusion (break-up) events in the low-A fusion window of the TDHF calcula-

tions.

A flow-through motion occurs when the most energetic nucleons become

unbound. That is, when

^ [kf + m v o/n]
2 > |- kf

 2 + B (10)

where v is the velocity of one of the nuclei in the center-of-mass system,

B is the separation energy of the ground-state nucleons. Here, the

velocity of the wall at the surface points is neglected. In terms of the

Fermi energy e p and B, the threshold energy is
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Upon using a separation energy of B = 8 MeV and e = 35 MeV, one finds the

threshold energy per nucleon in the center-of-mass system given by

i 2
> 0.411 MeV.

o — (12)

The foregoing consideration can be generalized to non-head-on col-

lisions of unequal nuclei in the presence of Coulomb repulsion. One finds

the threshold energy as given by

Z Z e
E^threshold) = - ^ —

A (A+A)
[(1 +

.
- 1] et (13)

and the -̂window below which no fusion occurs as

„ „ 2
2 2vh I

A l

where A >v
TABLE X. Threshold energies for the onset of no fusion

In hemd-on coll ision*.

Systeuc

" o + " o

28Si • 28S1

uo + *°c

*°c + *°a
1 2c + 1 2c

Threshold Energy
E c > In MeV £ro»

Eq. (13)

28.40

61.76

89.86

103.08

36.5'1>

Threshold Energy
E M In MeV fro»

TDHF

27"

55b>

100»

97.SC )

3S.0e)

*) Bef. 6.
b) Ref. 12.
c) Ref. 9.
d) We use a different set of B and c, as different

Interactions are used In Ref. 10.

e) let. 10.
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[ ( 1 +

For 1 6 0 1 6 0 , 2 8Si +
2 8Si, 1 60 + 4 0Ca, and also
40 40

Ca + Ca, we use the above

equation (13) and obtain the

threshold energies as given

in Table I. They compare

favorably with those obtained

from the TDHF calculations.

For the 1 2C + 1 2C system, a

different interaction was

used and the important

parameters of B and e which

are interaction-dependent and

enter into the estimates of

the threshold energies should

rather be B - 12 MeV and e_ -
23 MeV. When this set of parameters is used in Eq. (13), one obtains

the threshold energy which agrees well with the results from TDHF calcula-

tions. Besides the threshold energies, the functional dependence of the



«. window given by (14) agrees with that of (9) obtained from TDHF calcula-

tions. These agreements indicate the approximate validity of the simple

picture presented here.

It is of interest to note that the lov-l fusion window can be well

utilized to provide an experimental test on the validity of the TDHF ap-

proximation. If the collisions of nucleons are allowed, there is a finite

probability for the most energetic nucleons to suffer a loss of radial

kinetic energy before reaching the far surface. What in the collisionless

TDHF case will lead to the flow-through motion and the subsequent break-up

may become a case of fusion in the presence of particle collisions. One

expects therefore that with the inclusion of the particle collisions, the

onset of the occurrence of no fusion in a head-on collision will move to a

higher energy. A careful search for the A-window for various systems and

a subsequent comparison with the results from TDHF calculations will indi-

cate either the validity of the TDHF approximation or the need to introduce

particle collisions.
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