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Abstract

This paper considers the problem of simultaneously stabilizing a set of plants using
full state feedback. The problem is converted to a simple optimization problem which is
solved by a genetic algorithm. Several examples demonstrate the utility of this method.

1 Introduction

This paper considers the problem of simultaneous stabilization of a finite number of plants
via a single compensator. A number of researchers have presented results for this problem
(see [1]-[7]) for both static and dynamic feedback controllers. In (1], 2 computational design is
given for a collection of SISO plants with the assumption that each plant is minimum phase.
The work presented in [2]-[5] are concerned with the conditions under which a solution which
simultaneously stabilizes the set of plants exists, rather than the design of such a contro'ler.
In our wark, we consider the case where the full state is available for feedback.

Several researchers have investigated the full state feedback problem. In 6], an analytical
solution for single-input problems satislyirg a given sufficient is presented. The technique,
however, is Jifficult to apply in practice.  An optimization approach was employed in [7)
for simultapeonsly stabilizing a collection of single input plants, In itheir work, a nonlinea
programming algorithin was used to solve for the feedback gains.

We solve an optitmzation problem similar to that proposed in [7], but here we use a penetn
Avonthm (G taobtan the solution. This approach peronts the consideration of il e

stablems Anothier advantape pamed by wang a G s that no anxalary imtormation G o



gradients) is required. It suflices to specify the objective function and to place finite bou.nds
on the controller gains. Additionally, the work presented in [7] was implemented on a (‘ray X-

MP/24 computer while the work presented here was implemented on an Apollo workstation.

2 Problem Formulation

We consider the problem of finding a single linear control law which simultaneously stabilizes

the family of .V plants
z(t) = Aez(t) + Beu(t), k=1,2,....N (n

where z(t) € R" is the state vector and u(t) € R™ is the control. We assume that the full
state is available for feedback.

A necessary and sufficient condition for the set of plants in Equation (1) to be simultane-
ously stabilizable with full state feedback is that there exists a K € R™*" such that A, + Bi it
is Hurwitz for k = 1,..., N. This condition moti "ates the following approach for determining

a set of gains K.

Choose I to minimize the following cost function:
J=maz Re(Ary) k=1,....,N;l=1,...,n (2)

where Ny 1s the ' rigenvalue of Ay + By K, subject to the constraints that |K,,| < ¢, (1 .-

l,...,m;j = 1....,n) for an appropriatle conslant c,,.

Clearly if « solution is found such that J < 0, then the resulting A simultaneously stabilizes
the collection of plants, ‘The existence of a solution is verified numerically by minimiziey, .J.
In [7]. thix problem is converted to one which is computationally tractable via their nu
merical algorithm by imposing several constraints and by allowing the closed loop eigenvalues,
iy to be ftee parameters in the optimization scheme, Our approach is more straightforward

smce we can diectly optimize J in Feaguation (2) by emploving a genetic algornithm approach.



3 Genetic Algorithms

The genetic algorithm (GA) is a global and robust optimization technique based on the prinei-
ples of survival-of-the-fittest and basic genetic opcrators found in biological systems. The (i A
has been successfully applied to a variety of problems for many vears [8] but has only recently
been given much attention for use in control system applications. In [9], the GA is applied to
an autopilot design problem and to the design of a windshear controller. An application of
the GA to robust stability analysis is given in [10).

The GA begins with a randomly chosen group nf candidate solutions referred to as a
population (in our application, a specific set of controller gains K would constitute one member
of the population). The GA processes this population on a generation-to-generation basis by
applying three operations: reproduction, crossover, and muta.ion. The reproduction operation
ensures that members of the population which result in a lower cost (also referred to as fitness)
have a higher chance of being reproduced for the next generation. The crossover and mutation
operations help prevent the GA from converging to a local optima by creating new members
in the search space.

The GA is suprisingly successful and efficient in solving a wide variety of problems. The
G A does not suffer from many of the problems which calculus-based and enumerative schemes
suffer from. For more details un the inner workings of the GA, we refer the interested reader
to [8].

The GENESIS version of the GA (see [11]) was implemented on an Apollo workstation.
From a practical vantage point, the user is only required to generate a subri.atine for eval-
uation of the cost function (Equation 2), and to specify the bounds and resolution for each
controller gain. ‘This latter step i necessary since the GA maps the gains into binay strings
for processing,.

