CERTAIN DATA
CONTAINED IN THIS
DOCUMENT MAY BE
- DIFFICULT TO READ
IN MICROFICHE

PRODUCTS.

3 SQ®

-

IS-M--657

CONE-G/ O, DEOL 006674

A Structured Representation for Parallel
Algorithm Design on Multicomputers

Xian-He Sun * Lionel M. Ni t

abstract

Traditionally, parallel algorithms have been designed by brute force meth-
ods and fine-tuned on each architecture to achieve high performance. Rather
than studying the design case by case, a systematic approach is proposed. A
notation is first developed. Using this notation, most of the frequently used
scientific and euginecring applications can be represented by simple formulas.
These formulas constitute the structured representation of the corresponding
applications. The structured representation is simple, adequate and easy to
understand. They also contain sufficient information about uneven allocation
and communication latency degradations. With the structured representation,
applications can be compared, classified and partitioned. Some of the basic
building blocks, called computation models, of frequently used applications are
identified and studied. Most applications are combinations of some computation
models. The structured representation relates general applications to compu-
tation models. Studying computation models leads to a guideline for efficient
parallel algorithm design for general applications.

Index Terms:

Parallel processing, Multicomputer, Programming paradigm,
Structured representation, Computation models,
Communication complexity, graph

* Ames Laboratory, USDOE, Ames, 1A 50011-3020
'Computer Science Dept., Michigan State University, E. Lansing, Michigan 48824

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights, Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark, i v

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- Yeg %

mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof. DISTRIBUTION OF THIC DO CUMENT IS UNLIMITEDR

1 Introduction

Designing efficient parallel algorithms requires users Lo understand the performance characteristies
of parallel machines and to modify their algorithm accordingly. These modifications are problem
dependent. Therefore, parallel algorithms have had to be fine-tuned case by case to achieve higher
performance. The painful, elusive design process has excluded casual users and restricted parallel
computers to a rather small professional community. This situation needs to be changed to make
parallel computers usable for other scientists.

We would like to reduce the burden of parallel algorithm design and make the design process
more systematic. This raises the obvious questions: What are the techniques for developing efficient
parallel algorithms? How could these techniques be used on a given application? To answer the
first question, Nelson and Snyder [1] have proposed the concept of parallel paradigm and identified
several paradigms. Paradigms provide good examples and may help users understand parallel
computation. However, these paradigms are described verbally and are isolated from each other.
How to connect these paradigms with general applications is unknown.

In our research, we approach these two questions from a different angle [2]. We study parallel
algorithm design from a general point of view. First, a representation methodology, structured
representation, is developed. With this representation, most of the frequently used scientific and
engineering applications can be represented by simple formulations. These formulations are com-
binations of some simple data structures, called parallel computation models, and provide adequate
information about performance degradations. Paralle]l computation models are the basic build-
ing blocks of structured representations. Since both parallel computation models and parallel
paradigms are commonly used data structures, they share some similarities. A major advantage
of parallel computation models over parallel paradigms is that computation models are based on
mathematical formulations, and they are the constructing components of general applications. The
design techniques used in computation models are the techniques needed for general algorithm
design, and the design techniques are used in a similar way.

The parallel systems considered in this study are multicomputers. Multicomputers are message
passing distributed-memory multiprocessors [3]. Multicomputers with hundreds or thousands of
processors are available commercially. All first generation multicomputers adopt the store-and-
forward communication mechanism and the hypercube topology. Second generation multicomputers
have more advanced communication mechanisms. The structured representation proposed in this
study aims at these new communication mechanisms. The generic architecture of multicomputers
is depicted in Figure 1.

Mamary — | T Manory
l Mg se Lot Camaamnbeation Mot ok]
Figure 1: A Generic Multicomputer Architecture

2 Structured Representation

Parallelism can be achieved by dividing a given application into pieces, called subtasks, and solving
these pieces concurrently. Ideally, these subtasks can be solved independently, where the exchange
of intermediate result is negligible. Unfortunately, most applications do not have this casy par-
allelism property [4]. For most applications communication is necessary for exchanging data and
coordinating activities. Although various asynchronous techniques have been designed to reduce
the communication overhead, most communication must be achieved in a synchronous fashion.
that is the receiving node must receive the communicated message before continuing. This syn-
chronous communication requirement makes efficient algorithm design very difficult. The load
needs to be balanced between synchronization and special care has to be taken to rednce the e~in
munication overhead. Figure 2 depicts the general parallel computation pattern with synchronous
communication considered. It shows that the solving process consists of two phases, compute and
data-exchange. These two phases occur alternatively and repetitively, and, therefore, form the
compute-ezchange computation. The data-exchange phase involves communication between com-
pute phases. The communication patterns vary largely from application to application, and may
be represented by a notation. To simplify this notation, we restrict ourselves to certain classes
of communication, which are large enough for our purposes — describing the most frequently used
scientific and engineering applications.

