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ABSTRACT 

The p o t e n t i a l  f o r  enhanced hea t  e x t r a c t i o n  o r  power production f o r  

a hot-dry-rock (HDR) r e s e r v o i r  (sometimes even f o r  the  low-temperature- 

hot  water r e s e r v o i r )  due t o  t h e  increased hea t  t r a n s f e r  su r f ace  area re- 

s u l t i n g  from these  thermal secondary c racks  i s  of s i g n i f i c a n t  importance 

t o  t h e  p r o j e c t .  These cracks,  afforded by cooling-induced s t r e s s e s  i n  

t h e  rock ad jacent  t o  the  main (primary) hydraulically-formed f r a c t u r e  

su r faces ,  may r ep resen t  t h e  most e f f e c t i v e  means of r e s e r v o i r  enlarge-  

ment . 
The formation and growth of such thermal secondary cracks w a s  being 

s tudied  i n  a more r e a l i s t i c  a n a l y t i c a l  representa t ion .  What we have in- 

ves t iga t ed  i s  on how t h e  c i r c u l a t i n g  f l u i d  ( o r  water)  through t h e  main 

hydraul ic  f r ac tu reand  the  thermally-induced secondary, growing, i n t e r -  

acting cracks affects the time-varying temperature, deformations, 

s t r e s s e s ,  thermal crack geometry, water flow ra tes  through t h e  main and 

thermal c racks ,  and Q , r e s e r v o i r  coolan t  o u t l e t  temperature,  T ,  a m  t . c .  
and r e s e r v o i r  thermal power, e ,  of t h e  cracked geothermal r e se rvo i r .  

This problem was d e a l t  with i n  t h e  presence of the  i n t e r a c t i o n  of f l u i d ,  

s o l i d  r e s e r v o i r ,  o r  rock and energy. The coupled p a r t i a l  d i f f e r e n t i a l  

equat ions,  which a r e  formulated based on conservat ion of mass, l i n e a r  

momentum and energy, were solved i n  conjunction with f r a c t u r e  mechanics. 

In  o the r  words, t h e  con t r ibu t ion  of t hese  thermal cracks with time t o  

the  above-mentioned o v e r a l l  r e s e r v o i r  thermal performance w a s  i n v e s t i -  

gated.  

Even f l u i d  and rock temperatures were obtained f o r  growing, i n t e r -  

a c t i n g  c racks ,  however, t h e  value of K used here w a s  s t i l l  obtained 

based on a s i n g l e  thermal crack perpendicular  t o  the  rock su r face  within 

t h e  framework of a two-dimensional assumption. I n  o t h e r  words, K used 

here  w a s  no t  accounted f o r  by these  growing, i n t e r a c t i n g  cracks.  Since 

the  value of K for a s i n g l e  thermal crack is  smaller  than the  one f o r  

mul t ip le  thermal c racks ,  

does. A s  such, K would generate  l a r g e r  crack geometry a t  a p a r t i c u l a r  

1 

1 

1 

1 would reach t o  K ,  e a r l i e r  than K 
K p 7  K l m  -c 

l m  
time. So, t he  time-varying crack geometry, and ' , T and e, ob- 

m t . c .  
t a ined  based on K i s  smaller  and on the  conservat ive s i d e ,  compared 1 
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with ones obtained based.on K . Finding K w i l l  be c a r r i e d  ou t  i n  the  

Phase 2 per iod .  
l m  l m  

Calcu la t ions  a r e  c a r r i e d  out  f o r  the  LASL Fenton H i l l  HDR-Reservoir 

with H = 100 m ,  W = 70 m ,  t = 0 .2  m ,  h = 2.6 km,  Q = 230 gpm, €I = 5OoC, 

Tr = 18OoC, u = 1 . 4  x 1 0  Pa-sec and rock p rope r t i e s  ( see  Table 1 ) .  

Three equally-spaced edge cracks a r e  i n i t i a t e d  a t  t en  days with 

d = 1 . 5  m ,  s = 1.34 m ,  w = 0.05 mm and R = 5 m.  For t he  s m a l l  s i z e  main 

f r a c t u r e  system and with r e l a t i v e l y  low i n i t i a l  rock temperatues,  t h e  

s i g n i f i c a n t  e f f e c t  o f  thermal s t r e s s  cracking is  t o  f l a t t e n  due t o  the  

temperature drawdown a t  l a t e r  t imes.  Even though the  thermal power i s  

more than doubled a t  180 days, t h i s  occurs  a t  an o u t l e t  r e s e r v o i r  tem- 

pe ra tu re  of only 81OC (see Figure 1 2 ) .  I n  Figure 1 2 ,  a t  60 days for  a 

cons tan t  flow r a t e  of  230 gpm, the  thermal dr3wdown curve with thermal 

s t r e s s  cracking i s  only about 1 2 O C  above t h a t  without thermal s t r e s s  

cracking (85.9OC versus 73.5OC). I t  would appear t h a t  t he  e f f e c t s  of 

thermal s t r e s s  cracking i n  t h i s  r e se rvo i r  could e a s i l y  be increased by 

seve ra l  inadver ten t  shutdowns, changes i n  flow r a t e  and by i n f e r r i n g  a 

s l i g h t l y  l a r g e r  e f f e c t i v e  hea t  t r a n s f e r  a r ea  f o r  t he  r e se rvo i r .  

