
CERTAI DATA
CONTAINEDIN THIS
DOCUMENTMAYBE
DIFFICULTTOREAD

IN ,MICR()FICHE
PRODUCTS.



IS-M--657

w

C 0/WF- DEgl006674

A StructuredRepresentationforParMlel

AlgorithmDesignon Multicomnputers

Xian-He Sun " Lionel M. Ni t

abstract

Traditionally, parallel algorithms have been designed by brute force meth-
ods and fine-tuned on each architecture to achieve high performance. Rather
than studying the design case by cruse, a systematic approach is proposed. A
notation is first developed. Using this notation, most of the frequently used
scientific and eligineering applications can be represented by simple formulas.

These formulas constitute the structured representation of the corresponding
applications. The structured representation is simple, adequate and easy to
understand. They also contain sutTicicnt information about uneven allocation

and communication latency degradations. With the structured representation,
applications can be compared, classified and partitioned. Some of the basic

building blocks, called computation models, of frequently used applications are
identified and st,,died. Most applications are combinations of some computation
models. The structured representation relates general applications to compu-

tation models. Studying computation models leads to a guideline for efficient

parallel algorithm design for general applicationsl

Index Terms:

Parallel processing, hlulticomputer, Programming paradigm,
Structured representation, Comput._tion models,
Communication complexity, graph

*Ames Laboratory, USDOE, Ames, IA 50011-3020

tComputer Science Dept., Michigan State University, E. Lansing, Michigan 48824

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-_ _,_, _l I_
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views -_).
and opinions of authors expressed herein do not necessarily state or reflect those of the

UnitedStatesGovernmentor anyagencythereof. DtS'I'RIBL.t'[I(.)N OF '[_"i/(; DC ;.,;U_'/_E_NF'IS UNL.}MITE['J'



1 Introduction

l),'_i_tlitlg efficient l>;_ra,lleIalgorithms requires users to understa+nd the performance cha+r;w,teristic_,

of parallel machines and to tnodify their algorithm accordingly. These rnodific_rtions art., probletn
dependent. Therefore, l)ara.llel algorithms have had to be fine-tuned case by case to a,chh,w' higher

i)orfi:)rnl;tilce. The paiuful, elusiw, design process has excluded casual users and restric.ted pa.ra.lM

computers to a rather small professional community. This situation needs to be changed to make,
parallel computers usable for other scientists.

We wouht like to reduce the burden of parallel algorithm design and make the design proce_,s
more systematic. This raises the obvious questions: What are the techniques for developing efficient
p:_rallel algorithms? How could these techniques be used on a given application? To answer the

first q_lestion, Nelson and Snyder [1] have proposed the concept of parallel paradigm and identified

several paradigms. Paradigms provide good examples and may help users understand parallel

computation. I[owever, these paradigms a.re described verbaUy and are isolated from each other.
Ilow to connect these paradigms with general applications is unknown.

In our research, we approach these two questions from a different angle [2]. We study parallel
algorithm design from a general point of view. First, a representation methodology, structured
representation, is developed. With this representation, most of the frequently used scientific and

engineering applications can be represented by simple formulations. These formulations are com.

binations of some simple data structures, called parallel computation models, and provide adequate
information about performance degradations. Parallel computation models are the basic build-

ing blocks of structured representations. Since both parallel computation models and parallel

paradigms are cornmonly used data structures, they share some similarities. A major advantage
of p;tralM computation models over parallel paradigms is that computation models are based on

nlathe_nat!cal formulations, and they arc.,the constructing components of general applications. The
design techniques used in computation models are the techniques needed for general algorithm
d,'sign, and the design techniques are used in a similar way.

The paralM systems considered in this study are multicomputcrs. Multicomputers are message
passing distril>uted-memory m_Lltiprocessors [3]. Multicomputers with hundreds or thousands of

processors are available comlnercially. All first generation multicomputers adopt the store-;tnd-

forward communication mechanism and the hypercube topology. Second generation multicomputers

have more advanced co_nmunication mechanisi1_s. The structured representation proposed in this

study aims at these new communication mechanisms. The generic architecture of multicomputers
is del)icl,cd in Fig_lre 1.

Figure 1: A Generic Multicomputer Architecture



2 Structured Representation

Parallelism can be achieved by dividing a given application into piecos, call('.d subta.¢_,',_,an,t .qc,lv;nl._
those pieces concurrently. Ideally, th(,s_, sul_tasks can be solved ind_,pend,mtly, where til,' ox,,'h,lnge

of interlnediate result is negligible, l.lnf()rtut_a,t(,ly, most appli('ations do not hatve this ea.sy par-
a,llel]s:_._property [4]. For most a.pplications coInmunica, tion is necessary for exchanging da_t;t and
coordinating a.ctivities. Altl_ough various asynchronous techniques have been designed to reduce

the communication overhe;td, most communica, tion must be achieved in a synchronous fa.shioT_.

