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R. D. JONES®, C. W. BARNES, Y. C. LEE, and W. C. MEAD

Los Alamos National Laboratory
Los Alamos, New Mezico 87545 USA
%rdy@lanl.gov

ABSTRACT

Using variational techniques, we derive a feedforward network architecture that minimizes
a least squares cost function with the soft constraint that the mutual information between
input and output be maximized. This permits optimum generalization for a given accuracy.
A set of leecarning algorithms are also obtained. The network and learning algorithms are
tested on a set of test problems which emphasize time series prediction.

1. Introduction

The goal of feedforward networks is to maximize network approximation accuracy while also maximizing
network generalizability. The accuracy of the output is typically obtained by implementation of learning
algorithms which minimize a least squares cost function. Generalizability can be obtained through
maximization of a cost function proportional to the mutual information between input and output.!
These techniques generalize work of Kohonen.? In this paper we demonstrate how the optimization
of a composite cost function that contains both a least squares term and a mutual information term
can lead to an architecture and to learning algorithms which yield optimum generalization for a given
accuracy.

2. The Architecture

We can now examine the probability distribution which minimizes the cost function
F=E-1S8, 1

where N
E=— /dz / dy e(z,y)P(y | z)P(z)
2/ o

and
= Plyl2)
S= N'/ldx /Ody P(y | z)P(z) Iog[ Ply) |

Here, ¢(z,y) is
(z,9) = 3y - (=) Iy - $(a)]
where
o) = [ dyupiyle) 2

and

P(y) = ] dz P(y | 2)P(z). 3

Here, E is the least squares portion of the cost function and S is the mutual information. We find the
functional form of P(y | z) by equating the functional deriative to zero. We obtain a relation between
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the conditional probability, P(y | z) known as the posterior, and the pre-measurement probability, P(y)
known as the prior. In general, these two probabilities are related through Bayes theorem,

Pz =B py)

where
P@) = [ au Pz 19PW).
The conditional probability, P(z | y), is known as the likelthood.

We can regard Egs. 2 and 3 as well as the normalization condition,

1=[OdyP(y|z),

as soft constraints. The cost function can be modified to read

e [a [y Po1ope [ - rios [BHLD] + a4 80 447 (a1

where a(z) € R, B(y) € Re, and 7(z) € R™ are functions that are determined by the constraints.
Setting the functional derivative,
SF'
§P(y|z)’

equal to zero yields

€(z,y) — 7log [Pg(:})z)] +a(z) + By) + yr(z) -7 =0.

Solving for P(y | z) obtains

__1 . E(z,y)
#e)= P(z)/ WY TE(z,) V) 3
where
E(z,y) = ezp [_ y y— (v(2) - ¢(;3)Ty + ¢T(z)¢(z) .

This is an integral equation which contains the arbitrary function, ¥(z). In general, v(z) cannot be
chosen such that Eq. 3 is exactly satisfied. However, it can be approximately satisfied if

7(z) = 2¢(z).
This forces the integrand in Eq. 3 to be sharply peaked around y = ¢(z). E(z,y) becomes
Ble,y) = eap|- 422 4
We see from Eq. 2 that the posterior is
_ 1 E(zy)
P = pe Taeb e
This yields for the likelihood
E(z,
Pz ) = amd) 5

JdzE(z,y)
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The output of the network can be written

#(z) = -,;(1;) /O dy yP(z | Y)P(y). 6

Equations 3 to 6 define # near optimum architecture given the soft constraints imposed on the least
squares minimization. From Egs. 5 and 4 it can be seen that the role of the Lagrange multiplier, 7, is
to spread the input probability, P(z). This will degrade the fit of ¢(z) to f(z) but it will improve the
gencralizability of the network. For very large values of 7 the network only acquires the average value
of f(z). This is the ultimate generalization.

Suppose we have just presented the network with N training pairs and we had exact knowledge of
the desired output. Then P(y) is given by

N
1
P(y)= -,;Z (v f(zp)).
Thus P(z) can be written
1 &,
P(z) = [ dyP(e |9PW) = 2P )
The posterior becomes

X Pz ] f(z,))
P z) = §(y — f(=z
(]2 pz; T P o) (y = f(zp))

and the network output becomes

Tpe1 f(@p)P(z | f(25))
T P | £(z0))

This architecture is a linear superposition of nonlinear elements. We can make the identifications

¢(I) =

M
P(ylz) =3 u(z;b)v(y - aj)
j:l

P(z | f(zp))
Zq lelf('t'I))

u(z;bp) = P(p| 2) =

and
v(y— f(zp)) = P(y | p) = 6(y — f(=p)).