0 -4 

Calcu la t ions  can a l s o  be appl ied  t o  t h e  low-temperature-hot water 

r e s e r v o i r .  

1 
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i x  



NOMENCLATURE (continued) 

T 

TO 

Tr 

V 
Y 

V 
Y i  

i W f  w 

w 

X 

Y 

Z 

a r 

AY 

e 

eout  

A 

A 

!J 

r 

'r 

P 

'r 

(5 xx 

(5 
YY 

(5 zz 

the  temperature of rock or t h e  r e se rvo i r  coolant  
o u t l e t  temperature 

the  t e n s i l e  s t r e n g t h  of rock 

t h e  i n i t i a l  rock temperature 

the  ve loc i ty  of water through t h e  main, hydraul ic  crack 

the  ve loc i ty  of water through a thermal crack 
denoted by i 

t h e  width of t h e  opening of secondary thermal c racks  
and t h e  crack group denoted by i 

t h e  width of t h e  main, hydraul ic  crack 

the  ho r i zon ta l  coordinate  i n  t h e  f r a c t u r e  p lane  

t h e  v e r t i c a l  coordinate  i n  t h e  f r a c t u r e  plane 

a coordinate  orthogonal t o  t h e  f r a c t u r e  plane 

thermal d i f f u s i v i t y  of rock A 

a f i n i t e  length  i n  y-coordinate 

water temperature 

t h e  water i n l e t  temperature of r e s e r v o i r  

t h e  w a t e r  o u t l e t  temperature of r e s e r v o i r  

thermal conduct iv i ty  of water 

thermal conduct ivi ty  of rock 

v i s c o s i t y  of water 

Poisson ' s  r a t io  of  rock 

dens i ty  of  water 

dens i ty  of rock 

t h e  m a x i m u m  ho r i zon ta l  e a r t h  p r i n c i p a l  s t r e s s  

t he  overburden e a r t h  pressure  ( o r  t he  maximum 
compressive p r i n c i p a l  s t r e s s )  

t h e  m i n i m u m  ho r i zon ta l  e a r t h  p r i n c i p a l  s t r e s s  

n 



CHAPTER 1 

INTRODUCTION 

I 

The p o t e n t i a l  f o r  enhanced hea t  e x t r a c t i o n  o r  power pro- 

duct ion f o r  a hot-dry-rock (HDR) r e se rvo i r  (sometimes even f o r  t he  

low-temperature-hot water r e s e r v o i r )  due t o  the  increased hea t  

t r a n s f e r  su r f ace  area r e s u l t i n g  from these  thermal secondary cracks 

i s  of s i g n i f i c a n t  importance t o  the  p r o j e c t .  These c racks ,  a f -  

forded by cooling-induced s t r e s s e s  i n  the  rock adjacent  t o  t h e  main 

(primary) hydraulically-formed f r a c t u r e  su r faces ,  may represent  t h e  

most e f f e c t i v e  means of xeservoi r  enlargement. 
- 

The r e s u l t s  i n  [l]' of the  New Mexico Energy Research and De- 

velopment supported (NMER&D) p r o j e c t  show t h a t  t he  hea t  e x t r a c t i o n  

from t h e  geothermal resexvoir  can be increased only about 25-30 per- 

cen t  by means of thermal secondary nonin terac t ing  c racks  i n  a s ta te  

of equi l ibr ium. In order  t o  improve f u r t h e r  t h e  hea t  e x t r a c t i o n  

process ,  the  above-mentioned two r e s t r i c t i o n s  which are underlined 

must  be removed t o  consider  t he  thermal secondary, continuously 

growing, i n t e r a c t i n g  cracks.  Both the  increased hea t  t r a n s f e r  sur -  

face  a r e a  opened by thermal secondary c racks ,  and t h e  t o t a l  amount 

of heat  ava i l ab le  t o  the  c i r c u l a t i n g  f l u i d  (water) would increase  

as the  energy i s  withdrawn from the  r e s e r v o i r  and the  thermal 

1 
Numbers i n  bracke ts  designate  re ferences  a t  end of t h e  r epor t .  
1 
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secondary i n t e r a c t i n g  cracks continuously grow. To t h i s  end, t h e  

proposed research  work must concentrate  t o  f u r t h e r  increase  the  hea t  

ex t r ac t ion  from the  HDR r e s e r v o i r  (and sometimes even from t h e  l o w -  

temperature-hot water r e s e r v o i r  as repor ted  i n  [l]) of such thermal 

secondary, continuously growing, i n t e r a c t i n g  cracks.  The HDR r e se r -  

v o i r  is  mainly used f o r  generat ing e l e c t r i c i t y ,  i n  add i t ion  t o  high- 

temperature chemical process ,  space hea t ing  and a i r  condi t ioning.  

