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I. Introduction

One of us (M. M. B.) would like to thank the Organizers, and in particular_ Pro-
lessor Liu Lianshou, for the opportunity to present this communication. The UA4
measurement, _ some four years ago, of the p-value (the ratio of the real to the imag-
inary portion of the forward nuclear scattering amplitude) for _p scattering at 540
GeV produced an unexpectedly large result. The possible anomalous nature of the
result was partly recognized at the time, but since there were no results from the
Fermilab Tevatron, it seemed most likely that it simply anticipated a fast-increasing
cross section from 'minijet' and other 'semi-hard' processes at higher energies. How-
ever, the new Tevatron results are now in hand and summarized in Table II. The cross
secti, m at 1800 GeV is, if anything, smaller than expected from low-energy extrapola-
tiops and, in general, the results conform to an overall simplicity and consistency with
lower energy data, making the UA4 result distinctively anomalous. The experiment
will be repeated in November as UA4/2, and, not surprisingly, the outcome of the
UA4/2 experiment is very eagerly anticipated.

The field of ultra-high energy elastic scattering of pp and _p collisions is reviewed,
to study the forward scattering parameters, among which are atot, the total cross
section, B, the nuclear slope parameter, and p. We will attempt to give a critical
overview of the field, including future possibilities at the LHC and SSC Colliders.

II. Review of Experimental Method

All modern elastic scattering experiments are done using colliders, with either pp or
_p collisions. The detectors are place in 'Roman Pots', which are reentrant cavities
(using bellows) into the collider beam pipes, into which are introduced detectors
(typically, very small drift chambers) to gather coincident collisions. This is done in
order to get to the very small angles needed to detect the low It[ collisions (t is the
squared 4-momentum transfer, and for a collide_, is given by t = -(pO) 2) that are
of critical importance in this work. Following the review of Block and Cahn, 2 we
introduce the invariant scattering amplitudes

lt I 4V_ , (1)

for Coulomb and nuclear scattering, respectively, and where the upper sign is for pp
and the lower sign is for _p. However, '_he simultaneous presence of the Coulomb and
the nuclear interactions require us, not to add amplitudes directly, but to introduce
a phase aC(t),3 such that

d---[ = d"---t+---_ -+ dt

i) (2)= Irle (P+ 47r
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In the above, c_ is the fine-structure constant (_ 1/137), and G2(t) is the dipole
form factor taken from electron-proton scattering (for our purposes, it can be taken
as unity). The phase c_¢(t) is almost independent of t, and is smallmabout 0.02.
We define ]_lint and 0i,t as the ,-value and scattering angle, respectively, where the
Coulomb and nuclear amplitudes are equal, i.e., the region of mazimal interference.

The Itl-values much below ]tl_mgive rise to the Coulomb region of scattering (dac/dt),
the values much above give rise to the nuclear region (&r,/dt), and the region near
Itlint is called the interference region(da=/dt). An ideal experiment would achieve
its absolute normalization (conversion of counting rate into cross section) from the
Coulomb region, where the (known) Coulomb cross section predominates. Using the
optical theorem, it would get the total cross section O'tot from the extrapolation of the
elastic differential cross section from the nuclear region back to t = 0, i.e., da,/dtlt=o,

which measures _rtot(1 + p2)1/2. The data near it[int determine the p value. This is
seen since the interference term of Eq (2), dac,_/dt, can be simplified in the small

t-region to be

dt _ 2(p + a¢)FcF, _ (:F)(P + aC) L ]tl J '

and hence is a direct measure of p.

To get an idea of the t-scale and the minimum angle 0_in needed experimentally
at a collider, we show the values of Itli_ and 0int for the Coulomb interference region
for PO scattering in Table I, taken from the review article of Block and Cahn. 2 We
note that the value of 0inr for the SSC is seen to be about 1 microradian, a very small

value, indeed. In order to achieve it, a ft'-section of the order of several kilometers
must be installed in the SSC.