Within the prescribed bounds and resolution of the controller gains, the GA. in general,
will find the global optimum, there is no guarantee that the CGA will not converge ta a loal
optimum. - We note, however, that in this application, linding the global optimaum s net
critical. JUsutlices to find any controller gain K for which the cost funetion J in Equaton o

Voneerative



4 Examples

Example 1:
Consider the problem of stabilizing an FAE fighter aircraft under different flight condition-

[7]. Here we consider 4 operating conditions (.V = 4). The system model has the form

an aiz ap b ]
I{t)=| @ a2 axn |r(t)+| 0 | u(t) (3
0 0 =30 30 J

where z,(t) corresponds to the normal acceleration, z3(t) corresponds to the pitch rate. and
z5(t) reprasents the elevator angle. The unknown parameters are given in Table 1.

We applied the approach outlined in Section 2 under the constraint that the gains are
restricted to be between +2. Each gain is mapped to a binary string of bit length [, where {
is specified by the user depending on the desired resolution. For this example, a 9 bit string
length was specified, with -2 corresponding to the string 000000007 and +2 corresponding to
the string 111111111. Hence, the resolution for each gain is 4/2° = 0.00781. The genetics
algorithm was initialized with a population of 100 members. The most fit member within 50

generations was found to be
K = [ 0.1016970 1.875248 1.133013

with a resulting cost of J = —1.886381, indicating that this K will simultancously stabilize
the four plants. This result is similar Lo the result of [7] where the globally minimum cost. was

found to be J = —1.88643 with the gains
K = [ 0.10831 2.00000 1.15230 ]

A plot of the best fithess and the average fitness over the population versus the numbier of
generations is given in Figure 1. Note that the algorithm rapidly converges to a value oo
to the global optimun and that the average fitness eventually converges to values wineh are

within a neighborhood of the global optimam,

Foxample 2:

Caopaader o dap teeng, |l||l|l|t'l|l wiven b The sy demmodde] poof the formead Foar -

o with two operating, conditions (v S T he avstem miatrrees fon the twn opoerae



Operating Point | 17 =1 1 =12 =3 | 1=4
Mach Number 0.5 0.9 0.85 1.5

Altitude (ft) 5000 35000 | 5000 | 35000

an -0.9896 | -0.6607 | -1.702 | -0.5162
a; 17.41 18.11 | 50.72 | 26.96

as 96.15 84.34 | 263.5 | 178.9

asz 0.2648 | 0.08201 | 0.2201 | -0.6896
aj -0.8512 | -0.6587 | -1.418 | -1.225
as -11.89 | -10.81 | -31.99 | -30.38
b, -97.78 | -272.2 | -85.09 | -175.6

Table 1: Values of parameters for F4E aircraft.

conditions are

[ —0.298 —0.279 0] [ 0.116
A =| -4370 -0.773 0|, B, =| -0.773
| 0 | 0 ] | 0 ]
[ —0.428 —-0.339 0] [ 0.150 ]
Ay = | -2939 —1011 0], B, =| -1.011
|0 1 0 0

Applying the GA, with a population of 100 members and with each gain constrained to be

within +1 and given 10 bits resolution, the most fit member within 100 generations was found

to be
K =[~10 09979190 0.9979190 |
with a corresponding cost of J = —=0.1151093. This result also compares well with that found
in [7], where the minimal cost was reported to be J = --0.1158 for the gains
K=|-11"1

A plot of best fitness and average fitness versus the number of generations s given in

Figure 2.

Foxample 3



In this example we consider a simple two mass system as shown in Figure 3 [12]. The

states are z,, Iy, Iz, and I, and the state equations are

0 1 0 O 0

. =t g L g L

z(t) = "6' 0 "6' 1 z(t) + ”6' u(t)-
— 0 0 Lo

Let m; = my = 1 and consider the stabilization of two plants corresponding to k = 2 and
k = 0.5. Constraining the gains to values between +50, the GA was executed with an initial
population of 100 members and a resolution of 10 bits per gain. After 300 generations, the

most fit member was found to be
K = [ —25.78131 —8.984480 —8.886824 —50.0

with a corresponding cost of J = —0.6831173. Hence, this K simultaneously stabilizes the
two plants.
A plot of best fitness and average fitness versus the number of generations is given in

Figure 4.

Example 4:
We nuow onsider the simultaneous stabilization of a lateral autopilot for a remotely pilote:d

vehicle [13]. The state vector for this system is

£(t) =

S 1w e

hn 6‘ L
where v is the vehicle velocity parallel to the pitch axis, p is the roll rate, r is the yaw rate, o
is the roll angle, and §, is the aileron deflection. The state equations for this 1ystem are given

by

[ 085 2547 9795 3214 0 ] [0
-0.339 -RTR9 1765 0 59.89 +¢1.71 0
Me)y=| 0021 05T <1407 0 6.ATT + @322 | x(t) F | O | ult)

() 1 0.0256 0 ) 0
) ) 0 } 20 0

whete
a1



The unknown coefricient C, 5, varies in the range
—099 S (:n.Sa _.<_ 2.99

with a nominal value of C,s, = 1.99. We considered stabilization of the three plants corre-
sponding to Crsa = 1.99 (¢ = 0), Cpsa = —0.99 (¢ = —1.5), and Crsa = 2.99 (¢ = 0.5).