=
A1/

=L T T

Figure 2: Compute-Exchange Computation

A processor sending a message in a communication is called a sender. A processor receiving
message in a comraunication is called a receiver. A processor could be both sender and receiver in
a commanication. A graph G(V, E) is a structure which consists of a set of vertices V = {v,vs, ...}
and a set of edges E = {ey,ez,...} [5]. If we let processors in a communication be vertices in a
graph and add directed edge (v,w) from v to w if processor v sends a message to processor w; a
digraph (directed graph) is formed. This digrapn is called the communication digraph. Following
the notations of graph theory [5], the outdegree of a vertex v is the number of edges which have v as
their start-vertex. In other words, the outdegree of a vertex v is equal to the number of destinations
that » sends its message to. For this reason we also call the outdegree of a vertex the degree of -
sender. The indegree of a vertex and the degree of a receiver are defined similarly. The degree of a
recciveris the number of sources from which it reccives messages.

Definition 1 A regular communication is a communication in which all senders have the same
degree and all receivers have the same degree.

For a given undirceted graph, if for every two vertices u and v there exists a path whose starting
vertex is u and whose ending vertex is v, then the graph is connected. A connected subgraph
G(V', E') is a connected component. if there is no other connected subgraph containing G(V', £”)
as its proper subgraph.

The underlying (undirected) graph of a digraph is the graph resulting from the digraph if
the dircection of the edges is ignored. A connected component of a digraph is the corresponding
subdigraph of the connected component of its underlying graph.

A connected component of the communication digraph is called a pattern of the communication.

Definition 2 A regular communication is a regular data-exchange if it consists of one or more
copies of the same pattern.

By our definition, the communication requirement of a regular data-exchange is given by the
number of patterns it contains. The pattern of a communication is described by the number
of senders and the number of receivers in this pattern. The complexity of cach sender aad of
each receiver is given by its degree. Thus, a regular data-exchange can be represented using five
parameters as

PLS(D), R()), ()

where P is the number of instance of the pattern, § is the number of senders in each instance of
the pattern, and D is the degree of the senders. Similarly, R is the number of receivers in each
instance of the pattern, and d is the degree of each receiver. An example of using this notation for
presenting communication is given in Figure 3. Notation (1) describes a communication by five
parameters. Since messages must be sent one at a time. The number of times messages are sent and
received is the dominant factor in communication cost. Notation (1) indicates the characteristics
of a communication. More information may be needed when implementation is considered.

ININIR N

e

v‘l

. S .
RN AN
DR Y bty

AN R P N e e 2UNXD)

- OEBHENO

Figure 3: Multicast Data Exchange

AOTN
NN
1)

The second class of data-exchange which we want to identify is called conjunctive regular data-
erchange. We use the same five parameters to identify conjunctive regular data-exchange. The
difference between regular data-exchange and conjunctive regular data-exchange is that in con-
junctive regular data-exchange the patterns are not disjoint, they conjoin one another. Consider
two special cases: conjunction at the sender side only and conjunction at the receiver sxdn nnly. We
have two general notations,

P[S(D), R(d)], (2)

and

P(S.(D), R(d)], ‘ (3)

where the subscript, ¢, points out which side has conjunctions. An example of conjunctive regulir
data-exchange is given in Figure 4, in which the receiver side has conjunction.

A graph G'(V', E') is a partition graph of G(V, E)if G'(V', E') is formed by splitting a subset
of vertices {vy, v, ...v,} € V' into two subsets of vertices as {v},v},...v} and {vl,vQ, ..un}, where
v;, v are the vertices formed by splitting vertex v;, and having edges (vi,v}) and (] ,v7') when edge
(v, v;) exists in graph G(V, I). These divided vertices are called partltlon vertlces. Fig\m: 5 shows

71

ainjaja]e

’
’) ’ M
SN J N oSN a2l

’ Y Y

K " ',' \ ',' “‘ . X
I3 k" y Y o\
HELUHDHLDLE

Figure 4: Conjunctive Data Exchange

By
" ‘\‘ ' 'l \‘
SN

two partition graphs of the given graphs. With this terminology, conjunctive regular data-exchange
can be defined more mathematically as follows.