Table I: Values of [t]int and 0in t for the Coulomb interference region for p_ scattering.

VG Accelerator [t[_ 0inr
(GEV) (GeV/c) 2 (mrad)

62.5 ISR 0.0016 1.3

540 SlopS 0.0010 0.12
2000 Tevatron Collider 0.00073 0.027

40000 SSC 0.00037 0.00097

Another method of normalization is to measure directly the luminosity Z; of the

collider. The experimenter, using this technique, measures the combination O'tot(] -I-

p2)_/2
Still another method is commonly used, the so-called 'Luminosity Free' technique,

where one simultaneously measures dN,/dt[t=o, the elastic nuclear counting rate ex-

trapolated to t = 0, and Ntot_t, the total number of events (inelastic plus elastic).
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This allows one to measure the quantity Crtot(1 -[- p2). The advantage is that it frees
the experimenter from having to make an absolute direct measurement of the machine
luminosity, a ]_:Ticult task at the S_pS and Tevatron Colliders.

The E710 group, 4 using this last technique and getting well into the interference
region, has made simultaneous measurements of O'tot, p and B, the nuclear slope
parameter of Eq (2), and has presented their results from the Tevatron Collider at
v/s = 1800 GeV at theElba, Italy, Conference last May. The CDF group 5 also
presented results at 1800 GeV, using the method where they measured directly the
machine luminosity. Since they were at larger Irl values than E710, they were only
able to measure in the nuclear region, and thus, presented results for O'to t and B, only.
The Tevatron results at x/_ = 1800 GeV are summarized in Table II.

Table II: Experimental results at the Tevatron Collider at v/_ = 1800 GeV.

a B

p(mb)

E710 72.8 -t--3.1 16.99 + 0.47 0.140 -I-0.069 0.223 + 0.012

CDF 72.0 =t=3.6 16.50 + 0.76 0.229 + 0.020

III. Simplicity and the Regge Pole Picture

In Figs. 1-3, we show the latest results from E7104 and CDF 5 on measurements of
O'tot, B and p for pp scattering at the Tevatron collider, along with the available lower
energy data. It does not take a 'trained eye' to see that a 'linear' (in log s ) fit to the
high-energy behavior of both a and B would not be bad--over an fi range of several
orders of magnitude for the slope and almost two orders of magnitude for the cross
section! The indicated theoretical curves (for a QCD eikonal model) will be discussed
later in Section V.

The simplicity of the plot for B for pp is particularly striking. Since a logarithmi-
cally increasing slope parameter is well-known to be directly associated with a single
Pomeron Regge pole having a linear trajectory, it is very hard to study this plot and
not conclude that a simple Regge pole must be an excellent first approximation to
the Pomeron. The slope of the Pomeron Regge trajectory appears explicitly in the
energy dependence of the slope parameter, i.e.,

B = Bo + 2c_' log s,, (4)

and the value a' = 0.2 gives a satisfactory fit to the pp data.
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Figure 1' Crtot, the calculated and measured total cross sections, for _p (dashed curve and

crosses) and pp (full curve and circles), vs. v_, the energy.
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Figure 2: B, the calculated and measured nuclear slope parameters, for _p (dashed curve

and crosses) and pp (full curve and circles) vs. V_, the energy.
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Since a Regge pole gives a power behavior for the total cross section, the 'loga-

rithmic' behavior of Fig. 1 has to be numerically reproduced by a small power, if this

is a valid picture. The very simple curve

Crtot = 22 8°"°8 mb, (5)

turns out to be a rather good approximation to the energy dependence of the total

cross section. Thus, a simple Regge pole amplitude with Regge trajectory

o(t) = 1.08 + 0.2t (6)

provides a remarkable first approximation to near-forward elastic scattering from

ISR energies to the Tevatron Collider. 6 It is equally remarkable that this effective

trajectory had already been extracted from the earliest ISR pp scattering data. 11
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Figure 3: p, the calculated and measured ratios Ref(O)/Imf(O), for pp (dashed curve and

crosses) and pp (full curve and circles), vs. vls, the energy.

