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ABSTRACT

Random matrix models based on an integral over supermatrices are proposed

as a natural extension of bosonic matrix models. The subtle nature of superspace

integration allows these models to have very different properties from the analo-

gous bosonic models. Two choices of integration slice are investigated. One leads

to a perturbative structure which is reminiscent of, and perhaps identical to, the

usual Hermitian matrix models. Another leads to an eigenvalue reduction which

can be described by a two component plasma in one dimension. A stationary

point of the model is described.
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1. Introduction

Integrals over random matrices have had a variety of physical and mathemati-

ca] applications. They were originally proposed as a statistical model for studying

the distribution of energy levels of highly excited states of nuclei[I-3]. The ma-

trices are taken to be from some ensemble of diagonalizable matrices, usually

Hermitian or unitary. The perturbative expansion of the free energy was found

to generate Feynman rules which are useful in solving numerous graph-counting

problems[4-6]. More recently, these properties have been found to make certain

scaling limits of matrix models useful for studying two-dimensional gravity, or

string theory in "less than one dimension[7-11]."

It is natural to consider the extension of these models to supermatrices, which

represent the linear transformations of a vector space having both even (bosonic)

and odd (fermicnic) coordinates. Ali of the algebraic and analytic methods

i needed to define ordinary matrix models have extensions to superrnatrices, t More-over, supermatrices come in two types: c-type, which preserve the coordinate

type of a vector, and a-type, which interchange fermions and bosons. This sug-

gests that a model which includes both could be useful in defining subcritical

superstrings.

i paper concentrate on c-type matrix models, are the

This will since these

. most closely analogous to the ordinary models. In particular, "almost all" c-type

matrices are diagonalizable (a-type ones need not be), and diagonalization is a

powerful tool in rendering bosonic matrix models tractable. Unfortunately, the

superunitary angular integral generally does not decouple, so some nonperturba-

tive methods, such as the orthogonal polynomial method, will lose their power.

Since a c-type supermatrix can be decomposed into a two by two block matrix,

with bosorfic matrices on the diagonal and fermionic ones off it, one may suspect

that they already contain enough ingredients to define a discretized superstring

Ii t A general reference, and the sourceof all terminologyand conventionsused here, is ref. [12].
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model. However, this seems unlikely to be a proper interpretation, since the

potential contains only bosonic coupling constants, and since the eigenvalues are

all bosonic. If one thinks of c < 1 strings as integrable systems[13], what is

wanted is a superintegrable system[14], which requires a model with fermionic

coupling constants tc generate both even and odd KdV-type flows.

One of the greatest distinctions between supermatrix models and ordinary

ones is that superspace integratior is inherently ambiguous. There is no geo-

metrically natural reason to restrict the bosonic components of the supermatrix

to be pure rea] or complex numbers. In general, they are simply even elements

(c-n,=mbers) in a Grassmann algebra, consisting of a body which is an ordinary

number, mud a soul made of even products of anticommuting numbers[12]. To

define the integration domain requires specifying a slice through soul-space, and

different choices really should be thought of as different models, with different

properties.

Section 2 of this paper describes the general properties of supermatrix models.

Section 3 describes the case when the even entries in the matrix are ordinary

numbers. This choice gives the simplest perturbative expansion, which turns

out to be very similar (perhaps identical) to that of a.u ordinary bosonic model.

Section 4 describes integrals over matrices which are constrained to have pure real

eigenvalues with no soul. (These are called physical supermatrices[12].) When

gauge-fixed, such a model can be described by a physical system analogous to

the Dyson gas of bosonic models. In this case, the physical analog is found to be

a two-component plasma in one dimension. Although the technology for solving

such a matrix model is presently limited, a saddle point evaluation based on

interac*,ing dipoles is used to illustrate some features of the model.

Three very recent supermatrix model references may be of interest. A paper

by C. Vaz[15] analyzes a special case of the antisymmetric supermatrix model,

and one by L. Alvarez-Gaum6 and J. Man_s compares the Hermitian matrix and

supermatrix models. Finally, G. Gilbert and M.J. Perry[16] propose a quenched
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c-type supermatrix model which appears to incorporate genuine supersymmetry.