Pre

Purtionad (raph
Case Orie
Vaice
Ongunal Orph Prrsioned Oraph
Case Two

Figure 5: Partitioning of Graphs

Definition 3 A regulur communication is a conjunctive regular data-exchange if one of its partition
graphs consists of one or more copies of the same pattern. If all partition vertices are senders, the
conjunctive regular data-erchange is a sender conjunctive regular data-exchange. If all partition
vertices are receivers, the conjunctive regular data-ezchange is a receiver conjunctive regular data-
exchange. |

Since a regular communication patterns could have more than one partition graph which consists
of one or more copies of the same pattern, a conjunctive regular data-exchange could have o
than one notation.

Once the data-exchange phase has been identified in an application, we can describe the ap-
plication in terms of data-exchange. An application might have different data-exchange phases.
Writing these data-exchange phases together in order by using the 3~ symbol and adding in the
conipute phases, we have a formula, called & structured representation, for each application. Fig-
urc 6 shows how to represent the Fast Fourier Transform (FFT) computation in terms of regular
data-exchange. The communication divides the computation into layers. The total computation
depends on the number of layers as well as the computation requirement at each layer. X; is the
computation work on each processor between data-exchange phase ¢ — 1 and 1, if we have even
allocation. X;is the computation work of the processor which has the largest workload among all
the working processors in the compute phase 7, if we have uneven allocation.

ST

A
X | Armam

ATels]sele

-
[N)

D X
e
DL

A

[
[T e
R,

D2(27N2(1),2(0]+ X;) k= log(N) =3

t=1

3
et ~
.....
T TR L S
- e

Figure 6: FFT (Butterfly) Computation

We can see from Figure 6 that different communications could have the same data-exchange
representation. The reason is that our notation is a high level notation. It provides the communi-
cation complexity for the data-exchanges. It does not contain detailed information about how the
communication takes place. .

Odd-even cyclic reduction is a commonly used method for scientific applications. A well known
parallel algorithm for tridiagonal linear systems is based on odd-even cyclic reduction [6]. From

“Figure 7 we can see that the odd-even cyclic reduction application contains two different structures.
The upper half of Figure 7 is one structure and the lower half is another structure. This is a
common phenomenon of scientific applications. Most of the frequently used scientific applications
are combinations of a few simple structures, which we call computation models. The information in
computation models can be used in general applications. Studying computation models will lead
to a general algorithn design guideline for scientific applications.

3 Parallel Computation Models

Seven computation models are identified and studied in this sectior. They are local computation
model, global-exchange computation model, compute-aggregate-broadcast computation model, divide-
and-conquer computation model, domain decomposition computation model, pipelined computation
model and recursive doubling computation model. The structured representations of these compu-
tation models arc presented. We have found that various scientific applications are combinations
of these models. ‘

4 Conclusion

Traditionally, parallel algorithmns have been designed by brute force method and fine tuned on
cach architecture to achieve high performance. A mathematical foundation is necessary in moving
toward a systematic design methodology for parallel algorithms. In our study. a notation was first
developed. Using this notation, most of the frequently used scientific and engineering applications

AT,

St i e’] M08

] 500100
L~ == ‘[T ----- Jogm.iom
| STl] 20

k-1
SO - 1B, 13)] + X+ T2 (2i-k[1(2), 2(1)] + X2

=1

k= [log(N)] = 4

Figure 7: Odd-Even Cyclic Reduction

can be represented by simple formulas. These formulas constitute the structured representation
of the corresponding applications. The basic building blocks of these structured representation,
called parallel computation models, are identified and studied. Forming structured representation
and acquiring computation models are the first step in developing such a foundation. Structured
representations relate general applications to computation models. Studying computation models
leads to a guideline for efficient parallel algorithm design for general applications.

References

(1] P. Nelson and L. Snyder, “Programming paradigms for nonshared memory parallel computers,”
in The Characteristics of Parallel Algorithms (L. Jamieson, D. Gannon, and R. Douglass, eds.)
The MIT press, 1987.

Y
[2] X.-H. Sun, “Parallel computation models: Representation, analysis and applications.” Ph.D.
Dissertation, Computer Science Department, Michigan State University, 1990.

(3] K. Hwang, “Advanced parallel processing with supercomputer architectures,” Proc. of the ILEFE,
pp. 33-47, Oct. 1987.

[1] G. Almasi and A. Gottlieb, Highly parallel computing. The Benjamin/Cummings Publishing
Company, Inc., 1989.

(5] S. Even, Graph Algorithms. Computer Science Press, 1979.

(6] S. Johnsson, “Solving tridiagonal systems on ensemble architectures,” SIAM J. on SSTC, vol. 8,
pp. 354-392, May 1987.