The low-temperature-hot water r e s e r v o i r  i s  used f o r  low-temperature 

chemical process ,  space hea t ing  and a i r  condi t ioning.  

For t h i s  p r o j e c t ,  the  formation and growth of such thermal 

secondary cracks w a s  being s tudied  i n  a more r e a l i s t i c  a n a l y t i c a l  

representa t ion .  What we have inves t iga t ed  i s  on how t h e  c i r c u l a t i n g  

f l u i d  ( o r  w a t e r )  through t h e  main hydraul ic  fractu_re and the  the r -  

mally-induced secondary, growing, i n t e r a c t i n g  cracks a f f e c t s  t h e  

time-varying temperature,  deformations,  s t r e s s e s ,  thermal crack geom- 

e t r y ,  w a t e r  flow rates through t h e  main and thermal c racks ,  4, and 

, r e s e r v o i r  coolant  o u t l e t  temperature,  T ,  and r e s e r v o i r  thermal Qt .c. 

power, E ,  of  t h e  cracked geothermal r e se rvo i r .  This problem w a s  

d e a l t  with i n  the  presence of t he  i n t e r a c t i o n  of  f l u i d ,  s o l i d  r e se r -  

v o i r ,  o r  rock and energy. The coupled pa r t i a l  d i f f e r e n t i a l  equa- 

t i o n s ,  which a r e  formulated based on conservat ion of mass, l i n e a r  

momentum and energy, w e r e  solved i n  conjunction with f r a c t u r e  me- 

chanics.  In  o t h e r  words, t h e  cont r ibu t ion  of  these  thermal cracks 

with t i m e  t o  t h e  above-mentioned o v e r a l l  r e se rvo i r  thermal perfor-  

mance w a s  i nves t iga t ed .  

2 



Even f l u i d  and rock temperatures were obtained f o r  growing, 

i n t e r a c t i n g  c racks ,  however, t he  value of K used here  w a s  s t i l l  

obtained based on a s i n g l e  thermal crack perpendicular  t o  the  rock 

1 

su r face  wi th in  t h e  framework of a two-dimensional assumption. In  

o the r  words, K used here w a s  no t  accounted f o r  by these  growing, 

i n t e r a c t i n g  cracks.  Since the  value of K €or  a s i n g l e  thermal 

1 
crack is  smaller than the  one f o r  mul t ip le  thermal c racks ,  

1 

1 

K would reach t o  K e a r l i e r  than K does. A s  such, Klm would 

generate  l a r g e r  crack geometry a t  a p a r t i c u l a r  time. So, t h e  time- 

varying crack geometry, 6 and 

i s  s m a l l e r  and on t h e  conservat ive s i d e ,  compared with ones ob- 

l m  I C  1 

1 
, T and i ,  obtained based on K m t . c .  

t a ined  based on K . lm 
In  Chapter 1, t h e  in t roduct ion  of t h i s  i nves t iga t ion  was 

descr ibed.  In  Chapter 2 ,  the  s impl i f i ed  vers ion of  t h e  proposed 

hot-dry-rock geothermal r e se rvo i r  i s  considered. In  Chapter 3 ,  a 

closed-form so lu t ion  of t h e  rock temperature without thermal crack 

w a s  found and s u b s t i t u t e d  i n t o  SAP- IV computer code t o  c a l c u l a t e  

the  s t r e s s e s .  These s t r e s s e s  being superposed with e a r t h  s t r e s s e s  

and f l u i d  pressure  were used i n  conjunction with t h e  f r a c t u r e  me- 

chanics c r i t e r i o n  t o  determine t h e  i n i t i a t i o n  of secondary thermal 

crack. Af te r  t he  i n i t i a t i o n  of secondary thermal crack,  t h e  rock 

temperature w a s  then ca l cu la t ed  by a two-dimensional hea t  conduc- 

t i o n  program, "AYER". I n  Chapter 4 ,  t he  d e t a i l e d  procedures f o r  

car ry ing  out  s t e p s  mentioned i n  Chapter 3 were l i s t e d .  In  Chapter 

5 ,  so lu t ions  developed i n  Chapters 2 through 4 were appl ied t o  

s tudy t h e  time-varying temperature f i e l d ,  thermal stresses and 

3 



crack geometry produced, and add i t iona l  hea t  power generated i n  t h e  

r e se rvo i r .  I n  Chapter 6 ,  conclusions were discussed and summarized. 