2. Supermatrix Integration

Supermatrix models can be defined by taking any bosonic model and replac-

ing all of the ingredients by their superspace analogs. In part,;,cular, consider a

Hermitian c-type supermatrix[12] (the only type to be used in this paper)

A.. BvZ) (2.1)M_j = B_ C_a

where A and C are bosonic and Hermitian, and B is fermionic. The notation in-

dicates that i,j,.., denote a general index, while _, v,... are bosonic and _, 3,...

arc fermionic. If (-1)i is + 1 for bosonic indices and -1 for fermionic ones, then

the supertrace is defined to be

strM = Z(-)'M_, = ttA- rrC. (2.2)
i

For an arbitrary potential V(M), the random Hermitian supermatrix model is

defined by the partition function

Z_,_(_) = / dM exp(-# str V(M)), (2.3),J

where M is an (rain) supermatrix acting on vectors with m commuting and n

anticommuting components, and

dM = H dA_,v dC_ d2B_,_ . (2.4)

I The measures for A and C are the usual linear Hermitian measures. The integra-

tion domain S is chosen so that the bodies of A and C range over the ordinary
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Hermitian matices, but the souls, which can contain even products of B compo-

nents, w,:ll be specified later. Since the supertrace is indefinite, the integral (2.3)

will not actually exist for polynomial potentials. However, this is a technical

problem that can be avoided by considering superunitary matrices instead, or by

multiplying the potential by i and inserting convergence factors.

When S is chosen such that the Gaussian integral (quadratic potential) can

be evaluated, more general potentials can be handled by a perturbative expan-

sion. This is true in particular when A and C are taken to be ordinary soul-less

Hermitian1 matrices, the case considered in section 3. The present section will

consider methods which may be applied to more general cases.

In the bosonic modelz, the most powerful methods rely on diagonalization to

obtain _ integral over eigenvalues alone, factoring out the degeneracy due to the

unitary angular integration[3,5]. Therefore, it is of interest to see what may be
e

gained by diagonalizing the supermatrix. A c-type hermitian supermatrix can be

diagonalized by a superunitary transformaticn, except in certain singular cases.

The singular cases occur when one of the eigenvalues of A has the same body as

an eigenvalue of C. In that limit, a pair of eigenvectors become bodyless, and

cannot be part of an orthonormal basis, so the diagonalization cannot be carried

out. However, this occurs only at isolated points in the integral.

Assume now that

8 = = {utzuIv e u} (2.5)

where U is U(mln), with a possibly unusual choice of souls. The body of :D is

just the set of (rain) real diagonal matrices, and all off-diagonal elements vanish.

Following the classic matrix-model method[3,5], the integrand of (2.3) may be

multiplied and divided by

A-'(M) =/dY [I _2(VMVt):j ' (2.6)
u _>i

Changing variables M --, M U = ut MU and using the invariance of the measure
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and supertr_ce leads to

[ cIU [dA A(A)exp(-_ str V(A)) (2.7)Z.,_(_)
I d

/,_ Su

where A isthediagonalmatrixofeigenvaluesAiofM.

An importantdifferencefrom the bosoniccaseisimmediatelyclear°The

integraloverthe supergroupdoesnot factorize.The choiceof soulsforthe

eigenva/uesdepends on the group elementU. Ifthiswere a one-dimensional

integral,the choiceof soulswould not have mattered,up to a surfaceterm.

But formultipleintegrals,thedependenceisnontrivial.Also,theevaluationof

(2.6)dependson ZJ,which isalgebraica/lyU(m]n),but may haveunusualsoul

geometry.

A case where (2.7) can be evaluated may be obtained by restricting the

eigenvalues to be pure real numbers, and L/to be the standard U(m[n) with its

Haax measure. Then the set S consists of what deWitt[12] calls the "physical

supermatrices'.' This case will be the subject of section 4. It has the drawback

that the constraint of having real eigenvalues cannot easily be included in (2.3), so

that even the Gaussian integral becomes complicated, and perturbative Feynman

rules are difficult to develop.