If Eq (5) provides the total cross section, the corresponding real amplitude Re App
(which is here taken to be equal to Re ADp) is easily obtained from the asymptotic

dispersion relation

Re App 7r do'tot ar2O'to t 71" '

- 2 d(log s) + O[d(log s) 2] = 2 x 0.08 x O'to t Jt" ..., (7)S

where we have used the normalization c_ = Im A/s. From Eq (7) and the above

normalization, we infer that p, the ratio of the real to the imaginary portion of the

forward nuclear scattering amplitude, is given by
71"

p = x 0.08 0.12. (8)

-5-



Thus, a single Regge pole amplitude should have an essentially constant value of p.
Data for p from _-p and p-p scattering are plotted in Fig. 3, including the recent pre-
liminary result from E710. 4 The anomalous nature of the UA4 result is now apparent.
The high-energy results are roughly consistent with the simple Regge pole value of
Eq (8), apart from the UA4 value of 0.24, which is twice what we expect from Eq (8)!
This conclusion is not particular to the Regge pole amplitude employed, as we shall
discuss further in succeeding Sections. It is an inevitable consequence of assuming
that the energy dependence of amplitudes is smooth, and that Eq (7) is valid. The
Regge pole amplitude is just the simplest approximation to all near-forward elastic
data (apart from the UA4 value for p) which satisfies the necessary analyticity con-
straints. The asymptotic Froissart bound is, of course, not satisfied by Eq (5), and
we shall address this point in Section V.

We consider now the t-dependence of the elastic differential cross section away
from the very forward direction. At modest t, we encounter the presence of cur-
vature, or more dramatically, what used to be called the 'break in slope' around
Itl = 0.1 (GeV/c) 2. The nuclear slope parameter B and the nuclear curvature C are
defined, in terms of the elastic scattering cross section da/dt, by B = d[log(dcr/dt)],=o

d2

and C = !-gT_2[log(da/dt)]t=o2, respectively. The data for &r/dt show a break (by about
2 units in B, where B is in (GeV/c) 2) at the ISR, i.e., positive curvature, getting
smaller at the S_p, in the low It] interval, Irl< 0.65(GeV/c) The effect seems to
have almost disappeared at the Tevatron collider. E71012 reports an analysis in which
they measure the curvature C to be consistent with zero. Their experimental data
are shown in Fig. 4, along with the QCD-prediction of Section V.

In the Regge pole picture we have so far described, the t-dependence is that of a
constant slope with no curvature, 'shrinking' logarithmically with increasing energy.
To introduce curvature into _t, one modifies either the Regge residue or the Regge
Pole trajectory. The former gives an energy independent curvature, whereas the
latter gives curvature which increases logarithmically with energy. In either case, the
curvatur,: can not disappear, as indicated by the E710 results, or reduce in magnitude,
as already suggested by the comparison of the S_pS results with the ISR data. This
poses a serious contradiction for this formalism, which is not readily resolvable.

We conclude therefore that while the data almost conform to a very simple picture
of a Regge pole Pomeron:

(A) the UA4 forward real part

(B) the disappearance of curvature at Iri _ 0.1 (GeV/c) _ at vG = 1800 GeV

(C) the energy dependence of the pp large Irldata

all present serious problems for this simple picture. Of these effects, perhaps the
most critical is (B), the lack of explanation of the vanishing of the small Irl curvature
with increasing energy. In contrast, these effects are rather naturally explained in the
eikonal picture, summarized in Section V.
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Figure 4: The differential cross section da/dt vs. Irl,for _p _t v_ - xS00GeV. The
solid curve is the prediction of Ref. 8, based on a QCD model of soft interactions, and the
experimental data are from the E710 Collaboration 12. This figure was taken from Ref. 9.

