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Varied Line-Space Gratings and Applications*

_Wayne R. McKinney

Accelerator and Fusion Research Division

Lawrence Berkeley Laboratory
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Berkeley, CA 94720 USA

This paper presents a straightforward analytical and numerical method for the design of a
specific type of varied line-space grating system. The mathematical development will
assume plane or nearly-plane spherical gratings which are illuminated by convergent
light, which covers many interesting cases for synchrotron radiation. The gratings
discussed will have straight grooves whose spacing va.des across the principal plane of the
grating. Focal relationships and formulae for the optimal grating-pole-to-exit-slit distance
and grating radius previously presented by other authors will be derived with a symbolic
algebra system• It is intended tc, provide the optical designer with the tools necessary to
design such a system properly. Finally, some possible advantages and disadvantages for
application to synchrotron radiation beamlines will be discussed.

*This work was supported by the Director, Office of Energy Research, Office of Basic
Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under
Contract No. DE-AC03-76SF00098

Introduction

Varied line-space (VLS) gratings are of interest to builders of synchrotron

radiation instrumentation because these gratings offer an extra degree of

freedom to the monochromator designer. This paper will explain enough basic

analytical results so that the designer can begin to consider VLS gratings for

beamline systems. Although other authors have investigated VLS gratings, 12345

the contribution of Hettrick and Underwood6, 7 will be emphasized, and the main

results in their patent are derive_ here. Their work, theoretical and

experimental, demonstrates the advantages of using VLS gratings with

, convergent light. However, to our knowledge, their theoretical results have not

been previously derived independently or confirmed in the literature.



I. Conventions

Figure 1 shows our coordinate system and the location of the straight and

parallel grating grooves. If the blank is curved, the grooves are assumed to be

formed by the intersection of the blank and a set of parallel planes. This is just

like a Rowland grating, except the distances between the planes may vary. We

use the grating equation based on signed angles measured from the normal,

which requires the plus sign on the right hand side:

mX = sin(a) + sin(l_) (1)

In addition, we assume that ali gratings will be used in the standard fixed

deviation mounting where the grating is rotated about its center (or pole).

(Theta is defined as the incidence angle at zero order, and 20 = rx-13)

II. Formal Analysis

Hettrick and Underwood pointed out the significant advantage of separating the

focusing and dispersing functions for VLS systems. Allowing the focusing

element(s) to stay fixed and not rotate provides a system which is much easier

to keep in focus as the grating rotates. Figure 2 shows the geometry of the

incident wave as it converges onto the grating. We will assume that other optics

have created converging wavefronts that have no aberration in the dispersion

direction. This would not generally be true in a real application of VLS gratings,

but is the natural starting point for the analysis. More detailed analyses that are

in preparation show that the focal relationships and VLS spacings that we

confirm here give excellent performance. 8 Point A from Figure 1 is now behind

the grating, and the virtual object distance OA is negative in the formalism. We

write the typical generalized optical path function difference, where +Nmk is
0

added to the geometric path difference to allow for the fact that the diffracted

wave is made up of pieces from different incoming wavefronts:

F = <APB> - <AOB> + Nm_. (2)



N is the groove number, positive along the +y direction; and, per our convention

above, m is positive for the inner order of the fixed deviation mountings that we

discuss here. We expand the path function in the aperture variables y and z

• about the pole of the grating. We have no field variables since we have assumed

a perfect converging wave"
" OO

F = _ y + z F (3)
n---O: 0,0 O,

The partial derivatives are applied to the path difference function F in (2).

Letting i and j denote the powers of y and z in the coefficients of the series, Fij

can be split apart:

F ij = Mij + mk Nij (4)

The Mij are the familiar coefficients of Noda, Namioka, and Seya 9 and many

other authors. The VLS nature of the grating lies in the Nij"

N,J=n_.W[y _i+jNaylaz j o,o (5)

Intuitively, d(y), the local groove spacing, equals:

Oy

d(y) = _)--_ ( 6 )

We explicitly are taking d not to be a function of z because of the straight and

parallel groove planes. Nij becomes Ni. We now expand d in a manner that will

give us VLS coefficients that have a one-to-one correspondence with the familiar

aberrations"

d(y) = d0(1 + vly + v2y2 + v3y3 ....... ) (7)

