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1 INTRODUCTION

Current efforts to resolve the near crack tip fields in elastic/viscoplastic materials using finite
element methods have failed to achieve a finite non-zero energy flow to the crack Tip (see e.a.
Brickstad 1983; Bass et ah 1987; Brickstad 1987, and Bass ei ah 19S9). Motivated by ihese
difficulties, a moving element formulation incorporating a variable order singular element to
enhance the local crack tip description is presented. The moving mesh zone is embedded in a
finite global mesh to provide a functional tool fur the analysis of dynamic crack growth
experiments.

The necessary elasto-dynamic formulations have been previously implemented in a transient
finite element program DYNCRACK and checked against known analytical solutions (Thesken
and Gudmundson 1987; Thesken and Gudmundson 1990; and Thesken 1991). These results
have encouraged an attempt to include Perzyna's (1966) elastic/viscoplastic model in the
formulation. However, the introduction of non-linear history dependent material behavior into a
moving element scheme requires a method to interpolate related field quantities to new Gauss
point positions for each time step.

The following summary of numerical procedures outlines the approach taken to develop a
transient elastic/viscoplastic moving finite element formulation. Results for a standard test
problem are then compared to those obtained using the nodal relaxation technique. Further
development of the code is discussed with respect to applications to dynamic fracture
experiments.

2 NUMERICAL METHODS

Numerous authors have employed moving singular elements in the analysis of elssto-dynamic
fracture mechanics (Nishioka and Atluri 1986). Those contributions utilizing the complete
convective formulation have been discussed by Thesken and Gudmundson (1990)^in comparison
with the unique aspects of DYNCRACK, e. g.: the use of variable order singular elements (Akin
1975), explicit time integration with a lumped mass matrix, a convecting G-integral, and an exact
formulation to accommodate instantaneous jumps in crack speed. Figure 1 illustrates a moving
region of elements in DYNCRACK that translate with special crack rip elements and convecring
contours for calculating the energy-release rate G-integral. Periodic remeshing minimizes
disortion of the mesh, but additional computational effort is required to handle the history
dependent fields.
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Fig. 1 Adjustable moving mesh zone incorporating correcting intee .1 contour.

2.1 Moving element formulations

Complete derivation of the moving finite element formulations was described bv The^ken ^Pd
Guomundson (1990); the final system of matrix equations is riven here to explain ex ê  "onTo
v]scoplasnc matena beha^or Moving finite element formulations are recovered bv intrSducino
the d^screuzed total material acceleration, the constitutive laws and the strain-d^place-nem
re]aaons imo the vananonal equation of motion. The resulting svstem of equation, for d " ™ ™
? ""1' £ X p r e S S e d m ltm)S ° f n O d a l d i s P l a c e m e r ' i s U, velocities U, and accelerations 0 is
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which involves mass and stiffness matrices M and K, along with nonsymmetric matrices C and
C associated with the convection of momentum. Integration in time is achieved u.ine the

central difference scheme, where the well known kinematic approximations for U and 0 - e
inserted into Eq. (1) to obtain
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The subscripts i and t ± At indicate the time stepping sequence with respect 10 lime step .\\. The
definitions of the internal system offerees p i m are

E [B U,-£,vr] dv

13)

(4)

for the elastic and the elastic/viscoplastic cases. respecii\-e]y. In Eq. (4), B is the strain-
displacement matrix and E is the matrix of elastic constants, and e;

vP is the sector of current
elasiic/viscoplastic strains. Equation (4) reflects that the elastic strains and internal stress state
can be determined by subtracting the nonlinear component from the total strains given by the
product B U t. If a lumped mass matrix is used, then Eq. (2) can be solved directly without

recourse to matrix inversion for regions where C and C" are identically zero, i.e., outside the
moving mesh zone of Fig. 1.

2 . 2 Implemen ta t ion of e 'ast ic/viscoplast ic model

The plastic strain rates in the following computational procedure are characterized by the pov-.er-
law overstress model of Perzyna (1966). Owen and Himon (1980) have given procedures for
implementing this model into an explicit transient finite element codf- and Brickstad (1985) has
demonstrated its application to dynamic crack growth using nodal relaxation. Jn the same
manner, DYXCRACK has been adapted to elastic/vicoplastic material behavior and performs
identical]v for problems not involving moving elements. A discussion of the relevant principles
is described by Bass et al. (1989), where DYNCRACK was used to duplicate Brickstad's (19S5)
vibrating beam problems for comparison to results from ADIN'A.

The adaptation of the model to a moving element scheme involves a parallel algorithm for
updating £VP with respect to time and position. Figure 2 gives a simple flow chart for the
procedure. At current time t and Gauss point location 1, the current state of stress C; is evaluated
for input to the updating algorithm described in Fig. 2a. The current viscoplastic strain rate is
evaluated from Perzvna's model usins an associative flow law and von Mises yield criterion.
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Fig. 2 Procedure for updating viscoplastic strains with respect to rime and space: (a) flow chart
for algorithm; (b) spatial interpolation.