4 



CHAPTER 2 

STATEMENT OF THE PROBLEM 

A s impl i f i ed  main f r a c t u r e  geometry i n  Figure 1 has been 

s e l e c t e d  which i s  s i m i l a r  t o  t h a t  i n fe r r ed  from the  i n i t i a l  s t ages  

of r e s e r v o i r  drawdown during the  75-day Heat Ext rac t ion  Experiment 

a t  Los  A l a m o s  S c i e n t i f i c  Laboratory (LASL). This s impl i f i ed  model 

i s  f u r t h e r  i dea l i zed  a s  a v e r t i c a l ,  rec tangular  crack (Figure 2 )  

wi th  i t s  t o t a l  e f f e c t i v e  hea t  t r a n s f e r  a r ea  A (one s i d e ) .  The 

crack opening, t ,  i s  of cons tan t  thickness .  The rock i s  i n i t i a l l y  

t 

a t  T . Cold water i s  i n j e c t e d  a t  i n l e t  y = 0,  with i n l e t  tempera- 

t u r e  8 and a hot  water o u t l e t  i s  a t  the  top.  The crack opening, 

t ,  i s  s m a l l  ( -  0 . 2  mm) while he ight ,  H ,  and width, W ,  of t h e  r e se r -  

r - 
0 

v o i r  are l a rge  ( -  100 m) . 
Of inves t iga t ion  i s  t o  study how the  c i r c u l a t i n g  f l u i d  

( w a t e r )  i n  t h e  main hydraul ic  crack and these  r e s u l t i n g  secondary 

thermal cracks i n t e r a c t  t o  a f f e c t  t h e  temperature d i s t r i b u t i o n ,  

t he  s t r e s s e s ,  t he  thermal crack geometry, 6 E and the  r e se r -  

v o i r  coolant  o u t l e t  temperature of t h e  cracked geothermal r e se rvo i r .  

m' Q t . c ,  

This problem w i l l  be inves t iga t ed  by simultaneously consider ing t h e  

i n t e r a c t i o n s  between t h e  flowing f l u i d ,  reservoir rock, and energy 

ex t r ac t ion  process ,  as s e t  f o r t h  i n  t w o  s t e p s  i n  Chapter 3 .  

5 
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Figure 1. Proposed hot-dry-rock geothermal reservoir 
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hot-dry-rock geothermal reservoir 
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CHAPTER 3 

TWO STEPS ON HOW TO ATTACK THE PROBLEM 

3.1 Step 1 - Before Any Secondary Thermal Crack is Initiated 

Figure 2 shows the hydraulically fractured, main geothermal 

reservoir in the absence of any secondary thermal crack. Since 

the working fluid is single-phase water, it is assumed to be in- 

compressible. Since this fluid is, further, entirely confined to 

the crack between assumed impermeable rock surface, heat is trans- 

ferred to this fluid only by thermal conduction through the solid 

rock surfaces. 

The constant velocity of the flow along the y-coordinate, 

v is: 
Y' - 

v = b/wt 
Y 

where W and Q are the width of the main hydraulic crack and the 

total flow rate in the absence of any secondary thermal crack. 

For Hager-Poisewille flow in the reservoir, v is [2]: 
Y 

where p and p are viscosity and pressure distribution of the fluid. 

Rewrite (2) as: 

12pv 
a p = - Y  
aY t 

2 ( 3 )  
L 

Integrating (3) with the boundary condition of p = p at y = 0, the 

resulting form is: 

0 

8 
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The actual geometry of the hot-dry rock geothermal reservoir 

(crack) is arbitrary but both A and t may be a function of x and 
t 

y (see Figure 1 representing the proposed geothermal reservoir). 

Here, the crack opening, t, is small ( -  0.2 mm) while height, Hr 

and width, W, of the reservoir are large ( -  100 m). Cold water is 

injected at inlet, y = 0, with inlet temperature, 8 . Define A(y) 

as the area of reservoir (on one side) at any position of y = y 

which is swept by the fluid traveling from y = 0 to y = y. 