A possible compromise would be to diagonalize only A and C, by performing

a superunitaxy transformation U x V 6 U(m) x U(n). Then B _ UBVt.

" The Jacobians for A and C axe the usual Vandermonde determinants, while the

Jacobian for B is just 1, so

__ Zm,(j3) = / H da,dc,_dB_,_ H(a,-av) 2 H (c_- c_) 2exp(-j3 str V(M)) (2.8)| p<v a<B

|

where M is now defined w_th A = diag(a), C = diag(c), and the volume of

U(m)x U(n) has been divided out. The remaining integral over B can be replaced

. See p. 7 of [12] for a proof.
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by an integral over a u(mln)/u( ) x u(_) coset, if desired. It is not clear whether

(2.8) is a useful supplement to (2.3). This question will not be persued here.

A simple example may be helpful to clarify the issues in this section. Consider

the case rn = n = 1. Then A and C become real even supernumbers a and c,

while B becomes a complex odd Grassmann number ft. The eigenvalues of M

axe

= a + (a - c)-l_fl ", i_ = c + (a - c)-'flfl', (2.9)

and UMU_ is diagonal when the superunitary matrix is

1 - gc_c_ c_ (2.10)
U.-_ 1 •

-_" 1+ _
e

7

with a = (a - c) -lt.

The paxtition function will now have the form

Z = f dadcdfldfl'exp(-str V(M))
d (2.11)

This is a special case of (2.7) with dU = dada" and A(A,/_) = (A- #)-2. The

unimportant diagonal subgroup of U(II1) is omitted. Since no even parameters

are needed in U, there is no ambiguity in expressing the group manifold U in this

case. The supernumbers a and c can be decomposed into body and soul, which

have the form

a =as + as = as + f(as, cs)tiff" (2.12)
c =cs + cs = cs + g(as, CB)tiff',

where as and cs range over the rea] numbers, and f and g are ordinary real-

valued functions. This form is unique if the souls depend only on fl and ft'.



The integral can be reduced to an integral over the bodies by including a

Jacobian factor

OO

/ dadc = / dasdcs[1 + (f,1 + g,2)flfl*]. (2.13)

The presence of such factors can make a direct evaluation of (2.3) complicated

for large matrices, even for the simplest potentials. It is useful to choose S so

that either (2.3) or (2.7) is as simple as possible. These two cases axe the subject

of the following sections.

3. Ordinary Hermitian Supermatrix Model

The partition function (2.3) can be expressed most simply when A and C axe

chosen to be ordinary soul-less Hermitian matrices. This case will be referred
0

to as the "ordinary Hermitian supermatrix model'.' No troublesome Jacobian

factors of the form (2.13) complicate the evaluation, so the Gaussian integral

can be evaluated exactly. More complicated potentials can be handled pertur-

batively, by developing Feynman rules[5]. The identification of dense Feynman

diagrams with Riemann surfaces is the reason for the relevance of a scaling limit

of ordinary matrix models to two-dimensional gravity[7-9]. Therefore, it should

be expected that the connection to gravity can be made most directly for the

ordinary Hermitian supermatrix model.

Consider a quadratic potential ½str M 2. The Feynman rules and Wick's the-

orem can be derived as in the usual case, by calculating the expectation value of

a source exp(str (JM)), and varying with respect to J to obtain the expectation

values needed for a perturbative expansion. The propagator is simply

(M, sM;*t) = (-)J 6,,hSl. (3.1)

Wick contractions must always be carried out after permuting the matrices so

that they are adjacent, keeping track of the signs (_)(i+j)(k+t) introduced by
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Figure 1. The three lowest-order graphs for the quartic model.

commuting Mij past Mk_. Symmetry factors can be calculated as in the usual

matrix models, following the rules of ref. [5].

