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ABSTRACT

I review the generating functional of hard thermal loops derived

by Taylor and Wong.
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1. Introduction

Dynamical processes in gauge theories at high temperature exhibit an un-

expectedly rich structure. To compute consistently in perturbation theory it

is necessary to resum a certain subclass of one loop diagrams, termed "hard

thermal loops", which are the dominant loop diagrams at high temperature.1"5

(For pedagogical discussions see Ref. 6.) With g the gauge coupling constant

and T the temperature, hard thermal loops arise from one loop diagrams,

proportional to g2T2 times functions of the momenta. They appear in the

amplitudes between N gluons, and between a quark pair and N — 2 gluons,

for all N > 2.

The central miracle which occurs for hard thermal loops is that they are all

gauge invariant. By this I mean that the hard thermal loop in any amplitude

is independent of the choice of gauge. This was established between axial and

Feynman gauges by Frenkel and Taylor,3 and between arbitrary Coulomb and

covariant gauges by Braaten and I.2 It is crucial to establish gauge indepen-

dence for arbitrary covariant gauges, for away from Feynman gauge individual

diagrams have gauge dependent terms which are powers of l/g times hard

thermal loops. Yet when all diagrams which contribute to a given amplitude

are summed together, the gauge dependence cancels, leaving the hard thermal v

loop in Feynman gauge. Û
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In their work Frenkel and Taylor3 showed than an 'identity can be derived
to simplify the hard thermal loop in the four-gluon amplitude. Braaten and
I4 generalized this to the hard thermal loops in arbitrary amplitudes. Using
special properties of hard thermal loops, we derived identities which reduce
the color structure of iV-point functions to an elementary form: the amplitude
is equal to the Casimir of the virtual field in the loop times a sum over terms,
each of which has a color structure typical of an N-point function at tree level.

Taylor and Wong5 demonstrated that these results can be summarized
elegantly by means of a generating functional for hard thermal loops. They
showed that if one starts with the hard thermal loop in the two-point functions
(the self energies), and takes the gauge invariance of hard thermal loops for
granted, then the complete generating functional is determined solely by gauge
invariance.

In this article I review the generating functional of Taylor and Wong. For
the gluon action I obtain a form which is a bit different from theirs, Eq. 15
below. While the derivation is almost elementary, it does take the gauge
invariance of hard thermal loops for granted. This gauge invariance is unex-
pected, for hard thermal loops are off shell Green's functions which in general
are gauge dependent. The proof of gauge invariance in covariant gauges2 is
not particularly difficult, but it is roundabout, relying upon induction and the
Ward identities obeyed by hard thermal loops. Surely there is a more direct
understanding of this apparent miracle.

2. Quark and gluon amplitudes

I start with the hard thermal loops between a quark pair and any number
of gluons, for they are simpler than purely gluonic amplitudes.

In Feynman gauge the self energy of the quark is

P and K are four momenta; e.g., K» = (k°,k), with k = kk. C/ = (iVc
2 -

1)/(2NC) is the Casimir for a quark field in the fundamental representation of
an SU(NC) gauge theory. I employ the imaginary time formalism at nonzero
temperature, so the loop momenta k° = (2j + l)irT. The sum over k° can be
done either by brute force, using contour integral representations, or by the



"Saclay trick", using fourier transforms of the propagators in imaginary time.7

Either way, after the sum over k° is done there remains a sum over energy
denominators:

f 2 ig'C, f d3k (h(Ek) + n(Ep.k)) I k ft \
yr> 2 J (2^)3 EkEp.k [ijfi + Ek- Ep-k

 + C'C•) + • • •
(2)

Ek = k is the energy of the virtual quark, and JE7̂_jt = \p — k\ the energy of
the virtual gluon; n(E) and n(E) are the appropriate statistical distribution
functions. I introduce the vector

which is lightlike, K2 = 0; note that K depends only upon the direction, and
not the magnitude, of k. I analytically continue p° —> —iE, and assume that
the energy E and the momentum p of the external quark are both "soft," on
the order of gT. The dominant term in the quark self energy occurs when the
loop momentum k is "hard," on the order of 71, with the energy denominator
E + Ek — Ev-k ~ P"K'i. Then the hard thermal loop in the quark self energy,
8T2, is given by