IV. True Asymptopia_Could we be There?

If the Regge pole Pomeron of the last Section is a good first approximation, then true
asymptopia is way beyond any ever attainable energy scale. We now switch from this
extreme to the other extreme, i.e., discussing whether we may actually already be in
asymptopia. Later, we shall discuss possible intermediate situations. We consider the
outcome of applying a standard asymptotic analytic amplitude analysis procedure to
the data on the total cross section O'tot and p. While there is ample physical argument
that we are not in asymptopia, the virtue of the analytic amplitude formalism is that
it allows a phenomenological analysis to be carried out in a well-defined framework
in which specific hypotheses can be made and tested.

The analysis parameterizes the data in terms of even and odd analytic ampli-
tudes, consistent with all asymptotic theorems. In particular, the Froissart bound is
imposed, in terms of the power dependence on log s that is considered. This allows
for even amplitudes varying as fast as log2(.q/s0), where So is a scale for s, and odd
amplitudes (the 'Odderon' family) that do not vanish as s _ ¢x_. Details of the
analysis can be found in Ref. 7. Here we simply note some of the key features.

The large s limit of the even and odd amplitudes used is as follows. We introduce
the _p and pp forward scattering amplitudes by

f_p=f++f_ and fpp=f+-f_, (9)

where f+ and f_ are even and odd (under crossing) analytic amplitudes at t = O.
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The total cross sections atot and the p-values are given by:

4rr 4rr
cr_,p= -- Im fpp and app = -- Im f_p (1O)

P P
Re fpp

Re fr,p and Ppo lm fpp (11)PPP- Im f_,p -- "

The 'conventional' even and odd amplitudes f+ and f_ are parameterized as (c.f.
Eq (5.2a-b) of Ref. 2):

_f+ = i A +/3 log -i +csU-'e _'q'-_')/:
(12)

47r-
_f- - -Dsa-le ir(1-c_)/2 (13)
P

We will find that a in Eq (13) is about 0.5, and hence, this odd amplitude vanishes
as s --_ cx_. Since asymptotic theorems 13A4show that the difference of cross sections
can not grow faster than log'Y/2sif the cross section grows as log'Ys, the prototypical
odd amplitudes which do not vanish as s _ oc for this case are (c.f. Eq (5.8a-c) of
Ref. 2): xs,16,1r

4rrf(_o) = _e(o ) (14)
P

471"f(--1)P ---- -- [log (3) -- i_]£(1)_00 (15)

4rf(__2)p = _[log(S)_ir]2e,2)_002 ' (16)

We form the complete odd amplitude by adding any one of the f(__0of Eq (14-16)
to the conventional odd amplitude f_ of Eq (13).

We first consider the case of no Odderon. The computed curves are shown in
Fig. 5 (for Or,or)and Fig. 6 (for p). The pp cosmic-ray lower limit 24 is appended to
the curve, but is not used in the fit. [The parameters of all the fits we discuss are
given in Ref. 7].

The most obvious features of the fit are:

(A) it goes far above the measured total cross section (E710) at 1800 GeV,
which is the highest energy point measured to date (the predicted value
is too high to fit the experimental value b:_ more than a 3ct deviation),

(B) it is about 1.5a below the UA4 p-value, at 546 GeV.

We next attempt to fit the data by adding an additional degree of freedom, i.e.,
adding Odderon 2 of Eq (16) to f_ of Eq (13), along with the even amplitude of
Eq (12). These curves are shown in Figs. 7 and 8.
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The high energy cross section predicted at 1800 GeV is again much too high
(3.4cr), although the p-value predicted at 540 GeV is now satisfactory. The Odderon
amplitude e(2) = -4.5 4- 1.5 x 10.2 mb (from Ref. 7) is very tiny compared to the
other amplitudes, and therefore, can't do very much to the fit. The fit with Odderon
1 of (15) is also reported in P.ef. 7. Since an Odderon of this type does even less tothe fit, we do not show the results here.