For a quartic potential

V(M) = _str M 2 + g str M 4 , (3.2)
t

the lowest-order contribution to the f_ee energy comes from the two-loop graphs

in figure 1, which represent (str M4). Evaluating them gives

g <str M 4) =g E (-)' [(M'jM;5) (Mk, M;'_) + (_)(j+k)(k+t) (M, jM_k)(MjkMi't)
i,j,k,l

+ (_)(j+t)(t+0 (MijM;'t)(MjkM;k)]

=g + (_)(j+k)Ck+Z)5.655kt
i,j,k,l

+ o.ojlojz"

=g [(m - n) 3 + (rh - n) + (m - n)3]. (3.3)

The three contributions to (3.3) come respectively from the three graphs in figure

1. Graphs (a) and (c) are planar, while (b) is nonplanar. It was pos,_t_le to

rescale g so that (3.3) is identical to the standard Hermitian matrix result[5]. If

g = _'(rn- n) -1, then (3.3) may be written

_'(m - n) -1 (str M') = ff[2(m - n) 2 + 1] (3.4)

The power of (m - n) 2 is (1 - G), where G is the genus of the surface identified

with the graph by filling in faces in the usual manner.
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Figure 2. The inequivalentconnectedthree-loopgraphswith two
quarticvertices,

This provides evidence that the supermatrix model will have a 2d gravity

interpretation, when m, n _ co with nim fixed. A computation of all three-loop

connected graphs containing two quartic vertices provides further evidence for

this. The total contribution of these graphs, shown in figure 2, to the free energy ,'

is

g <(str M4) 2 ^[18(rn n) 2 q- 30] (3.5)
_" 2!(m - n) 2 >¢o,_.- g " ,

which is identical to the ordinary Hermitian matrix result[5], with N replaced

by m- n. In fact, it is clear that in an arbitrarily complex diagram, each closed

index loop (face in a generalized triangulation of the surface) will give a factor

I of m :h n. If the pattern suggested by low order computations persists, then only

m-n will occur, and the model will be precisely equivalent to the Ira-ni × Ira-ni

Hermitian matrix model. (Ref. [17] provides some further evidence that this is

the case.) However, if any factors of m -t- n occur, the topological expansion will

still go through, but the weighting factors for various surfaces will be changed.

More powerful combinatorial methods are needed to settle this question.

If the identificati_m with the lm- n i Hermitian model persists, then this may

suggest a connection with the bosonic sector of a subcritical superstring theory.

Ordinary superstrings have a bosonic Neveu-Schwarz sector which by itself is

closely analogous to the purely bosonic string, in the sense that is can contain
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the same massless spacetime fields (gravity, e_c.) witb the same low-energy effec-

tive action. The fermions play a purely internal role in this sector. This seems

analogous to the role played by the fermions in a c-type supermatrix. They play

an internal role, but in a "spacetime" sense, the model behaves as a bosonic

one. Adjoining a-type supermatrices could provide an analog of a Ramond sec-

tor, containing true fermions. Quenching, or constraining some elements of a

supern',atrix element, may also lead to a supersymmetric theory[16].

4. Physical Supermatrix Model

Having considered the case where tb_ even entries in the supermatrix are

pure numbers, it is now natural to turn to the other relatively simple case, where

the eigenvalues of the supermatrix are pure real numbers. Such Hermitian su-

permatrices may be thought of as observables in a quantum-mechanical system

defined on a supermamfold.

Incorporating the constraint that M have real eigenvalues directly into (2.3)

is complicated. A Jacobian factor will be needed, which is difficult to compute in

general. However, working with the eigenvalue reduction (2.7) is simple in this

case. The eigenvalues Ai are integrated over the ordinary real numbers, and the

supergroup integral over U(mln ) factorizes. In fact, that integral vanishes, as

can be seen from (2.11) for the (1[1) supermatrix example, or in general from the

fact that (2.3) vanishes when OAi/i:3B_,,_= O. In any case, the supergroup integral

will be dealt with by fixing the gauge, and simply dropping it. This gives the

closest analog of the ordinary matrix model eigenvalue reduction. The remaining

eigenvalue partition function will be essentially a vector model whose form and

symmetries are inherited from the underlying supermatrix model.