The feedback gain matrix for this example is row vector with five elements. These five
gains were restricted to be within the ranges £0.01, £0.1, 1, +0.1, £1 respectively. With
a population of 200 members and a resolution of 12 bits per gain, the most fit member after

500 generations was found to be
K = [ 0.0074900 0.0581720 —0.7389200 -0.0997060 0.1058080 ]

with a corresponding cost of J = —1.894160.
A plot of best fitness and average fitness versus the number of generations is given in

Figure 5.

I’xample 5:
Consider the statilization of a satellite on a circular, equitorial orbit [14]. The state vector

is given by

[~ ~ T Pl |

0
where r and 8 are the polar coordinates of the satellite. The linearized equations of motion

for small perturbations about an orbit are given by

0 1 0 0 ] 0 0]
. w? 0 0 2ur 10
#H)=|" o o 1 *0+|g g "‘”)
0 :jf 0 0 0 *

where ry is the nominal radius and w is the nominal angular velocity., These two quantitie
are related by the expression rjw? = k where k is constant whose units are normalized so tha
ko= 1. The control u{t) 1s apphied by gas ‘hrusters,

W consider the simultaneous stabihzation of s svstem for two operating, pomt< st

ro 1 and rg - 100 For this problem we used o population of 100 members with a reeoltios



of 10 bits per gain. The gains were constrained to be within £12. The most fit member after
900 generations w:s found to be

K = —11.95312 —6.632698 —9.703076 —4.731096
- —7.874

T
11.88332  5.367558 -12.0 874912

with a corresponding cost of J = —2.969937.
A plot of best fitness and average fitness versus the number of generations is given in

Figure 6.

Example 6:
In this example we consider the stabilization of a track guided bus, as shown in Figure 7

[13]. The state variables are a, ¢, ¢, y, and 8. The state equations for the system are giveu by

—~668ab —1+18lab® 0 0 198ab 0
16.8a —409ab 0 0 67.3a 0
z(t) = 0 1 0 0 0 z(e)+ | 0 | u(t)
1/b 6.12 160 0 0
0 0 0 0 O 1

where the parameters a and b depend on the vehicle velocity, mass, and the coefficient of

friction. The values of a and b vary in the range

1 11
325%Sg95' 20 50%

1 R

[lere we consider endpoint stabilization; that is, we wish to simultaneously stabilize the four
plants corresponding to the following four pairs of a and b: (¢ = 1/9.95,5 = 1/3), (a =
1/9.95,b = 1/20), (a = 1/32,b = 1/20), and (a = 1/32,b = 1/3).

The GA applied to this problem with a population of 100 members and 10 bits resolution
per gain. Each gain was constrained to be within £20. After 1350 generations, the most it

member was
KN =] -20.0 =5.077934 -0.5856890 -13.39830H -19.92187

where the resulting cost was found to be J = 04991887,

A plat of the best litness and average fitness over the population s given in Figare



5 Conclusions

The problem of simultaneously stabilizing a finite set of plants under full state feedback was
considered in this paper. The approach to finding a set of gains was to minimize an objective
function with the constraint that the magnitude of each controller gain be bounded by some
constant. Determination of these constants is one of the major difficulties of this approach.
The easiest method is to find the gains which place the eigenvalues of each plant seperately
to some desirable location in the complex plane, and then determine appropriate bounds on
the gains by inspection.

With the approach outlined in this paper, it is rarely critical that the global optimum be
found. Ifa set of controller gains is found which makes the cost J in Equation (2) negative, then
these gains will simultaneously stabilize the set of plants. By optimizing the gains, however.
we determine those gains (within the prescribed bounds and resolution) which minimize the
slowest rate of exponential decay for the set of plants under consideration and thereby improve
performance.

Finally, we remark that the approach outlined in this paper can be modified to ensure that
the closed loop system eigenvalues are sufficiently damped. For example, suppose that one
pair of the closed loop eigenvalues of the system is A\; 2 = —a + bj. If the ratio b/a is larger
than some desirable value o (based on performance requirements), then a penalty term can be
added to the cost J given in Equation (2), thus penalizing gains which result in underdamped

system eigenvalues.
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Figure 3: Two-mass system used in Example 3.
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Figure 7: Schematic of track guided bus used in Example 6.
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