Substituting (6) and (7) into (5) gives"
Q

1 _i-1 I 1 ]

. NI : i!_yi'lLdo(l+Vly+v2y2+v3y3)J o,o (8)



Using the computer algebraic capabilities of Mathematica TM [Version 1.2 on a

Macintosh IIx with 5 MB RAM and a remote kernel operating on a SUN 4

wnrkstation,] the following results were obtained, where the Ni have been

substituted into (4)-
0

F2o (defocus) = M2o- VlmZ,
2 do (9)

F3o (coma) : M3o + _-( 2v_- 2v2) _ (10)

F4o (spherical aberration) = M4o- 2-_4( 6_ - 12VlV2 + 6v3) m_do (11)

Since we will be using (9) extensively, we expand it completely, using the

expanded sag of the grating surface:

x= _ aq yl zl
n:O (12)

The aij are tabulated in Howells. lo a20 = 0 for a plane grating, and a20 = 1/(2R)

for a spherical grating, where R is the radius of curvature.

-1--[COS2(a) C0S2(13) o(COS(Oc) COS(13))]- 21 mZ,Fzo -2L F_ + Fhp - 2a2 + do (13)

This is the paraxial tangential focal condition for a VLS grating.

III. Focal Conditions

We will derive three different focal conditions which give the ratio of the

optimal real distance to the focal plane as a function of the assumed virtual focal
0

distance behind the grating and the angles of incidence and diffraction at the

chosen wavelengths of optimization. Each succeeding focal condition will be .

better than the previous in focusing correction, but it should be emphasized that



the VLS focusing correction for convergent incident light is so powerful, that the

simpler ones can form the basis of excellent monochromator designs.

, In exact analogy to the design of other constant deviation monochromators 11

with fixed entrance and exit distances onto the grating (r h and rhp), we set the

' defocus aberration equal to zero at two wavelengths in the region of interest:

[F2o]_.: _, = [F2o]x.:x2 = 0 (14)

Considering rh and rhp the independent variables, some manipulation that does

not need the computer gives the equivalent to Equation #3 of Hettrick and

Underwood's patent. 12 They use a different form of the grating equation, and

define r h as positive. The incidence and diffraction angles (a s and 13 s)are

determined by the fixed deviation geometry"

"rhp _ _,1C0S2_2- _2COS2pl

rh _1C0S2(12 - _2COS2(X,1 (15)

Even though v I has disappeared, it can be found using either of the equations in

(14). We now choose a parameter set that will allow us to compare this focal

condition with later ones. lt is shown in table 1, and is the same set used in

McKi!_ney and Palmer.13 We obtain rh p/r h = -1.0044775, and v 1 =

1.986225/meter. If we assume a large plane (a20 = 0) grating of 20 cm width,

the variation in groove spacing is only +/- 20%, which is reasonable to fabricate

on a ruling engine. Of particular significance is the fact that rhp/rh is very close

to 1. Since the straight and parallel grooves give no sagittal power, it is very

important that the natural rh p of best tangential focus is very near the sagittal

focus of the converging wave, because it gives an approximately stigmatic image.

Thus, this type of grating system gives good imaging behavior as a natural

consequence of the design. As a confirmation of the value Hettrick and
L

Underwood's contribution, we check the focusing for non-converging (parallel)



incoming light onto a plane VLS grating. (rhp-> -infinity) Only the second and

fifth terms of equation (13) remain, and we have only rhp as a parameter:

do cos2l 3

rhp = Vl mX (16)

We can only focus the grating at one wavelength, and v 1 is just a scaKng factor

like the power of a lens or zone plate. Varying it moves a focal curve of fixed

shape either toward or away from the grating, and does not change the shape of

the curve as it does when converging light is used. 13

To achieve Hettrick and Underwood's second focal condition , we set:

aF=o
= =0

L ;9¢ x=x, (17)

where phi indicates differentiation with respect to the scan angle of the grating,

and X1=30 Angstroms. To do this we change variables:

¢ = (ct + _)/2 0 = (or- _)/2 (18)