0 

Since t is small, fluid properties are independent of the z- 

coordinate. Since heat fluxes in the z-coordinate are so small, 

the fluid temperature, 8, assumes to be equal to the rock surface 

temperature. Further, fluid properties are averaged with respect 

to x-coordinate. As such, the proposed problem is reduced to the 

problem with transient rock conduction in the z-coordinate and 

transient fluid convection in the y-coordinate. The corresponding 

rock and fluid energy equations, boundary, and initial conditions 

reduce to : 

rock energy equation 

fluid energy equation by neglective storage 

9 



i n i t i a l  condi t ion  

r '  T(y,z,'T = 0 )  = T (10) 

By using Laplace t ransformation,  s o l u t i o n s  of  T and 8 i n  ( 5 )  

and (6)  can be obtained s u b j e c t  t o  ( 7 )  and (10) .  Rock temperature 

d i s t r i b u t i o n  T ( y , z , ~ )  w a s  obtained by Hugh Murphy [31  a t  LASA t o  be 
7 

where 

For s i m p l i c i t y ,  Figure 2 w i l l  be used t o  approximate Figure 

1. A s  such, a l l  t h e  c a l c u l a t i o n s  w i l l  be c a r r i e d  ou t  based on 

Figure 2 .  

t h e  f l u i d  pressure  i n  ( 4 )  and t h e  rock temperature i n  (11) i n t o  t h e  

SAP-IV computer code [ 4 ] .  These stresses were used i n  conjunct ion 

with t h e  f r a c t u r e  mechanics c r i t e r i o n  i n  o rde r  t o  determine t h e  

i n i t i a t i o n  o f  any secondary thermal crack [l]. 

The stresses i n  rock w e r e  then ca l cu la t ed  by s u b s t i t u t i n g  

3.2 Step 2 - Afte r  t h e  I n i t i a t i o n  of  Secondary Thermal Cracks 

A s  secondary thermal cracks i n  Figure 3 form with t h e  above- 

obtained i n i t i a l  va lues  of depth d ,  opening w, and length  R, w e  

10 
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Figure 3 .  The i n i t i a t i o n  of secondary 
thermal c racks  on t h e  su r face  
of a geothermal r e s e r v o i r  
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start  t o  consider  t h e  e f f e c t s  of secondary thermal cracks.  W e  sub- 

divided the  main hydraul ic  crack i n t o  t en  equal ly  spaced strips 

along t h e  y-coordinate (see Figure 3 ) .  For each s t r i p ,  w e  solved 

a two-dimensional h e a t  conduction problem i n  the  presence of second 

thermal cracks and ca l cu la t ed  rock temperature.  The corresponding 

thermal stresses and the  geometry of thermal cracks i n  t h e  cracked 

( thermally)  rock w i l l  be inves t iga t ed  by implementing cracks i n t o  

t h e  SAP-IV computer code. 
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CHAPTER 4 

1 

1 

PROCEDURES FOR CARRYING OUT TWO S T E P S  

The d e t a i l e d  procedures f o r  car ry ing  o u t  s t e p s  1 and 2 a r e  

l i s t e d  as follows: 

(a )  To c a l c u l a t e  t he  f l u i d  (water) ve loc i ty ,  v ( z ) ,  through 
Y i  

each thermal crack denoted by i, from (21, 

(b)  To c a l c u l a t e  the  t o t a l  flow r a t e  through n thermal 

cracks , - 

= p’. (z)w. ( z )  dz . Y i  1 
0 

i=l 
Qt . c .  

(c) To c a l c u l a t e  the  new flow r a t e  through t h e  main hy- 

d r a u l i c  crack,  Qm as: 

Qm = Q - QtSc I 

where 6 i s  represented i n  ( 1 4 ) .  
t . c .  

(d)  To c a l c u l a t e  new ve loc i ty  by s u b s t i t u t i n g  6 i n  (15) m 

i n t o  (1). 

(e)  To c a l c u l a t e  new pressure  by s u b s t i t u t i n g  t h e  above- 

mentioned new ve loc i ty  i n t o  ( 4 ) .  

( f )  To ob ta in  the  rock sur face  temperature on t h e  main hy- 

d r a u l i c  crack,  T(y,z = 0 , ~ )  , from (11) by tak ing  z = 0. 

13 



(9) To der ive  t h e  su r face  temperature of thermal cracks 

based on t h e  p r i n c i p l e  of energy balance a t  the  i n t e r f a c e  between 

the  f l u i d  (water) and t h e  rock su r face  of the  secondary thermal 

c racks ,  as shown i n  Figure 4.  A t  a given value of x, one has 

which y i e l d s  t h e  water temperature 

For a s i n g l e  element i n  Figure 4b, t h e  sur face  temperature of t h e  

thermal crack, 

where v ( z )  is  
Y 

(h)  To 

thermal cracks 

T ( y , z ) ,  i s  then 

T(y , z )  e ( y , z )  

represented i n  (13). 

calculate the  rock temperature i n  t h e  presence of 

by using t h e  su r face  temperature on t h e  main hydraul ic  

crack (procedure (f)) and thermal cracks (procedure ( g ) ) ,  t he  i n i t i a l  

temperature and two-dimensional hea t  conduction code, AYER i n  [ 51 , 

which w a s  developed by Robert Lawton a t  LASL. In  add i t ion ,  t h e  hea t  

f l u x  through the  su r faces  of t h e  main hydraul ic  crack and secondary 

thermal cracks can also be ca l cu la t ed .  