Euler t ime intesrat ion is then used to update e%r , . This is accompl i shed for each Gauss point
location in a loop over all elements in the region of plastic deformation. Note that a MabiPty limit
must be imposed on At according to Eq. (11) of Bricksiad (1983).

Next, a gradient algorithm computes the gradient of the viscoplast ic strains in the XJ direction
between each pair of adjacent Gauss points in the plastic zone. Wiih knowledge of ihe charge in
Gauss point position Al and a simple spatial interpolation, the new viscoplastic strains at ihe ::ew
Gauss point locations are obtained. Figure 2b illustrates the necessary spatial interpolation.

3 TEST PROBLEM: RESULTS AND DISCUSSION

A simple center-cracked plate geometry was chosen to test the e!astic/viscop!as:ic for;r.u'.a:io
DYNCRACK. Figure 3 gives the geometry and material properties of the problem. lr:
conditions were determined from an elasio-static solution. Values of crack opening displace;:
(COD), energy-release rate G and energy flow io the crack tip y have been convened :o pset.
stress intensity K for comparison. Results are compared to solutions from ".he nod;-.] :-J':A.;

code CRACK'1 developed by Brickstad (19S3).
The full series of mesh refinements specified in Fig. 3 has been analyzed with the order ci

singular elements set to zero, i.e., identical to normal isoparametric elements. Figure 4 ei
results for the coarsest (Fig. 4a) and finest (Fig. 4b) meshes to illustrate con\erec
characterisrics. The complete matrix of mesh sizes has not yet been analyzed for the order oi
singular element set to the square root singularity, but Fig. 4c presents results for the coar
mesh size.
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|b) Material Properties:

Young's Modulus, E = 206.S4 GPa ;

Pcisscn's Ratio, v = .3
Tar.cent Modulus, E.= E/75

Perzyna's Model: Yitld Stress, ^ y = 4-9 \'.?s.
Fluidity Parameter, v = iO.OCO/sec , r. = 2.5

(c) r i n i t e E l e m e n t M e s h e s

No. of Elements Elemer Size
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(mm)
h/j 6=2.5000
h/52 = 0.6250
h/64 = 0.3125

Fig. 3 Center-cracked panel: (a) geometry; (b) material properties; (c) mesh refinement.
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Fig. 4 Time histories of pseudo-K values:
(a) and (b) nodal relaxation compared with
moving element (without singularity) for
coarse and fine mesh; (c) moving element
with activated singularity.

In general, the results in Fig. 4 show a distinct oscillatory behavior in the DYNCRACK results
in comparison to CRACK1 results. It should be kept in mind that v and COD can only be
computed from CRACK 1 after the crack has transversed each discrete element. If the sampling
in DYNCRACK was as coarse as the CRACK 1 analysis, the data from DYNCRACK would
also appear smooth. The existence of these oscillations is a common feature of moving element
formulations with periodic remeshing (Thesken and Gudmundson 1990).

Although results for G and y appear in close agreement, the COD results from both analyses
appear as upper and lower bounds to the solution. This aberration could be explained with
respect to the assumption of zero plastic strains with the initial conditions. With the release of the
first node by the CRACK1 program, an extreme local yielding causes an unrealistic negative
displacement of the crack surface and a corresponding negative spike in the K from COD~ This
has the eifect of producing a permanent bias in the COD results. With mesh refinement, Fig. 4b
shows that this aberration is not so apparent.

Figure 4c shows that the results from the G-integraJ and the COD seem to diverge when the
square root singularity in the variable order singular element is activated. Now the G-integjal is
lower in magnitude and the COD values are higher than any of the results in Fig. 4a. The
presence of extreme oscillations in the G-integral calculations after 12 |is seems to indicate an
instability in the solution as large plastic strains accumulate. However, the COD results from this
solution are reasonable, indicating that the finite element solution itself maybe acceptable, while
the method for computing the G-integral may not perform properly when the singular element is
introduced.

4 CONCLUSIONS

The close agreement between CRACK] and DYNCRACK with zero singularity gives confidence
that the general approach could prove to be a functional tool with further development. Despite



:he questionable beha\'ior of ihe G-imegral in conjunction with the activated singular element, the
COD results appear acceptable, thus indicating that further work with ihe G-imegral algorithm is
necessary. Presently, the employment of the G-integral requires a moving element zone of four
layers of elements around the crack tip, so that an extremely large zone of elements are invohed
in ihe spatial interpolation of the viscoplastic strain, plastic strain energy density, etc.

An alternative approach would be to shrink the moving zone to two crack tip elements and
forgo the use of the correcting G-integral in favor of the COD as a crack tip parameter. The
errors due to inierpolation could be reduced over a smaller region, allowing a more accurate
model of the genera] plastic zone. This approach is currently being implemented and applications
to experimental data will be reported in a future publication.
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