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ABSTRACT

Using variational techniques, we derive a feedforward network architecture that minimizes
a least squares cost function with the soft constraint that the mutual information between
input and output be maximised. This permits optimum generalization for a given accuracy.
A set of leearning algorithms are also obtained. The network and learning algorithms are
tested on a set of test problems which emphasise time series prediction.

1. Introduction

The goaloffeedforwardnetworksistomaximizenetworkapproximationaccuracywhilealsomaximizing

networkgeneralizability.The accuracyoftheoutputistypicallyobtainedby implementationoflearning

algorithmswhich minimize a leastsquarescostfunction.Generalizabilitycan be obtainedthrough

maximizationofa costfunctionproportionalto the mutualinformationbetween inputand output.I

These techniquesgeneralizework of Kohonen.2 In thispaper we demonstratehow the optimization

ofa compositecostfunctionthatcontainsboth a leastsquaresterm and a mutual informationterm

can leadto an architectureand tolearningalgorithmswhichyieldoptimum generalizationfora given

accuracy.

2. The Architecture

We can now examine the probability distribution which minimizes the cost function

F = E- rS, 1

where

/oE = -_ d_c dp e(x,y)P(ylx)P(x )

and

S = N dx dy P(y]z)P(z) log L' -_yi j.
Here, t(z, y) is

y)=
where

¢(z) =/o dy yP(y ] z) 2

and

P(y) = J dz P(y [ z)P(x). 3

Here, E is the least squares portion of the cost function and S is the mutual information. We find the

functional form of P(y ] z) by equating the functional deriative to zero. We obtain a relation bctwccn
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ii the conditional probability, P(y ] x) known as the posterior, and the pre-measurement probability, P(y)
known as the prior. In general, these two probabilities are related through Bayes theorem,

P(y lx)= P(x__]y) p(y)
PCx)

where i:_
/.

= Jo dy P(x l y)P(y).
P(x)

The conditional probability, P(x I Y), is known as the likelihood.

We can regard Eqs. 2 and 3 as well as the normalization condition,

1 = [dy P(ylx),
JO

as soft constraints. The co6t function can be modified to read

i PCv) + _(x)+ _(v)+'rr(x)v

where _(x) E 3, 3(Y) E Re, and 7(x) E !_m are functions that are determined by the constraints.
Setting the functional derivative,

6F'

_P(vI_)'
equal to zero yields

,(x,u) - r togL'_v) J . _(x)+ 3(v)+.w(x) - r = 0.

Solving for P(y Ix) obtains

_1,
io , E(x,y)¢(x) = e(x) dy V f dxE(x,y) P(Y) 3

where
v- (_(x)- ¢(_))rv+.¢r(_)¢(_)

E(x, V) - exp 2r '

This is an integral equation which contains the arbitrary function, 7(x), In general, -y(x) cannot be
chosen such that Eq. 3 is exactly satisfied. However, it can be approximately satisfied if

_(_)=2¢(_).

This forces the integrand in Eq. 3 to be sharply peaked around y = ¢(x), E(x, y) becomes

E(x,y)=exp [ e(x,y)lr ' 4

We see from Eq. 2 that the posterior is

1 E(x,y) P(V).
P(vl x) = P(x) f dxE(x,y)

This yields for the likelihood
E(x,y)

P(x lr) = f a_,(Ev)" 5
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The output of the network can be written

¢(x) - P(x) dy yP(x l y)P(y). 6

.... Equations 3 to 6 define _ near optimum architecture given the soft constraints imposed on the least
squares minimization. From Eqs. 5 and 4 it can be seen that the role of the Lagrange multiplier, T, is
to spread the input probability, P(x). This will degrade the fit of ¢(x) to f(x) but it will improve the
generalizability of the network. For very large values of v the network only acquires the average value
of f(x). This is the ultimate generalization.

Suppose we have just presented the network with N training pairs and we had exact knowledge of
the desired output. Then P(y) is given by

1 N

PCy)=_ _ 6(y- f(x_)).
p=l

Thus P(z) can be written

1 NP(x) = dyP(x l y)P(y) = ..ff E P(x If(xp)).
p=l

The posterior becomes

N P(x If(xp)! 6(y- f(xp))
PCyIx) =p=,_:_E_=,P(x I f(x,))

and the network output becomes

¢(x) = .._: fCxple(x l f(xp)).
ENq=,P(x l f(x,))

This architecture is a linear superposition of nonlinear elements. We can make the identifications

M

P(y lx) = _'uCx;_)v(y- aj)
j=l

P(x If(xe))
u(x;bp) - P(p Iz) = E_=_P(x If(xp))'

and

v(y- f(xp)) -- P(Y l P) - 5(y- f(xp)).