that is the receiving nod(., must receive the communicated message before continuing. This syn-
chronous communication requirement makes efficient algorithm design very difficult. The load
needs to be balanced between synchronization and special care has to be takento red_,,e the c,,ir

munication overhead. Figure 2 depicts the general parallel computation pattern with synchronous
communication considered, lt shows thai: the solving process consists of two phases, compute and

dater-exchange. These two phases occur alterna.tively and repetitively, anti, therefore, form Lh,,
computc-exchangc computation. The data-exchange phase involves communication between com-

pute phases. The communic,xtion patterns vary l_trgely from application to a,pplica, tion, and may
be represented by a notation. To simplify this notation, we restrict ourselves to certain classes

of communication, which are large enough for our purposes - describing the most frequently used
scientific and engineering applications.

-vi I [

Figure 2: Compute-Exchange Computation

A processor sending a nlessage in a communication is called a sender. A processor receiving
message in a communication is ca,lied a receiver. A processor could be both sender and receiver in

a comn_unication. A graph G(V, la:) is a structure which consists of,_ set of vertices V = {v_,va, ...}
and a set of e@es E = {ct,e2,...} [,5]. If we let processors in a communication be vertices in tt

graph and add directed edge (v,w) from v to w if processor v sends a message to prc,cessor w; a
digraph (directed graph) is formed. This digraph is called the communication digraph. Following:

th,_ notations of graph theory [5], the outdegree of e_w.'rtex v is the number of edges which have t, as
their start-vertex. In other words, the outdegree of a vertex v is equal to the number of destinations

lh;It _, sonds its nle,,.',sag_?to. For this reason wt., also call the outdegree of a vertex the degrr,, qf _

,,cT_der. The indegree of a w'rtex and the degree of a receiver are defined similarly. The degrre of,l

r'ec(ivcr is the number of sources front which it receives messages.

Definition 1 A reg_llar communication is a communication in which all ,senders have the same

degree and all receiw:_rs have the same degree.

For a given undirected graph, if for every two vertices u and v there exists a, path whose startint._,

w_rtex is u and whose ending vertex is v, then the graph is connected. A cop,netted subgr;_li}_

G(V', E') is a connected component if there is no other connected subgraph containing G(V', E")
as its proper subgraph.



4
Tile underlying (undirected) graph of a digraph is the graph resulting from the digraph if

tile direction of tile edges is ignored. A connected component of a digraph is tile corresi)on(lill_,
subtligraph of tile coiinected colnl)onent of its underlying gr_tph.

A connected component of the communication <ligr;_ph is called _tpattern of the. coxnnluxlical.i(nl.

Definition 2 A regular communication is a regular data-exchange if it consists of one or more
copies of the same pattern.

By our definition, the communication requirement of a regular dat_r-exch;mge is given by the

number of patterns it contains. The pattern of a communication is described by the number
of senders and the number of receivers in this p_rttern. The complexity of e;_ch sond(_i a,'d _,r

each receiver is given by its degree. Thus, a regular data-exchange can be represented using five
parameters as

Pis(D), (1)
where P is the number of instance of the pattern, 5" is the number of senders in each instance of

the pattern, and D is the degree of the senders. Similarly, R is the number of receivers in each

instance of the pattern, and d is the degree of each receiver. An example of using this notation for

presenting communication is given in Figure 3. Notation(i) describes acommunication by five
parameters. Since messages must be sent one at a time. The number of times messages are sent and

received is the dominant factor in communication cost. Notation (1) indicates the characteristics
of a communication. More information may be needed when implementation is considered.

y".-:,,, y,'::...

Figure 3: Multicast Data Exchange

The second class of data-exchange which we want to identify is called conjunctive regular data-

ca'change. We use the same five para, meters to identify conjunctive regular data-exchange. The

difrerex_ce between regular data-exchange and conjunctive regular data-exchange is that in con-
junctive regular data-exchange the pntterns are not disjoint, they conjoin one another. Consider

two sp_<ial cases: con.jvnction at the sender side only and conjunction at the receiver side only. We
have two general notations,

P[S(IO), R_(d)], (2)

a li d

P[<(D),n(d)l, . (al
where tile subscript, c, points out which side has conjunctions. An example of conjunctive r,,_;ula:-
data-exchange is given in Figure 4, in which the receiver side has conjunction.

A graph G'(V', E')is _r partition gra,ph of G(V, E)if G'(V',E')is formed by splitting, a s_b:_et

"of vertices {vi, v2,...v,_} C V into tv,o subsets of vertices as {v_, v_, ...v'} and {v_,
l r ? f 11 li

v,, v_' are the vertices formed by splitting vertex vi, and ha_ing edges (vi, v.i) and (v,, vi) when (dEe
(_'i, rs) exists in graph G(V, El. These divided vertices are called partition vertices. Figure 5 shows



!