}Ve now consider the scale factor So in Eqs (15) and (16) to be different from the
scale factor in the conventional even amplitude of Eq. (12) and replace it by a new
scale sl. We repeated the fit described above for Odderon 2 (Fit # 2), adding the
additional parameter sl. Qualitatively, the fit did not change, and we see no necessity
for the new scale. Our general conclusion, at this point, is that an even amplitude
varying as logS(s/so) does not fit the high-energy cross section data. The addition of
an Odderon term does nothing to ameliorate this difficulty.

We next consider an asymptotic variation that goes as log s. For this purpose, we
substitute for the even amplitude in Eq (12) a new amplitude which varies as logs(c.f. Eq (5.7) of Ref. 2):

,S'_ _ .71"

_f+ = i(A+_[l°g(-_°J z'2"]+csU-lei_(1-u)/2) " (17)

We use the conventional odd amplitude of Eq (13), along with no Odderon or Odderon
1. We emphasize the point made above that since the energy variation of the cross
section is now only log s, Odderon 2 is not allowed by the asymptotic theorems.

The fit for Ottot with no Odderon is shown in Fig. 9. It isquite satisfactory, fitting
reasonably well to all cross section data over the entire range of energy. With the
exception of the UA4 point at .546 GeV, it also fits the p-values.r However, it predicts

a p-value at 546 GeV that is 0.13, compared to the measured value of 0.24 4- 0.04,
about a 2.7c, effect. Note that the preliminary E710 value of p was not included in any
of the fits. However, it is clearly consistent with the prediction. We note, but do not
show, that (also not surprisingly) the fit with Odderon 1 is almost indistinguishablefrom the fit without it.

We conclude:

(A) the cross section can be fit with a log(s/s0) variation. Because2of thedominance of low energy points, we interpret the failure of the lo sfit as implying that a fit of this kind to data t Tcp _ • g. (/So)
a. ,oI_ energies and below

will not fit the new high-energy cross section data. This surely means that
there is no basis for the statement (often made in the past) that the cross
section is rising like the log2s maximal behavior allowed by the Froissart
bound. It is important to emphasize, however, that this analysis does not
ezclude either models which contain log2s behavior with a small coefficient
or models that develop a log2s behavior at a higher energy scale.

(B) the UA4 p-value can not be fit, either with ithis conte or wzthout an Od_ xr, the Odderon n o • ._ . . . deron. In
of an as m tot'. . Yp thesis 0nterpreted stmctl• 9 p zc odd-sl nat • • • Yas the resent
fitting the UA4 p-value g ure amplitude)is zrrelevant to the proPblem o}
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V. S-Channel Unitarity and QCD

A fully unitary theory must, of course, satisfy full multiparticle unitarity in both
the s-channel and the t-channel. The eikonal formalism provides essentially the only

practical method for implementing the idea that s-channel unitarization effects play
a major role.

The eikonal formalism starts by writing the exponential representation of the
amplitude A(s, t), as an integral over impact parameter space b,

t)= / -
where x(b,s) will be referred to as the eikonal in the following.

In order to understand the general properties that most eikonal models share, we
now introduce a simple, factorizable eikonal, which has a power-law s dependence,

x(b,s) = W(b),", (19)

witha > 0, and where DV(b), the impact parameter space description, is given by

W(b)- K3(/_b)(#b) 3, (20)

with K3 being the modified Bessel function. 'Fhe mass # sets the scale of the variation
in b-space, and is the mass occurring in the dipole form factor description G(q °') =

1 given bv the Durand-Lipes modification x8of the Chou-Yang model, x9 Each(i+_al_a)=

- 12-



term in the eikonal series given by Eq (19) strongly violates the Froissart bound. 2°
However, ever since the work of Cheng and Wu, 21 it has been understood that the
Froissart bound is restored as a consequence of the strong cancellations between
the terms of the series. As a result, the full amplitude generated by the eikonal of
Eq (19) does indeed satisfy the Froissart bound (see Eqs (27-31) below for a heuristic
derivation).