The only ingredient still needed in (2.7) is the determinant A. This can be

calculated by representing U in (2.6) as eA with A anti-Hermitian. Then, if A is

, Such systems are described in chapter 5.3 of ref. [12].
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thediagonalized matrix,

(UAU*),j = A,j(Ij - .k,) + ... (4.1)

and, keeping track of the Grassmann character of the delta functions in (2.6),

the determinant is found to be

A(A) = H(A_ - Av)2 H(A_ - A_)2 H(A_ - A_)-2 (4.2)

in the index conventions of (2.1). The poles occur at supermatrices which tech-

nically are not diagonalizable for the reasons noted in section 2. The gal'ge-fixed

physical supematrix model is then defined by the equation

Z,,,,_(3) = ] H dA, A(A)exp-3(E V(A,)- E V(A_)), (4.3)_=I _=I ,

This model is clearly inequivalent to the usu',d hermitian model, due to the

presence of a denominator in (4.2). The ordinary matrix models were introduced

as a model for describing the eigenvalue distribution of a random physical oper-

ator. In that case, Wigner[1] observed that the eigenvalues repel each other, and

Dyson[2] noted that they can be interpreted as a gas of charged particles with

e2 = 1//3 in one dimension, at temperature 1/#. In the limit N,_ --0 co with

< N, the gas freezes into a crystal with a charge distribution determined by

the external potential V. The critical case takes #/N _ 1, so that fluctuations

about the crystal become important, and in the perturbative expansion, higher

genus graphs contribute comparably to planar ones[7-9].

The physical analog for the supermatrix model is a two-component plasma in

one dimension, consisting of equal and opposite charges :h# -1/2 at temperature

1//5, in an external potential V. The A_ may be considered to be m positive

charges, while the A_ are n negative charges. At very low temperatures, the

i will with negative partner, leading to an effective theory
positive charges pair a

of n dipoles interacting with m - n positive charges when m > n.
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Assume m > n and introduce ,,,.'xr_,a,bles

x, = _(.k, + .\,,,.,). u, = _(,\,- .\_,+,), y_ = .\,+_ (4.4)

for i = 1, ..... n, and a - I ..... m - n. In the Limit where the first n positive and

negative charges pair. x, is a center of mass coordinate for the ith dipole, ui is its

charge displacement, and y: labeI_ the m - n left-over positive charges. In terms

of these variables. (4.3) ma)" be rewritten

[ dz,_u, " - (u, - u:)'(z, - xi) -2 _2" J ,=1 u: _=1 ,_j - (u, + u_)=(z, -z;) "_

xl-I[I+ _'(z,- _)-']_" )_i,'_ a,b

Clearly, Z_ is dominated by configurations where ui --* 0, and by configura-

tions equi'_-alent to this up to index permutations. These configurations actually

cause Z to diverge, which is a price for simply dropping the U(m[n) integral.

However, once the intern_ energy, of the dipoles is regulated by cutting off the

displacements, no further divergences occur, provided the potential is well-chosen.

For simplicity, further attention will be restricted to the neutral plasma, with

m = n. In the dipole approximation, cutting off the displacements at 6i gives

OO

Z _ 2'_n? amz ..--T
tLl

(4.6)

(,=± I " i_j

where ui are now considered to be small and positive and the dipole interaction
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is

4 tanh_ 1 2uiuj ] ,_ 8 uiuj_'- ---- 2__ U2.'_ _ _ (4.7)

To lowest order in u, the interaction is attractive, but the exact form shows

_: that higher order repulsive effects will prevent a singularity in V_j for xi _ xi.

The dipole interaction with the external potential is eiuiV°(xi), where V' is the

derivative of V with respect to x. Therefore, positively polarized dipoles are

drawn to the minima of V' while negative ones _xe drawn to its maxima.

It is informative to choose a simple potential, and find the behavior of the

free energy near a saddle point. Consider the example of a cubic potential

ZV(z) = 1 2 1_x + 513-1/2 gx 3. (4.8) •

In this case, the true minima of the potential should come from unstable config-

urations where negative dipoles lump together and run off to infinity, or positive

ones all condense at x = __1/2g-1. The former case will be neglected, since

it can be tamed by modifying the potential at large ix[ (a situation familiar in

matrix models). The latter case is important, but requires the inclusion of the

higher-order repulsive effects in Vii for meaningful results.

Therefore, an unstable stationary point, where negative dipoles are repelled

from the minimum of V' but attracted to each other, will be considered for

illustrative purposes. (This is opposite the usual situation for matrix models.)