Moreover, we can write the specific form of the nonlinear element as

-1

, ,_fdxE(z,f(x,)) fd_E(x,f(xp))'

whe re

Equations 7 and 8 give the optimum architecture given that the desired output is perfectly known. The
architecture is self-consistant. The output must be known in order to specify e and e must be known
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" in order to specit_¢ the output. We can remove the self-consistancy in the limit of small r. In that case
the function E(x,f(xt,)) is sharply peaked about ¢(x) = S(zp). If we Taylor expand ¢(z) about f(xp)
the energy, (, becomes

Here,

Ox),,==,
is an n x ni matrix. Equation 7 becomes

I'r=' I-'/2 _xp[-(_- x.)T-rp(x-x.)]P 9

u(x'br)= _U=lIv?_I-'12exV[--(x-xq)r-yq(x-xq)]
where 7r is an n × n matrix given by

"vr-_ k 0x ):::, k"3;-_)::: '
If the data is preprocessed such that each input affects the output nearly independently and redundant,
and irrelevant inputs ate not present then Eq. 9 can be simplified to

n_l_xP[-n"("- "")_(_'-"')] 10
"(x,br)= _N=,/3712exvl_nq(X_ xq)r(x- Xq)]

where 7 can be written as a scalar/3 times a unit matrix. Writing Eq. 9 as Eq. 10 is a serious and

drastic approximation. The process of simplifying the matrix 7r is known as feature extraction.

The network output becomes
N

¢(z)- _l(xi))u(x,br) 11
I)--.l

where u is given by Eq. 10. We will permit the quantities f(xi)), xp, and/3i) to be adjustable parameters
that. minimize a given cost function. We can thus associate/3r and xr with the parameters br iii the
function u(x, br).

We can relate Eq. 11 to a network architecture. Note the identity,

g(x)= _"--' g.(x)p_(x) 12
h/

Here, pS(x) is a localized function of x about some ai. Hence, g(x) on the right of Eq. 12 can be
approximated by its Taylor expansion about ai. We have then,

N

¢(x)-Z[fj +(x-aj).dj] pi(x)
j=l

for an approximation to g(z). If we compare with Eq. 10 and 11 we can write a specific form for the
local function, p,

pi(X) -- /3;/2 eXp [-nr(x -, xi))T(x- xi))]. ???

This net is similar to the radial basis function net of Moody and Darken 3 but differs in two ways,
the use of normalization and also a linear term, (x - ai). di. The use of a normalization term was
suggested but not pursued by Moody and Darken. The addition of these two terms is responsible for
the reduction in the amount of training data needed to obtain reasonable approximations. As in the
case with radial basis functions, the training of fj and dj is linear and hence very fast. The widths of
the basis functions can also be trained. This training is nonlinear.
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$. Learning Algorithms
S.

The training for the linear quantities, fj and dj is given by

,, ,, p_(xp)Ekpk(_p) _
f;+_ = I_ + _[_(=p)-#,t=),)JEkLo_,(=,,)+/_k(=- ,,k)2:_(_p)] ' '

and
/_(z,- a_)pj(zp)Ek pk(zp)

di,+,d/+

r

Here,xp isa traininginputvectorand g(zp)isthe trainingoutputforthepthon-hnepresentation
ofdatato the network. The superscriptsp and p + I indicatevaluesofthe weightsbeforeand after

thepth presentationof trainingdata.The learningrate,a, isusuallytaken,to be I/3.This training
algorithmor modificationsofithavebeen usedintimeseriespredictionand incontrol.4-6

We can alsotrainthebasisfunctionwidths.Equation7 can be written

F' = N _ dz /o dy P(y , z)P(z) [-e(z. y)- rlog [P(y , z)P(z)fS(,)f dzE(z, Y) ], + r]
/

We have

J dzE(x, aj) \/_i] "

If we apply gradient descent learning to this cost function we find

"_'_(/_)2 [_--(_,p-b_j)T(T,p-b_j)] p(x,p;b;,_P) t)[_(T,p)-aj] l{[T,p,_)(,T,p)',a,b,_] ]3

where K is now given by

K(zp,y;a,b, jf) = log [,(xp,y;a,b,/_) r(x.;b,/3)] 1_r(y; a)-_"/2 + _r[a_ - ¢(x)lT[a.f - ¢(z)].

In each of these algorithms the conscience is affected indirectly by the errors that are being made in
the approximation of f.

The behavior of this algorithm on the logistic map is displayed in Fig. 1.

Summary

We have derived a network architecture from first principles, The network is designed to optimize both
accuracy and generalizatiox_. The architecture resembles local radial basis function networks with two

important modifications, a normalization which greatly reduces the data requirements and an extra set
of gradient style weights which improves interpolation. Performing gradient descent on the composite
cost function obtains a learning algorithm for the basis function widths which adjusts the widths for
good generalization.
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Fig. I Behavior of Eq. 1.8-15 on the approximation of the logktic map. The left plot is with no
training of the widths, /Si, and the right plot is with training using Eq. 1.5-3. The upper plot is of

zp+! = 4x_(1 -z_) where z r is plotted on the abscissa and zp+l is plotted on the ordinate. The solid
lhle is the desired curve. The dots are the predictions of the network. The training on the gradients, d,
w_s turned off, 20000 training patterns were used. Five evenly spaced basis functions were used. The
locations are indicated by hash marks with diamonds. Also displayed in each plot are the five curves
for _,he five basis functions. Not the shape adjustment in the right plot. The learning rate, 0, was set

tc 0.3 for the tr_ing of the coefficients fj and to 0.03 for the _ training. The root mean square error
normalised to the standard deviation of the data was 0.075 for the case with no fl training and 0.035
for the case in which the betas were trained.
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