It has long been known from asymptotic theorems 2a that when the maximal energy
dependence allowed by the Froissart bound is achieved, the differential cross section
satisfies

[log • .dt ' _ [log2s {F(0) -t-F'(O)tlog2s +" .}]2 (21)

We recall that the nuclear slope parameter B is given, in terms of the elastic scattering
cross section &r/dt, by B = _[log(dcr/dt)],=o. Thus, Eq (21) yields

[F'(O)] log2s, (22)
B = 2LE(O)j

and hence, 'shrinkage' of the diffraction pattern with increasing energy. Although
this effect is not present in any term of the series of Eq (18), it emerges from the
exponentiation t rocess.

It is easy to show that at small s, the eikonal in Eq (19) gives a positive curvature
C, because of the shape of the dipole form factor being important when the eikonal
is small. However, as the energy becomes very large, it is easy to show 2 that the
amplitude becomes that of a sharp disk, and that, asymptotically, B = R2/4 and
C = -R4/192, where R = R01ogs. Thus, the curvature must go through zero as
s increases, and eventually grow large and negative. The energy at which this zero
occurs has been considered to be the onset of the transition to 'asymptopia' by Block
and Cahn. 2 We note that the evolution of the curvature from positive to negative
is thus a general property of most eikonal models. A typical evolution of both the
slope and curvature parameters is illustrated using the QCD-inspired model of Block,
Halzen and Margolis s'9''°_ (referred to hereafter as the BHM model) in Fig. 10. As
can be seen, the curvature does indeed change sign at an energy close to that of the
Tevatron Collider. This is born out by the experimental data, since E710 measures a
curvature 12 compatible with zero at the Tevatron Collider (see Fig. 4).

In the BHM model, 8'9'22the eikonal function is written as

2_(b,s) = W(b)cr(s)= P(b,s), (23)

where P(b,s), the probability of collision, is assumed to be

= (24)

In particular, they parameterize the low energy data in terms of quark-quark (qq)
and quark-gluon (qg)interactions in the eikonal as Pqq-- W(#qqb) [a + bmo/v/s] and
Pqg = W(_/#qq#9_b) [a' + b' log s/m_ ]. For the glue-glue (gg) contribution, they take

= {_d (25)o'gQgCD (,S)
J
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Figure 10: Evolution with energy of the differential cross section in the large lt] range---
according to the eikonal model of Block, Halzen and Margolis. s_9'22

Introducing the new variable r via _ = rs = xlz2s, i.e., the subprocess c.m. energy
squared, into Eq (25), they write

Fgg = / dxldx2g(xl)g(x2)5(x2x2 - r), (26)

where g(x) _ _ is the gluon structure function. The crucial quantity is J which.r J

controls the evolution of the gluon structure at small x. In Regge language, J is the
intercept of the Pomeron. The factor in Eq. (25) determining the energy dependence

is f_/, drFgg(r). One obtains, for large enough s

s. J: _,o<.(.' drF, g(r)-_ dr ~ (27)
o2/, _/s T J

Note thatEgginEq (27)countsthenumber ofgluonsinthecollidinghadrons.The
number increases rapidly at x _ mo/_ and this is the origin of the rising cross
section. More quantitatively, the probability is Pgg(b,s) _ Wgg(b)s J-i, which is the
same as Eq (19) (where a = J- 1), given in the general eikonal arguments above. For
an interaction probability Pgg << 1, the energy dependence of the amplitude is given

by a Pomeron pole-type power law ._J-X, i.e., the Regge Pole amplitude associated
with the trajectory of Eq (6) of Landshoff and Donnachie. 6 When the number of

gluons becomes large, Pga exceeds unity for a critical impact parameter, b:, given by

cW,, (#. b°)s._-_ .., 1, ('2_8)
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where c is a constant.