(i) To c a l c u l a t e  new thermal s t r e s s e s  and the  corresponding 

spacing,  opening, depth,  an2 l znz th  of these  new thermal cracks by 

using t h e  new rock temperature obtained i n  procedure ( h ) .  

(j ) To go back t o  procedure (a)  . 

14 
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CHAPTER 5 

APPLICATIONS TO GEOTHERMAL RESERVOIRS 

5.1 Description of Geothermal Reservoir 

For the LASL Fenton Hill reservoir in Figure 2, H = 100 m, 

W = 70 m, t = 0.2 mm, h = 2.6 km, Q = 2 3 0  gpm, eo = 5OoC, and 

T = 18OOC. The physical properties of rock used are listed in 

Table 1. The fluid used is water and its viscosity, p, is equal 

to 1.4 x Pa-sec. The corresponding form of (11) becomes 

r 

T(y,z,~) = 50 + 130 erf [(1.701 

Physical Properties 

conductivity, X 

density, 

heat capacity, c 

thermal diffusivity, ar 

Young's modulus, E- 

Poisson's ratio, v 

tensile strength, 

r 

'r 

r 

r 

TO 

z + 1.254 x y)/&I0C. 

(18) 

Values 

2.9 watt/m-K 

2700 kg/m3 

1000 J/kg-K 

1.07 x m2/sec 
5 4 x 10 bars 

0.22 

80 bars 

Table 1. Physical properties of rock 

5.2 A Finite Element Model of Geothermal Reservoir 

For modeling the problem of the simplified version of the 

proposed Hot-Dry-Rock geothermal reservoir, the half symmetry part 

of a vertical rectangular crack with its surroundings is represented 
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by a s o l i d  of geometrical  form of a rec tangular  pa ra l l e l ep iped  of 

which the  dimension lengths  i n  the  x-, y-, and z-d i rec t ions  a r e  

50 m ,  120 m ,  and 16 m ,  r e spec t ive ly ,  as shown i n  Figure 5. In  or- 

de r  t o  choose t h e  dimension of the  length i n  t h e  z -d i rec t ion ,  we 

used (18) t o  c a l c u l a t e  the  pene t ra t ion  depth due t o  t h e  cool ing 

e f f e c t  of t he  flowing water through t h e  major crack a t  t h e  t i m e  

per iod  of one year .  A n  approximate r e s u l t  of 16 m w a s  then de- 

termined. 

Figure 5 shows the  f i n i t e  elements used t o  represent  t he  

The 390 node po in t s  and 2 4 0  th ick-  rec tangular  pa ra l l e l ep iped .  

s h e l l  f i n i t e  elements are arranged. However, the  region of i n t e r -  

est  i s  bounded by the  head l i n e ,  where the  temperature f i e l d ,  t h e  

thermal stress f i e l d ,  and the  generated secondary-thermal cracks 

a r e  considered. 

5.3 Resul ts  Obtained Before Any Secondary Thermal Crack i s  
I n i t i a t e d  

Using the  above mentioned T(y ,z , - r )  obtained from (18) a s  t he  

input  t o  the  above-chosen th i ck - she l l  element, t h e  thermal s t r e s s e s  

of t h e  rock w e r e  c a l cu la t ed  f o r  d i f f e r e n t  time per iods  by using the  

SAP I V  codes. 

In  addi t ion  t o  the  thermal stresses produced by t h e  cooling 

of the  rock, t he  overburden pressure  CT and t h e  ho r i zon ta l  e a r t h  

s t r e s s e s ,  a and cs of t h e  rock and the  water pressure  (see 

Figure 3 )  a r e  a l s o  considered f o r  ca l cu la t ing  t h e  p r i n c i p a l  s t r e s s e s  

YY 

xx zz ’ 

and t h e i r  corresponding p r i n c i p a l  d i r e c t i o n s .  The values  of 

1 7  



120 

110 

100 

90 

80 

+ 
Y 
(m ) 

70 

60 

50 

40 

30 

20 

10 

0 

361 367 373 379 

0 10 20 35 50 
x(m) + 

0 1 2  4 8 16 
. L (m) * 

Figure  5 .  F i n i t e  element d i s c r e t i z a t i o n s  €or  ha l f  
of t h e  r ec t angu la r  c rack  (390 node p o i n t s  
and 240 t h i ck - she l l  f i n i t e  elements) 

18 



Po = 4,600 p s i ,  U = 5,000 p s i ,  U = 10,000 p s i ,  and u = 5,000 

ps i  w i l l  be used f o r  t he  above mentioned ca l cu la t ions .  

xx YY zz  

The secondary thermal cracks a r e  pred ic ted  based upon pr in-  

cipal s t r e s s e s ,  t h e i r  p r i n c i p a l  d i r e c t i o n s ,  and f r a c t u r e  mechanics 

by using a computer program for  computing depth,  spacing and open- 

ing  of these  secondary thermal cracks.  