It is a simple enough case to allow a direct comparison with the saddle point

analysis of the standard matrix model[4], and it is useful to know exactly how

the supermatrix analysis differs.

In the n,/3 _ oe Limit, it is useful to define a continuum variable x(t) =

• n-1/2_,= with t -- i/n. Near the saddle point, the dipole approximation should be* t - - - -

14
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i valid, and we will work with the effective dipole energy

1 I, 1 1

I' -,,s.,<,...<..,..-.ss..,'so o o (.(t)- ,(_,))'_-_o d_log(n_/'v(_)).
[ (4.9/
I The continuum dipole is defined to be p(t) = n-ll2eiSi in terms of the polarization

and cutoff in (4.6), and for the cubic potential,

(;)'"_v'(,(t)) = _(t)+"_='(t), "i= g. (4.1o)

Introducing a dipole density P(z) = p(t)dt/dx and dropping the dipole self-

energy term gives

n'_E = 2 dx P(x)(x + "_x') -8 dxdx' (x - x') 2 " (4.11) .

The saddle point equation 5E/Sp(t) = 0 is satisfied when a.(SE/SP(x)) = O. For

(4.11) this implies

x -]- -_ = ---_-J dx'(z _ #)3' (4.12)

using the same principle part prescription as ref. [4] to handle the coincident

point. (Recall that (4.6) shows that the coincident limit is not truly singular.)

Since the saddle point which will be found is the unstable one with negative

dipoles clustered about the minimum of V' (using some foresight), it is convenient

to define the integrated dipole density as

dxP(x) = -po. (4.13)

The quantity po is determined by how n-1125_ is tuned as n ---, ct, 5i _ 0, and

'Jl shouldbethoughtofasanewparameterofthemodel. Itisalsoconvenientto15



introduce a new variable

w=_ z+ , (4.14)

centered at the minimum of V', with scale _-4 = 32p0/_ chosen for later simp'.ic-
1

" ity. Then the normalized negative dipole density p defined by

P(_) = -{,_v0p(_) (4.15)

has total integral +2/_r. (This integrM was fixed for later convenience.)

In the new variables, the stationary condition (4.12) becomes

7r/ p(w') (4.16)= _ d_'(___,)3, _ < _'

Due to the symmetry of the problem, p(w) will be an even function, with support

in an interval [-a, a] to be determined. The density does not have to be positive,

since dipoles can have two polarizations, but the integral must be 2/7r by cou-

struction. A solution can be found following ref. [4]'s treatment of the ordinary

quartic matrix model, by introducing a function

(I

zr f p(w') (4.17)F(w)= 7 dw'(_ _ _,)_,

1 -3 for Iwl_ _,which is analytic for complex w with cut I-a, a], behaves as _w

and satisfies

1 ' 1t ,£(,w4-i_)= w=F_p (_) (4.1s)

i for w in [--a, ai.
t_
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The solution is

F(w) = w - v/w2- w -2, (4.19)

which requires a = 1 and

p"(w) = 2_/1 - w' (4.20)
IWl

for [w[ < 1.Integrating once gives

p'(w)="(,/_-w,-t=h-'v'__)"_ _. (4.21)

The logarithmic singularity at w - 0 is integrable, and the resulting density will

be finite. The integration constants are fixed by adding a term

t

-h(l- lwl) (4.22) '

to p(w), with coefficient h chosen such that the integrated density is 2/7r, as

required by the defining conditions. Eqn. (4.21) may be integrated numerically,

leading to h _ .147, for which the final solution p(w) is shown in figure 3.

-1 0 I

Figure 3. The normalized negative dipole density p(w) as a func-
tion of the coordinate w centered at the minimum of the

quadratic potential V _.
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The energy for this configuration is found by substituting p into (4.11). Using

some integration by parts, (4.20), (4.21), and (4.22) suffi,,'e to obtain fiE. The

double integral can be done with the help of (4.12) as in ref. [4], leading to

n2_E=}'ff-'po + ½_r'ffl/2p3o/2{f(a)-½+hlog(1-a)} (4.23)

where a 2 = 29 rf3 po and

1

I(a) -- - dZ_l - z 2 log(1 -az) - . (4.24)
1)Z

0 n--I 2 ]

The surface interpretation of a matrix model depends only on the non-analytic

behavior of the partition function. The expression (4.23) has non-analytic be-

havior when

29g3po --_ 1. (4.25)

This can occur for n/fl --, 1 if g3po - 2-°.