2

For convienience I introduce the notation P-K = P"Kti, etc.
In Eq. 3 the integral over f dk decouples from the angular integral over

k, fdQ. The integral over f dk is proportional to T2, which defines the hard
thermal loop; for soft P ~ gT, Eq. 3 is of order g2T2/P-K ~ gT. I remark that
while there are other energy denominators besides those written in Eq. 2, Eq.
16c of Ref. 7, they do not contribute to the hard thermal loop. For example,
there is an energy denominator ip° + Ek + Ep-k'- after analytic continuation
this is proportional to 2k ~ T at hard k, and only contributes to the quark self
energy through terms of order g2T, down by g from the hard thermal loop.

Although the angular integral in Eq. 3 can be done directly, it is best to
leave it as is. Since the direction of the unit vector k is just an integration
variable, if Eq. 3 is sandwiched between quark fields, to obtain SS2, the
effective action for the hard thermal loop in the quark self energy, we just
replace the quark momentum, P^, with the operator id^.



Eq. 4 is very suggestive. Let the hard thermal loop between a quark pair
and N — 2 gluons be STN, so the generating functional of all hard thermal
loops between a quark pair and any number of gluons is, schematically,

SS = £ ^ 8YN AN~2 $ • (5)
N=2

If we assume that SS is gauge invariant, then it is obvious how to generalize
from the two point function: in Eq. 4, merely replace the ordinary derivative,
dp, with the covariant derivative in the fundamental representation, D^ = diL-\-
igAfj. [A^ = taA^ with ta the color matrix for the fundamental representation).
Thus

SS = -
2 J iw " Di>k

This is equivalent to Eq. 7 of Taylor and Wong.5 Eq. 6 generates correla-
tion functions in momentum space, so d^ represents the momentum operator.
Alternately, Taylor and Wong write SS in coordinate space. Introducing the
vector K" = (—i,k), the position variable congugate to P-K is Xk = x-K";
then the fundamental propagator 1/D^-K depends nontrivially only upon Xk,
equal to a step function times a path ordered exponential of igA-K, Eqs. 5
and 6 of Ref. 5. I'm used to momentum space, so to me the SS above is more
familiar.

To be honest, SS should have been obvious to us in Ref. 4. In Eq. 3.6 STN

is a sum over strings of <°'s, clearly the expansion of 1/D*-K. What we did
not notice is that the angular integrals which enter in SFN, Eq. 4.5, reduce to
Eq. 6. But all one needs to show this is to plug the identity of Eq. 4.6 into
Eq. 4.5.

3. Gluon amplitudes

While SS follows easily from the quark self energy (and gauge invariance!),
the same is not true for the generating functional of hard thermal loops in
purely gluonic amplitudes, SS. The derivation of SS by Taylor and Wong5 is
an exquisite example of the power of gauge invariance.

Write the complete generating functional as a sum of two terms:

SS = ^ (Nc + -A tr I fdix^-A2
0+ / ^ W(gA-iq) . (7)

j \ I J \J I V 4 r r J



I assume that there are Nj flavors of massless quarks in the fundamental
representation; tr is the trace over color. The prefactor in SS, Nc + Nj/2, is
the sum of Casimir's for gluon and quark loops.

The first term on the right hand side is just the usual static electric mass for
a gluon at nonzero temperature. The second term, W(gA-K), is the functional
to be derived. I assume W is a functional of gAK: the g is obvious, for W
arises from one loop diagrams, where each factor of an external A^ brings in
one power of g. That A^ enters only as AK, with an integral over k, is taken
from experience with hard thermal loops.2"4

Consider first the static limit when p° = 0 for all gauge fields. This can be
studied in imaginary time, where it is well known that the only hard thermal
loop is the static electric mass, with W = 0. This is consistent with the gauge
invariance of SS, for under static gauge transformations Ao transforms like a
colored scalar field, and tr(Al) is gauge invariant all on its own.