The scan angle is signed the same as alpha and beta, and the half deviation angle

(87 degrees for our test case) is positive definite. After taking the derivative,

we eliminate v I from equations (17) and solve them for rhp/rh:

rhp - COSl_l (COS(Xi COS131 + C0S2131 + 2sinotl sin131 +2sin2_31)

rh COSOtl(COSOtlCOS_I + COS2Otl+ 2sinotl sin_31+2sin2txl) ( 1 9)

With the same reminders about sign cc_:_ventions, we recognize equation #4 from

the Hettrick and Underwood's patent. Using our test case we see that rhp/rh =-

1.00546, and Vl = 1.98475/meter. Note that the both the linear VLS coefficient

and the optimal focal distance have not changed significantly, and our previous

conclusions are still valid.



For our third and most complicated focal condition, we set:

[c)F20] = 0IF20] x=x, =[F20]_.= x, =[ ;9(_ x=x, (20)

• This is a combination of both of the first two cases, (;_1=20 Angstroms, and

• _2=40 Angstroms) and requires another degree of freedom. Following Hettrick

and Underwood, we choose to modify the plane grating with a long radius of

curvature, and hope that we can do it without spoiling the basic premise of

separation of focusing and dispersion. We change a20 to l/(2R), which results in

a focal curve equation with 5 terms (13). Eliminating vl and R from the three

equations (20), and then solving for rhp/r h gives:

rhplrh=numeratorldenominator (21)

numerator=

-((cosa I *cosa2 * cos 131̂ 2 +c o s ct2 * cosl31 ^ 3 + co s ctI * cosl31 ^ 2 * cosl32

+ cos 131̂ 3 *co s132-cos a I ^ 2 * co s 132̂ 2-2" cos ctI* cosl31 * co s 132̂ 2-
cosl31 ^ 2" cos 132̂ 2-cos 132̂ 2" sinc_ 1 ^ 2+cos 131̂ 2*sin ctl*sina2 +
2 *c o s ct2 * cosl31 * sin ctI *sin 131+ 2 * c o s 131*c o s 132*sins 1 * s in 131-

2"cos132 ^ 2*sinctl*sinl31-
2*cosal*cosl31*sinct2*sinl31-cosl31 ^ 2*sinc_2*sinl31 +
2*cosa2*cosl31*sinl31 ^ 2+

2" cos 131*cos 152"sin 131̂ 2-cos 132̂ 2" s in 131̂ 2 +cos 131̂ 2" sina I * sinb2-
2*cosal*cosl_l*sinbl*sin132 - cosbl^2*sinl_l*sin_ 2)

denominator=

(cosal ^ 3*cosa2-cosal ^ 2" cosa2 ^ 2+cosal ^ 2*cosa2*cos 131-
2*cosal*cosct2 ^ 2*cosl31-

cos_2 ^2" cosl31 ^2+cosal ^ 3*cos _2+coscz I ^ 2"cos13 I*cos132 +
2*cosal*cosc_2*sinal ^2-

- coscz2^2.sinal^2 + 2*cosal*cos132*sinal^2-cosal^2*sintzl*sinct2 -

2 *cosal * cosl_ 1 * sin ctI *sin a2 + 2 *cosa I * cos a2 * sin ct I * si n l_1 -
• 2,cosa2 ^ 2,sinctl*sinl_l +

2*cosal*cos132*sinal*sin_l+cosal^2*sina2*sinl_l" cosct2A2*sin_l^2 -
cos_zl ^2*sinal*sin132 -

2*cosal*cosl_l*sinal*sinl_2 + cosalA2*sin[_l*sin132))
7



Any of the equations (20) may be solved for the radius of the grating and we

can now recognize that this result is not the same as to equation #5 of Hettrick

and Underwood's patent. Our test case provides rhp/r h = -0.99041, and v I =

2.00957/meter, and R = +4364.05 meters (+ is concave), confirming our belief

that the curvature of the almost plane grating would be only a small .

perturbation, and that the focal condition and variation in the line spacing would

be similar in magnitude to those of the earlier conditions. Hettrick and

Underwood's equation #5, which is apparently incorrect, gives values which do

not conform to these assumptions.