By using the  above-mentioned d a t a ,  it w a s  ca l cu la t ed  t h a t  

t h r e e  equally-spaced thermal cracks have been produced a t  an i n l e t  

of cold w a t e r  and t h e  cen te r  of t he  main hydraul ic  crack (see Fig- 

ure  6 )  a f t e r  t e n  days of  r e s e r v o i r  opera t ing  t i m e .  The depth,  

t he  spacing,  t h e  opening and t h e  length  of these  i n i t i a l l y  thermal 

cracks were ca l cu la t ed  t o  be d = 1.5 m,  s = 1.34 m, w = 0.05 mm, 

and R = 5 m. - 

5.4 Resul ts  Obtained After  the  I n i t i a t i o n  of Secondary 
Thermal Cracks (S.T.C.I 

Having inves t iga t ed  t h e  temperature f i e l d  without t he  S.T.C. 

f o r  t i m e  per iods  ranging from t e n  days t o  one year ,  w e  found t h a t  

t h e  temperature g rad ien t  along t h e  z -d i rec t ion  i s  much l a r g e r  than 

t h a t  along t h e  y-direct ion.  Af te r  t h e  i n i t i a t i o n  of t h e  S.T.C. a t  

t e n  days, t h e  problem i s  converted t o  the  one with a t r a n s i e n t  rock 

conduction i n  both t h e  z-direct ion and x-direct ion,  and with a 

t r a n s i e n t  f l u i d  convection i n  t h e  y-direct ion.  A s  such, a 2-D 

problem is  assumed. Divide the  rec tangular  pa ra l l e l ep iped  i n t o  

t en  s t r i p s  by 3::tting along t h e  x - z  plane and solve the  tempera- 

t u r e  f i e l d s  of each s t r i p  by using the  "AYER" hea t  conduction 

program. Here, t he  genera l  two dimensional t r a n s i e n t  equation of  

19 
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hea t  conduction w a s  solved by consider ing the  convective hea t  t r ans -  

f e r  due t o  the  f l u i d  flowing through the  complicated boundary. 

Much time w a s  spent  i n  converting t h e  "AYER" code i n  the  

CDC-version t o  t h e  IBM-version. A s  time goes on, t he  secondary 

thermal cracks vary i n  s i z e  and the  geometry input  of  t h e  "AYER" 

code g e t s  more complicated ( see  Figure 7 ) .  A s  such, t h e  inpu t  sub- 

rou t ine  w a s  modified t o  improve the  e f f i c i ency  of t h e  "AYER" code. 

By using t h i s  code, r e s u l t s  were run on an IBM machine. These re-  

s u l t s  agree wel l  with r e s u l t s  obtained from t h e  CDC: machine. 

In  order  t o  see  the  i n t e r a c t i n g  e f f e c t s  due t o  the  c i rcu-  

l a t i n g  water through the  secondary thermal c racks ,  w e  have s e t  up 

two models, one without these  cracks (w/o S.T.C.) and t h e  o t h e r  

with these  cracks (w/S.T.C.). The temperature f i e l d s ,  t h e  thermal 

s t r e s s e s ,  t he  geometry of  secondary thermal c racks ,  t h e  o u t l e t  

- 

temperature of f l u i d ,  and the  power w e r e  c a l cu la t ed  f o r  t he  above- 

mentioned two models a f t e r  20  days,  30 days,  2 months, 3 months, 

6 months, and 1 year  of r e se rvo i r  opera t ing  time. The r e s u l t s  

are l i s t e d  i n  Table 2 and plot ted i n  Figures  8 through 1 2 .  
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I ’  