In fact, it appears unlikely that this stationary point can have much relevence

to a 2d gravity model. Recalling that p is the density of negative dipoles, and

that negative dipoles want to climb the potential, it is clear that this is actually

an unstable stationary point, so it is uncertain whether it of a_ly physical use.

Certainly the energy (4.23) of this configuration will not be a good approximation

to the free energy. (However, inverted potentials sometimes come up in scaling

limits of matrix models[9], so instabilities are not always as bad as they seem.)

This is the only kind of stationary point that can be found within the limits

of the dipole approximation of the one-dimensional plasma, however. A more

exact treatment would be desirable, but this is more difficult than for the usual

matrix models, where the orthogonal polynomial method yields relatively easy

exact results.
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5. Conclusions

The motivation for introducing supermatrix models is their apparent math-

ematical similarity to ordinary matrix models. This suggests that they could

provide a way to incorporate fermions in a matrix model without sacrificing in-

tegrability.

However, when these models are investigated in detail, it becomes clear that

the nature of superspace gives them very different properties from ordinary ma-

trix models, and that certain useful tools, especially the orthogonal polynomial

method, are not easily applied. The source of the most unique features of su-

permatrix models is the inherent ambiguity in integrating over even Grassmann

variables.

The most obvious definition of the supermatrix integral gives a perturbati_'e
i

expansion which implies that a scaling limit of the model will have a 2d grav-

ity interpretation (but not supergravity, since the models considered have only

bosonic coupling constants). The fact that the superunitary integral does not

decouple in this case means that the eigenvalue reduction an orthogonal polyno-

mim method are not readily applicable, although eventually suitable extensions

may be found.

The leading terms in the perturbative expansion of the quartic (rain) Hermi-

tian supermatrix model are identical to those of the (m - n) bosonic Hermitian

matrix model. This may suggest a connection to the "spacetime" bosonic sector

of a subcritical superstring, to which fermionic partners must be adjoined to com-

plete the theory. The fact that supermatrices contain odd Grassmann variables

is not in itself reason to believe that they would constitute a supersymmetric

theory by themself. Perhaps the appropriate partners are supermatrices with the

bosonic and fermionic entries enterchanged.

Since the supermatrix integrand depends only on invariants, it will actually

vanish whenever the superunitary integral does decouple. Nevertheless, it is
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useful to define such models by gauge-fixing, since they provide the closest super-

analog of Wigner's model for the eigenvalue distribution of a physical operator.

The result is that the eigenvalues of a physical super-operator separate into two

classes. Within each class, the eigenvalues repel, as in Wigner's model. However,

eigenvalues in each class attract those of the other. If any real system has such

i properties, perhaps supermatrices could provide a useful model for some of its

statistical properties, as matrix models did with some degree of success[18] for

] the highly-excited states of nuclei.

J In analogy with the Dyson gas interpretation of matrix models, the eigenval-

ues of a supermatrix may be though of in term e of a two-component plasma in

one dimension. This physical analog could provide useful intuition for solving the

matrix model. Conversely, the matrix model, when _ufficiently developed, could

provide a new source of information about such plasmas. Electron-hole plasmas

in optically-excited semiconductors are a well-studied system[19] which may be

somewhat analogous.

The analysis presented here should be considered preliminary. /_._uming that

opposite charges condense into pairs at low temperatures, an effective dipole gas

was constructed, and one of the stationary points for a cubic potential was ana-

lyzed. Unfortunately, the only stationary point found within the dipole approxi-

mation is unstable, so its physical applicability is questionable. For example, it

may be helpful to include effective neutral particles containing more than two

charges. Developing a more exact treatment of the plasma could reveal some

interesting physics, and perhaps new 2d gravity models.
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