Moreover, we can write the specific form of the nonlinear element as

-1
z, f(z,)) E(z, f(z},))
= [Crielels] Rl 7
where

Equations 7 and 8 give the optimum architecture given that the desired output is perfectly known. The
architecture is self-consistant. The output must be known in order to specify ¢ and ¢ must be known
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in order to specify the output. We can remove the self-consistancy in the limit of small 7. In that case
the function E(z, f(z,)) is sharply peaked about ¢(z) = f(z,). If we Taylor expand ¢(z) about f(z,)
the energy, ¢, becomes

e(z, f(zp)) ~ % [(z —zp)7 (%&ﬂ)z:z'] [(:c - zp)7 (?%ﬂ)uz,]'r

(5)...,

1 |-1/2

Here,

is an n X m matrix. Equation 7 becomes

|7 exp [_(-'D - Zp)T'Yp(x - zp)]
Z;vzl | ’Yq-l [=1/2 exp[~(z — 24)T74(z = 24)]
where 7, is an n x n matrix given by

rT=Tp

u(z,bp) =

If the data is preprocessed such that each input aflects the output nearly independently and redundant
and irrelevant inputs are not present then Eq. 9 can be simplified to

;/2 emp‘[—ﬂp(z - 2,)T (2 - %)]

TN By exp[~By(z - 2g)T(z — z,)]

where v can be written as a scalar # times a unit matrix. Writing Eq. 9 as Eq. 10 is a serious and
drastic approximation. The process of simplifying the matrix v, is known as feature eztraction.

u(z,bp) = 10

The network output becomes

N ‘
$(z) = 3 f(zp)ulz,by) 1
p=1
where u is given by Eq. 10. We will permit the quantities f(z,), z,, and B, to be adjustable parameters
that minimize a given cost function. We can thus associate f, and r, with the parameters b, in the
function u(z, bp).

We can relate Eq. 11 to a network architecture. Note the identity,

E{V:l g(-’l‘)Pj(-’L')
)= S 12
g( ) Z?:l pJ(x)

Here, pi(z) is a localized function of z about some a;. Hence, g(z) on the right of Eq. 12 can be
approximated by its Taylor expansion about a;. We have then,

N
pi(z)
b(z) = S + (2 - q) -] LEEL
Z} ! )4 Zj pi(x)
for an approximation to g(z). If we compare with Eq. 10 and 11 we can write a specific form for the
local function, p,

pi(2) = Byl exp [~ By(z - 2,7 (z - 2,)] 777
This net is similar to the radial basis function net of Moody and Darken® but differs in two ways,
the use of normalization and also a linear term, (z — aj) - d;. The use of a normalization term was
suggested but not pursued by Moody and Darken. The addition of these two terms is responsible for
the reduction in the amount of training data needed to obtain reasonable approximations. As in the
case with radial basis functions, the training of f; and d; is linear and hence very fast. The widths of
the basis functions can also be trained. This training is nonlinear.
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3. Learning Algorithms

The training for the linear quantities, f; and d; is given by

S0 =17 + alo(er) - dlap )l z(ﬁgxi)zﬁip:(:g’pi(w»>l

and

7! =47 +alble) - eyl SR

Here, z, is a training input vector and g(z,) is the training output for the p** on-line presentation
of data to the network. The superscripts p and p + 1 indicate values of the weights before and after
the p'* presentation of training data. The learning rate, o, is usually taken to be 1/3. This training
algorithm or modifications of it have been used in time series prediction and in control.4-¢

. We can also train the basis function widths. Equation 7 can be written

F = N/ldx [ avPwiope) [-—c(:r,y) ~ rlog [P(y =2)P(e) [ dw(“'y)] ; T]

P(y)
[ deie e~ (;5)"”.

If we apply gradient descent learning to this cost function we find

We have

1 g MBL e g —a
ﬁ, —ﬂ, n D) P(zp; JaﬂJ)”[¢("’p) a;)

+n(B)? ['2‘;7 = (zp = ¥)T (25 - bf)] p(zp; b7, B7) v[d(p) — 6j] Klxp, ¢(2p);0,b, ] 13
J

where K is now given by

K(z,,y;a,b,8) = log [”(xmy:a,b,ﬂ) w(x;b.ﬂ)] 21T

o E | + gyl — 4@l ~ 9(e))

In each of these algorithms the conscience is aflected indirectly by the errors that are being made in
the approximation of f.

The behavior of this algorithm on the logistic map is displayed in Fig. 1.

Summary

We have derived a network architecture from first principles. The network is designed to optimize both
accuracy and generalization. The architecture resembles local radial basis function networks with two
important modifications, a normalization which greatly reduces the data requirements and an extra sct
of gradient style weights which improves interpolation. Performing gradient descent on the composite
cost function obtains a learning algorithm for the basis function widths which adjusts the widths for
good generalization.
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Fig. 1 Behavior of Eq. 1.5-15 on the approximation of the logistic map. The left plot is with no
training of the widths, 8;, and the right plot is with training using Eq. 1.5-3. The upper plot is of
© Zp41 = 4z,(1 — z,) where z, is plotted on the abscissa and zp; is plotted on the ordinate. The solid
line is the desired curve. The dots are the predictions of the network. The training on the gradients, d,
was turned off. 20000 training patterns were used. Five evenly spaced basis functions were used. The
locations are indicated by hash marks with diamonds. Also displayed in each plot are the five curves
for the five basis functions. Nct the shape adjustment in the right plot. The learning rate, 1, was set
to 0.3 for the training of the coefficients f; and to 0.03 for the § training. The root mean square error
normalized to the standard deviation of the data was 0.075 for the case with no 3 training and 0.035
for the case in which the betas were trained.
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