10 1.50 1.34 5 0.05 105.3 3.22 

20 1.89 1.53 35 0.06 90.l 2.33 

30 2.17 1.66 55 0.07 83.0 1.92 

60 2.86 1.93 70 0.10 73.!5 1.37 

90 3.20 2.16 85 0.13 69. :3 1 . 1 2  

180 4.80 2.56 95 0.20 63.7 0.80 

360 7.71 3.74 100 0.29 59.7 0.56 

10 1.50 1.34 5 0.05 107.2 3.33 

20 2.44 2.19 55 0.08 96.2 2.69 

30 2.81 2.16 75 0.09 92 .  €3 2.49 

60 3.79 2 -57  85 0.13 85.9 2.09 

90 4.50 2.78 95 0.15 82.5 1.89 

180 6.48 3.37 100 0.24 81. >! 1.82 

360 9.43 4.36 100 0.28 80.0 1.75 

*€I is  the  o u t l e t  temperature of f l u i d .  
ou t  

Table 2. The values  of d ,  s ,  E, w, 8 , of t h e  model 
without S.T.C. 
t h e  model with S.T.C. ( t h e  lower table) 

( the  upper t%ie) and those of 
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CHAPTER 6 

CONCLUSIONS 

1. Calcula t ions  are c a r r i e d  ou t  f o r  t h e  LASL Fenton H i l l  

HDR-Reservoir with H = 100 m ,  W = 70 m ,  t = 0.2 m ,  h = 2.6 km, 

-4 
= 1 .4  x 10 Pa-sec and Q = 230 gpm, eo = 5OoC, Tr = 18OoC, 

rock p r o p e r t i e s  (see T a b l e  1). Solu t ions  can also be appl ied  

t o  the  low-temperature-hot w a t e r  r e se rvo i r .  

2 .  Three equally-spaced edge cracks a r e  i n i t i a t e d  a t  t e n  days 

with d = 1.5  m, s = 1.34  m ,  w = 0.05 mm and R := 5 m. 
- 

3. Rock temperature,  i n  t he  presence of t he  c i r c u l a t i n g  water of 

t h e  secondary thermal cracks,  i s  lower than the  one i n  the  ab- 

sence of t h e  Secondary thermal cracks a t  var ious  r e s e r v o i r  

opera t ion  t i m e s  (see Figure 9 ) .  

4. Thermal stress (uXX) , in  t h e  presence of t he  c i r c u l a t i n g  water 

of the  secondary thermal c racks ,  is  higher  than t h e  one i n  

the  absence of t h e  secondary thermal cracks a t  var ious r e se r -  

v o i r  opera t ion  t i m e s  (see Figure 1 0 ) .  

5. The geometry of  t he  secondary thermal crack grows with t i m e .  

The geometry i n  t h e  presence of t h e  c i r c u l a t i n g  water of  t he  

thermal cracks is  l a r g e r  than the  one i n  t h e  absence of t h e  

c i r c u l a t i n g  w a t e r  of t h e  thermal cracks.  
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6. 

7. 

L 

For t h e  s m a l l  s i z e  main f r a c t u r e  system and with r e l a t i v e l y  

l o w  i n i t i a l  rock temperatures,  t h e  s i g n i f i c a n t  e f f e c t  of  

thermal stress cracking i s  t o  f l a t t e n  due t o  t h e  temperature 

drawdown a t  la ter  t i m e s .  Even though t h e  thermal power i s  

more than doubled a t  180 days, t h i s  occurs a t  an o u t l e t  re- 

s e r v o i r  temperature of only 8loC ( see  Figure 1 2 ) .  I n  Fig- 

u r e  1 2 ,  a t  60 days f o r  a cons t an t  flow r a t e  of 230 gpm, t h e  

thermal drawdown curve with thermal s t r e s s  cracking is  only 

about 1 2 O C  above t h a t  without thermal s t r e s s  cracking (85.9 

OC versus  73.5OC). It would appear t h a t  t he  e f f e c t s  of 

thermal stress cracking i n  t h i s  r e s e r v o i r  could e a s i l y  be 

increased  by seve ra l  inadver ten t  shutdowns, changes i n  flow 

r a t e  and by i n f e r r i n g  a s l i g h t l y  l a r g e r  e f f e c t i v e  h e a t  t r ans -  

f e r  area f o r  t h e  r e s e r v o i r .  

Of inves t iga t ion  so f a r  are e f f e c t s  of t he  c i r c u l a t i n g  f l u i d  

(water) i n  t he  main hydraul ic  f r a c t u r e  and t h e  r e s u l t i n g  

secondary thermal c racks  on t h e  temperature d i s t r i b u t i o n  and 

t h e  r e s u l t i n g  thermal stress f i e l d  wi th in  t h e  geothermal 

r e s e r v o i r .  

8. Neglecting t h e  dynamic i n t e r a c t i o n  between those growing 

secondary thermal cracks might cause reducing e f f e c t  on t e m -  

pe ra tu re ,  thermal stress, and geometry of t he  rock. The 

r e a l  p rocess ,  however, has t o  be sti-;Z.ied by consider ing 

simultaneously t h e  i n t e r a c t i n g  e f f e c t s  of both c i r c u l a t i n g  

water and t h e  growth of secondary thermal cracks.  
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