For large values of ph, Eqs. (20) and (28) yield the following value of be,

c'(#ggbc)a/2e-U99bcsJ-l ,._ 1, (29)

with c' another constant, and therefore,

b" J-11°g s ( s-_)
-- -- --+0 log log . (30)

#gg So

The large number of gluons turns the nucleon into a sharp disk of radius b_. We
note the cardinal role of d in determining the energy behavior, since d controls the
increase of the number of gluons. In summary, the energy dependence of the cross
section transforms from sJ-1 at low energy, to the disk cross section

= log 2 s /._:--, _oi)
#gg So

as s _ oo. We thus reproduce the Froissart bound from QCD arguments as long

as J > 1. The usual Froissart bound coefficient of the log2 so term, 1/m2_ = 20 mb,
is here replaced by ((J- 1)/#gg) 2 _--0.002 mb, which now agrees with experiment!
We observe that #gg controls the size of the area occupied by the gluons inside the
nucleon.

The correct analyticity properties of the amplitudes are assured by substituting
s _ se -i'_/2 for s in the even amplitudes described above. Also, an ad hoc crossing odd
amplitude parameterizing the difference between the pp and pp scattering amplitudes
is introduced as Poaa = TvV(#odab)a''m-w-°'e-i_/4,,a

The experimental observables are calculated from P(b,s) and crtot = 4zr Im fN
and ao-g = r, lfN[ 2, with

sN= bdb - (32)
The results of fitting to the data, including the new Tevatron results, are shown in
Figs 1-3, for O'tot, /9 and B, respectively. The predictions for the elastic scattering
cross section dedr are shown in Figs. 4 and 10.

We note that a simple energy-dependent modification of the Chou-Yang model
has long been known 2 to provide (qualitatively) all the energy dependent features of
the diffraction pattern that we have discussed. This particular model suffers from the
criticism that it has incorrect analyticity properties and makes no reference to the
parton model contributions thought to be associated with QCD. In a certain sense,
the BHM model can be regarded as a modern version of the Chou-Yang model which
corrects these defects, and which illustrates well the straightforward capability of the
eikonal model to provide a good understanding _f all elastic scattering data--again
with the exception of the U A4 p-value and the large Irl scattering at the ISR.

We finally return to the vanishing of the curvature at _/s = 1800 GeV, found
both experimentally 12 and in B HM. s'9'22 These authors find that the real portion of
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the eikonal in Eq (18) is dominated at low energy by the quark-quark contribution,
and at high energy by the gluon-gluon interaction, with the contribution from quark-
gluon scattering being rather small. It is most interesting to note that at v/_ = 1S00
GeV, the contributions to the real portion of the 'QCD'-eikonal from quark-quark
scattering and gluon-gluon scattering are approximately equal at b = 0. If this is not
a numerical artifact, it provides a natural explanation for the concept of 'onset of
asymptopia' occurring at this energy.

VI. Future Prospects

The UA4 value for p remains as the most intriguing result in the field. As we empt_a-
size, no standard formalism is able to reproduce it-----even the most general eikonal
model. It could even be a unique signature of a threshold for new exotic physics, as
pointed out by Kang and White. 1° This result should be available in the near future.

However, we note from our above arguments that we do not get into 'asymptopia'
until we get to energies considerably above 2 TeV. Thus, the LHC and SSC, at 16
and 40 TeV, respectively, will piay a critical role in our understanding of high energy
phenomena. To this end, Block, Halzen and Margolis 22have made 'QCD'-predictions

Table III: Collider cross section predictions, with upper and lower bounds, using 'QCD'

v/_ Lower Limit (log s) QCD (Eikonal) Upper Limit (Regge)
(TEV) (mb) (mb) (mb),,,

LHC 16 105 ± 1.2 107 ± 4 115
SSC 40 118 ± 1.2 121 ± 5 135

for the total cross sections at these accelerators. In order to get a measure of the
accuracy of the predictions, they introduced the Regge Pole extrapolation as an upper
bound (since it violates unitarity, and thus is too large), and the log s fit of Block
and White 7 as a lower bound (since the 'QCD' prediction eventually goes as log2 s).
Their collider predictions, tightly bounded, are shown in Table III. They predict O'to t

is 107 and 121 mb, at the LHC and SSC, respectively. Clearly, the future will be both
productive and exciting.
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