Matters are very different after analytic continuation, p° —> —iE. Now the
allowed gauge transformations are time dependent, and v4M transforms as

, (8)
l9 )

w = uata. For small u,

SuAp = Z?Mw = {d^-\-ig[A^)u ; (9)

Z?tf is the adjoint covariant derivative.
Unlike the static case, the electric mass tr(A^) is clearly not invariant under

Eqs. 8 and 9. For an infintesimal gauge transformation,

Jd4xSutr(^Alj = j dixtr{-g2dQAQu}). (10)

The commutator term in the covariant derivative drops out because tr(A0 [Ao, w])
—tr([A0, AQ]IJJ) = 0; Eq. 10 follows after integrating by parts with respect to
do. Next comes a trick: to bring it into a form similar to that of W, I introduce
an integral over /dfi, and use the fact that / dil A-k = 0. Then Eq. 10 equals

[d*x f^
J J 4TT

(11)

If the generating functional SS is gauge invariant, the gauge transformation
of the electric mass in Eq. 11 must be cancelled by that of W. For small u,



Thus 6S is gauge invariant if

Because W is a functional of gA-K, Eq. 13 can be used to compute the
derivative of W with respect to g:

g S(A-K) dg
(14)

This is equivalent to Eq. 22 of Taylor and Wong.5 Their form is given by
writing the adjoint propagator, I/D-K, in coordinate space.

Taylor and Wong express W as the integral of dW/dg with respect to g.
I make the trivial observation that since g only enters dW/dg through the
combination g/D-K = g/(d + ig[A,)-K, at least formally it is possible to
integrate Eq. 14 with respect with g. The final result for W is:

(15)
In this expression there is strict ordering of the operators: e.g., the expansion
of the logarithm is as a power series in (1/d-K) ig[A-K, .

Eq. 15 can be checked in two limits. First, since it starts with a time
derivative, do(A-K), W vanishes if all momenta are static, which is consistent
with the euclidean analysis discussed above. Secondly, we can consider the
analogue of Eqs. 14 and 15 in the abelian theory. For hot QED the hard
thermal loops in the ./V-photon functions vanish for all N > 2.4 To see this,
follow Ref. 5 and write DK = Sl^d-KQ, where Cl(xk) = exp{ief*k

xA(x'k)-
K dx'k), xk = x-K*. With path ordering D-K can be written in this form for
either abelian or nonabelian fields. For nonabelian fields fi doesn't commute
with A- K, and this representation of D-K does not reduce Eqs. 14 or 15.
For abelian fields, however, fl can be commuted through. Thus Eq. 14, which
starts out with the two-point function, stops there. This is less obvious with
Eq. 15: because of the factors of 1/[A-K, , the term quadratic in AK does
not vanish, but all higher powers do.

The effective actions in Eqs. 6, 7, and 15 agree with the diagrammatic
analysis of Ref. 4. Each is proportional to the Casimir of the virtual field



in the loop: the quark action SS to C/, the gluon action SS to Nc + Nj/2.
The expansion of SS and SS in powers of A-K gives a color structure typical
of a tree amplitude. For the quark action the expansion of the fundamental
covariant derivative produces a string of ta's, Eq. 3.6. For the gluon action the
expansion of the adjoint covariant derivative in powers of ig[A-K, produces a
series of nested commutators which reduce to a string of structure constants,
Eqs. 2.17 and 2.20. As discussed at the end of Sec. 2 it is easy to see that
the angular integrals generated by the expansion of Eq. 6 agrees with Ref. 4.
This is not at all obvious for the gluon action in Eqs. 7 and 15. This is best
shown by checking that the two- and three-point functions agree. Given that,
the Ward identities satisfied by hard thermal loops imply that all higher point
functions concur (in the spirit of Eq. 2.14).

I conclude with speculation. The gluon action SS is reminiscent of the
Wess-Zumino action in two space—time dimensions: as W is added to tr{A^)
to make SS gauge invariant, so in the Wess-Zumino action is a complicated
functional added to tr(A^) to make the sum gauge invariant. Perhaps this im-
plies that there is something topological about SS, and is why it is proportional
to a rational number, iVe + Nf/2.
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