III. Summary of Analytical Results

Figure 3 shows F20 as a function of wavelength for the three focal conditions

derived above. We see that our focal curves satisfy the conditions of derivation.

Curve 1 goes through zero twice at 20 and 40 Angstroms, satisfying the first of

our focal equations. Curve 2 goes through zero only once, at 30 Angstroms, and

has zero derivative there, consistent with the assumptions the derivation of our

second focal curve. The higher order curve 3 satisfies ali three of the conditions

(20) which are permitted by allowing the grating to have a small degree of

curvature. To our knowledge this type of VLS monochromator has not yet been

constructed.

IV. Hi_her Order VLS Corrections

Hettrick and Underwood's equation #6 is their analog of our expression for the

groove spacing (7). Their el, e2 and e 3 are numerically not the same as our Vl,

v 2 and v3, since they expand the groove function differently. Our analogs of

8



their equations #7 are simply found by using one of the three above conditions

for obtaining v I . rh takes an assumed value. Then the one of our equations

(15) (19)or (21) gives rhp. To obtain v2, the parabolic VLS coefficient related

• to coma, we pick any wavelength in the range, (Hettrick and Underwood choose

(_1+_.2)/2) and solve (10) for v2 using the previous r h , rhp and v I . For v3, the

• cubic VLS coefficient related to spherical aberration, we solve (11) for v3 using

the previous rh , rhp and Vl and v2.

V, Summary and Conclusions

We now have outlined an analytical, scale independent method for designing a

plane or slightly spherical VLS constant deviation monochromator with light

converging behind the grating. Even though we find equation #5 of Hettrick and

Underwood's patent to be in error, the bulk of their analysis is correct, and their

emphasis of separating the focusing and dispersing functions for VLS systems is

shown to be a very useful contribution to monochromator design.

The VLS design, as described here, has several advantages.

1. The corrected focal curve eliminates the need for moving slits, which are

required to keep a Rowland Circle monochromator in focus.

2. The separation of focusing and dispersion allows a plane grating to be used,

which is less expensive to manufacture. Even though our third and best focused

condition requires a slight curvature to the grating, the plane grating conditions

give excellent focal correction, and therefore excellent performance. 14

3. Although we have not demonstrated it explicitly, since we only consider

• elementary second order focusing, the extra degree of freedom to move the

groove placement should provide higher angular acceptance at a given resolving

power than any other design.

9



4. The VLS coefficients provide the opportunity to reduce some of the

aberrations of the converging optics. (This is discussed in the patent of Hettrick

and Underwood. 12

The VLS system also has some disadvantages:

1. Since holographically generated VLS gratings arc not commercially available

ruled gratings must bc used which would likely have more stray light. It has

bccn shown that holographic gratings can be made equivalent to VLS gratings, 15

and in the future this may be exploited allowing wider use of VLS systems.

2. The separation of dispersion and focusing requires at least two optics

between the slits which increases cost and the possibility that surface

imperfections may affect imaging.

3. The ruling engine may not have the capability to adjust the shape of the

groove as the grating is ruled, resulting in less that optimal efficiency all across

the grating.

4. Finally the VLS monochromator shares several undesirable features of the

standard type spherical grating monochromator.16 17 18 The fixed deviation

design that is common to both requires multiple gratings for an extended

wavelength range on account of the horizon wavelength condition. In addition,

the VLS grating is not used in the on blaze condition at all wavelengths. Worse

still, the fixed deviation geometry of both leads to serious higher order problems

at longer wavelengths.

The VLS monochromator does not solve ali of the problems of designers of

grating-based monochromators for VUV beamlines. VLS g_atings do provide .

advantages that should be considered when choosing a monochromator

configuration. We believe that VLS gratings will have an increasing role at

lt)



synchrotron radiation sources in the future. We have compared the analytical

methods presented here with numerical optimizations, and find that the

analytical formulae give designs which for practical purposes are sufficiently

close to the numerically optimized ones.
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Fig. I. Coordinate System and location of the grooves and the
image and object points.
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Fig. 2. Geometry of wavefronts onto VLS grating.
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Fig. 3. The defocus aberration as a function of wavelength
for the three different focal conditions.
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