," ,,", ;', ,_i,
J s _l °s _ / _ wS_ _ _

Figure 4: Conjunctive Data Exchange

two partition graphs of the given graphs. With this terminology, conjunctive regular dat,_-exchant?;e
can be defined more mathematically ns follows.

Figure 5: Partitioning of Graphs

Definition 3 A regular communication is a conjunctive regular data-exchange ff one of its partition
graph.s conaists of onc or more copics of the same pattern. If all partition vertices are senders, the

conjunctive regular data-exchange is a sender conjunctive t_gular data-exchange. If all partition

vertice.s are receivers, the conjunctivc regular data-exchange is a receiver conjunctive regular data.
exchange.

Since a regular communication patterns could have more than one partition graph which consists

of one or more copies of the sa.nle pattern, a conjunctive regular data-exchange could have rn(->r,:
them ono notation.

Once the data-exchange phase has been identified in an application, we can describe the ap-

plication in terms of data-exchange. An application might have different data-exchange phases.

Writing these data-exchange phases together in order by using the _ symbol and adding in the

con,t)llte phases, we have a formula, calle¢l a structured representation, for each application. Fig-
ure 6 shows how to represent the Fast D)urier Transform (FFT) computation in terms of regula.r

data-exchange. The communication divides the computation into layers. The total computation
(l,,pcn_ls on the nurnber of layers as well as the computation requirement at each layer. Xi i,; the

conlputation work on each processor between data-exchange phase i - 1 and i, if we have even

allocation. Xi is the computation work of the. processor which has the largest workload among ali
the working processors in the compute phase i, if we have uneven allocation.



h

+ x,) k = tog(N)= 3
i=l

Figure 6' FFT (Butterfly) Computation

We can see from Figure 6 that different communications could have the same data-exchange

representation. The reason is that our notation is a high level notation. It provides the communi-

cation complexity for the data-exchanges. It does not contain detailed information about how the
communication takes place.

Odd-even cyclic reduction is a commonly used method for scientific applications. A well known

parallel algorithnl for tridiagonal linear systems is based on odd-ever, cyclic reduction [6]. l,'rom
Figure 7 we can see that the odd-evclt cyclic reduction application contains two different structures.

:l'lLe upper half of Figure 7 is one structure and the lower half is another structure. This is a

common phenomenon of scientific applications. Most of the frequently used scientific applications
are colnbinations of a, few sinai)le structures, which we call computation models. The information in

coznputation models can be used in general applications. Studying computation models will lead

to a gon(;ral algorithm desigr_ guid(,line for scientific appiic_tions.

3 Parallel Computation Models

Seven computation nlodels are identified and studied in this section. They are local computation
model, global, exchange complltation model, compute-aggregate-broadcast computation model, divide,-

and-conq,Ler computation model, domain decomposition computation model, pipelined computalion

model and rccursive doubli_9 cornputation model. The structured representations of these compu-
tation models are presented. We have found that various scientific applications are combinations
of these models.

4 Conclusion

Tradition_lly, paralh, l Mgorit, hms have been designed by brute forcenlethod and tim: tuned on

each architecture to _chieve high performance. A mathematical foundation is necessary in moving
toward a systematic design methodology for parallel algorithms. In our study, a notatiolt was first

develol)e(l. Using this notation, most of the frequently used scientific and engineering al)plications



k-1

_ _--,2(k-_
_((2 k-; 1)[3_(11,1(31]+X;1+ _;=_ )(2i-k[l(2),2(1)l+Xi)
i---1

k = [log(N)] = 4

Figure 7' Odd-Even Cyclic Reduction

can be represented by simple formulas. These formulas constitute tile structured representation
of tile corresponding applications. The basic building blocks of these structured representation,

c;dled parullcl computation models, are identified and studied. Forming structured representation
and acquiring computation models are the first step in developing such a foundation. Structured

representations relate general applications to computation models. Studying computation models
leads to a guideline for efficient parallel algorithm design for general applications.

References

[1] P. Nelson and L. Snyder, "Progranlming paradigms for nonshared memory parallel computers,"

in The Characteristics of Parallel Algorithms (L. Jamieson, D. Gannon, and R. Douglass, eds.),
The MIT press, 1987.

[2] X.-tl. Sun, "Parallel cornputation models: Representation, analysis and applications." Ph.I).

Dissertation, Computer Science Department, lVlichigan State University, 1990.

[3] K. tlwang, "Advanced parallel processing with supercomputer architectures," Proc. of the IEI"E,
pp. 33-47, Oct. 1987.

[.1] G. Almasi and A. Gottlieb, Highly parallel computing. The Benjamin/Cummings Publishing
Company, Inc., 1989.

[5] S. Even, Graph Algorithms. Computer Science Press, 1979.

[6] S. Johnsson, "Solving tridiagonal systems on ensemble architectures," SIAM J. on SSTC, vol. 8,
pp. 3.54-392, May 1987.



ii !_i

i




