
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.



-.. . . .
.

T

;

,’

LA-uR--87-3619

DE88 001802

“TLE: Computer Simulation of Pencil Glide in B. C.C. Metals

AuTHOR@): Anthony D. Rollett, MST-6
U. Fred Kocks, CMS

SUBMITTEDTO: 8th Int. Conf. on Textures of Materials,
Santa Fe, NM September 21-25, 1987

DECLAIMER

This rqmrt wti. ,prcprul man mcoumof work spnwcd by lnHgcncy,)fthc Ilnucd SIaIOS

(invcrnmcnl, Neither the lJnild S[nlen(iovrrnlnen[ nor any uRency tl,cred’, mw uny{, (their

employeen, mnkes mry wurrnnly, cqwesn or implied, or ansumes wry lq II Iiuhili!y or rcspmnl -

hihly for the uuuravy, rompletenem, or urufukrn nfnny inhmrmli{m, rrppuru!us, prtnlucl, or

pr[~wsn rtiwloml, or rcprc.scnls Ihnt its uw would not inrringc privHlcly owned rlrnhts, Rcfer-

enrc herein to uny qxafic commercial prmluc!, prwcens, or wrvicw hy trHdc rmmc, Irwdcmllrk,

mnnufnuiu~cr. or othcrwi= d(us not nammirity c~mnlilulc wr Imply i!s cn~hwwnl~nl, ICCIIIII

mcrwlrdmrr, or [nvoring hy the IJnitcd Slntcs (iuvcrnmcnl or tiny rrgcrwy Ihcrmd I’hc Vlcws
uml qrinions of nulhors cqwmaal herein dII m)t ncc~%mrlly dHIC w rcllm[ IIIWW 111 Ihc

I Jnwcd SIaIcs (Awcrnmcnl or nny ngcncy thcrm)f,

MASTER

~~~~b~~~ Los.l . . . . ..e.Me87.4~..4~,
LosAlamos National Laboratory

/“ ‘
nreTnlniiwln.. -- . . .. .

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



COMPUTERSIMUIATtON W PENCILGLIDE IN B.C.C. METALS

A.D.Rollett and U.F.Kocks

Los Alamos National Laboratory, NM, U.S.A.

ABSTRACT

An existing computer code for simulation of texture development in
polycrystals has been modified to model “pencil glide” as obsewed in
some b.c.c. metals. Pencil glide can be thought of as a limiting case
where the slip direction is restricted to <111> directions but the slip
plane is arbitrary. The existing code simulates ‘restricted glide”, i.e.
<111 >{1 10} slip systems, by using the Bishop-Hill method (1) to find
the active vertex of the sin~le crystal yield surface for each grain. It
then corrects this trial solution by using a non-linear viscous law
based on the total <111 >-resolved stress component. C)nly a small
increase in computation time required is required compared to
restricted glide. The results of the pencil glide modification of the
code are that the texture devolopme~t in tension is essentially the
same as for restricted glide but that significant differences appear in
plane strain compression (rolling). The Taylor Factor in’ tension for a
random polycrystal Is found to be 2,74 as previously obtained by
Rosenberg and Piehler (2) and Parnibre and Roesch (3).

Many years ago it was proposed that the deformation of single
crystals of some b,c.c. metals may be modeled by “pencil glide” where
the slip direction Is confined to <111> directions but the slip plane is
not restricted to a particular crystallographic plane (seq for example
Tavlor and Elam (4)), The aim of this paper is to show how a siinple
modification of the geometry of restricted glide, slip on {1 10}<111 >,
has been made to acco,mmodatn pencil glide, slip on {hkl)<l 11>, within
the framework of an existing general-purpose computer code tor
simulation of plastic anisotropy. The principal feature of the model is a



strain-rate sensitive single crystal yield surface that permits a
Bishop-Hill (1) solution to be used as a trial solution for the pencil*
glide solution.

A number of studies (3,5-14) have been made to find efficient
analytical procedures for solving the pencil glide problem but few have
actually gone on to simulate texture evolution under pencil glide
conditions (15,16). The geometrical effect of pencil glide can be
illustrated by reference to a single crystal yield surface diagram for
the three slip systems associated with a single [111] slip direction,
Fig. 1. TF.e yield surface for restricted glide is a hexagon whose edges
are perpendicular to each {110} slip plane. For pencil glide, however,
the yield surface is a circle because the material can always “choose”
the slip plane to be that which maximizes the resolved shear stress on
the slip system. More general sections of the single crystal yield
surface show similarly circular or elliptical shapes (13-15,17). One
important consequence of this rounding of the yieid surface is that for
any given applied stress, the direction of the resulting strain
increment will be more nearly parallel to the stress direction than is
the case for restricted glide. The significance of this will be apparent
when the results of simulation of plane strain compression under
Relaxed Constraints boundary conditions are discussed below,
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Fig. 1, Single crystal yield surfaco illustrating difference between
restricted glide (hexagon) and pencil glide
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The method of simulating restricted glide in
reference to f.c,c. and b,c.c. metals is as follows.

(circle).

polycrysulkl with
For deformation

Full Constraints (FC), using Taylor’s assumption of uniform strain
each grain, a Bishop and Hill analysis is used to find the multiple

under
in
siip

stress state, avertox, that gives the maximum external work In order to
resolve the ambiguity problem that is a consequence of these
assumptions, a non-linear stress strain-rate relation is introduced to



round off the single crystal yield surface (f 8). If the applied strain
rate is D, the stress state in a grain a and the Schmid matrix for the
slh slip system ms, = bs @ns, where bs and ns are the slip direction and
slip plane vectors for the sth slip system respectively, the non-linear
solution requires the stress state in each grain to satisfy

(1)

A typical value of !he exponent, n, is 33; this gives a solution that is
essentially rate-insensitive while minimizing the computation effort.
The solution procedure starts with a trial value for toe stress,
calculates a strain rate and uses the difference between this strain
rate and the imposed strain rate to adjust the stress state. The
solution procedure for Relaxed Constraints (RC) deformation (19,20) is
similar; the only difference is that the stress components
corresponding to the relaxed strain components are set to zero and the
non-linear solution procedure described above is performed in a
reduced stress space. Typically three stress components are used
instead of the full five components of deviatoric stress space. The
solution procedure for pencil glide uses a modified calculation of the
resolved shear stress on a slip direction. The resolved shear stress is
calculated for each restricted glide slip system as before. What is of
interest now, however, is the maximum resolved shear stress, @, that
operates on each <111> slip direction when the the slip plane is not
restricted, This shear stress is calculated as the vector sum of the
three resolved shear stresses calculated above, Fig. 2.

P 2
z = lt1n112+lt~212+ lk3n312

(2)

This results in four different resolved shear stresses associated
with each of the four pencil glide slip systems. The resultant shear
rate on each system is then obtained from the same strain-rate
sensitive formulation as used in restricted glide,

The shear rate
glide slip systems

P= +0(7’)” (3)

is then distributed linearly over the three restricted
associated with each pencii glide slip system,
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(4)

Once a stress state has been found for each grain that satisfies the
applied Xain increment, Eq. 1, the grain reorientation is calculated in
the normal manner.

● RQsulls

The model of pencil glide was used to model texture evolution in a
simulated b.c.c. poiycrystal with 300 grains. Taylor factors were
calculated for tension, compression, rolling and torsion with the
results given in Table 1. The result for tension and compression are in
agreement with those obtained by Parniere and
factors for rolling and torsion are given in von
see Tomd et al. (20), and are somewhat lower
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Roesch (3). The Taylor
Misw equivalent terms,
than for restricted glide.
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tension, compression 2.74
rolling 2.66
tor “ 2.60
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FiQ. 3a. Inverse pole figure of Fig. 3b. inverse pole figure
orientations of 300 grains of simulation of tension with
simulated with restricted pencil glide to a strain of 2.
glide to a strain of 2.

The first simulation was performed for tension and gave results
that were essentially identical ta those for restricted glide, Fig. 3. The
same model was used to model rolling (plane strain compression), also
with 300 grains. In this case the grain shape evolves to a lath shape
and the RC model applies (20). The results are presented in the form of
{111} pole fi~urbs, Fig. 4, in which the rolling direction and normal
direct!on have been interchanged from their normal positions in order



to facilitate comparison with the textures observed for f.c.c. :olling.
The simulation performed with restricted glide, Fig. 4a, shows a plane
strain texture characteristic of RC simulations, showing “copper” and
“S” components. When the simulation is performed with pencil glide,
however, there is a subtle change in the texture. Although an increasing
fraction of the grains are permitted to deform in Relaxed Constraints
as the strain increases, the resulting texture is closer to an FC texture
where the principal texture component is shifted to a {11 11 8}<4 4 11>
position. This shift can be explained qualitatively as follows. RC
deformation permits redundant shears to occur in order to make each
grain’s stress state more nearly co-linear with the strain direction.
The rounded pencil glide single crystal yield surface does not require
these redundant shears to satisfy
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the RC boundary conditions.
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Fig. 4a. {111} pole figure for Fig. 4b. {111} poie figure for
roiling simulated with 300 roll!ng simulated with 300
grains and restricted glide grains and pencil glide at a
at a won Mises equivalent von Mises equivalent strain
strain of 3. of 3.

Fig. 5, Yield surfaces in the z-plane for a 300 grali~ simulated
polycrystal. The outer yield surface (tangent planes) corresponds to a
Bishop and Hill analysis for restricted glide. The inner yield surface
(stress vectors defining a circle) ar~ for pencil glide,
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This rounding of the yield surface is also apparent in polyc~stal
J yield surfaces. Figure 5 illustrates the n-plane section of the yield

surface fo; a 300 randomly oriented grains. Two yield surfaces are
displayed: the outer tangent plane construction is simply that for
restricted glide obtained with the Bishop-Hill analysis and showing the
characteristic rcunded hexagon. The inner surface is the essentially
circular yield surface obtained with pencil glide. The stress vectors
whos. ends define this inner yield surface are calculated as the mean
stress of the polycrystal from the result of the rate-sensitive solution.

The results of this study have shown that pencil glide can be
efficiently incorporated into a polycrysta! plasticity computer code by
adaptina the geometry of restricted glide. Texture evolution in tension
under pencil glide conditions is very similar to that for restricted
glide. For rolling, differences appear at large
appears to produce a Full Constraints texture
is permitted to occur in Relaxed Constraints.
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