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I INTRODUCTION

Current efforts to resolve the near crack tip fields in elastic/viscoplastic materials using finite
element methods have failed to achieve a finite non-zero energy flow to the crack "ip (see e.g.
Brickstad 1983; Bass et al. 1987; Brickstad 1987, and Bass et al. 1989). Motivated by these
difficulties, a moving element formulation incorporating a variable order singular element 10
erhance the Jocal crack 1ip description is presented. The moving mesh zone is embedded in a
finite global mesh 10 provide a functionzl tool fur the analysis of dynamic crack growih
EXDPermenis,

The necessary elasto-dynamic formulaticns have been previously implemented in a transient
finlte element program DYNCRACK and checked against known analytical solutions (Thecken
and Gudmundson 1987; Thesken and Gudmundson 1990; and Thesken 1991). These resuls
have encouraged an attempt 1o include Perzyna's (1966) elastic/viscoplastic model in the
formulzation. However, the inroducton of non-ilncar history dependent material behavier into a
moving element scheme requires a method to interpolate related field quantities to new Gauss
point positions for each time step.

The following summary of numerical procedures ouilines the approach taken to develop a
ransient elastic/viscoplastic moving finite element formulation. Results for a standard test
problem are then compared to those obtained using the nodal relaxation technique. Furiher
development of the code is discussed with respect to applications to dynamic fracture

experiments.

2 NUMERICAL METHODS

4

Numerous authors have employed moving singular elements in the analysis of elasto-dynamic
fracture mechanics (Nishioka and Atluri 1986). Those contributions utilizing the comzlete
convective formulation have been discussed by Thesken and Gudmundson (1990) in comparison
witly the unique aspects of DYNCRACK, e. g.: the use of variable order singular elements (Akin
1975), explicit time integration with a lumped mass matrix, a convecting G-integral, and an exact
formulation to accommodate instantaneous jumps in crack speed. Figure 1 illustrates a moving
region of elements in DYNCRACK that translate with special crack tip elements and convecting
contours for calculating the energy-release rate G-integral. Periodic remeshing minimizes
disortion of the mesh, but additional computational effort is required to handle the hisiory

dependent fields.

*Research sponsored by the Office of Nuclear Regulatory Rescarch, U.S. Nuclear Regulatory
Commission under Interagency Agreement 1886-8011-9B with the U.S. Department of Enercv under

Contract DE-ACO5-840R21400 with Manin Mariena Energy Systems, Inc.
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Fig. 1 Adjustable moving mesh zone Incorporating convecting integral contour.

2.1 Moving element formulations

Complete derivation of the moving finite element formulations was described by Thesken and
Gudmundson (1990); the final svsiem of matrix equations is given here 10 explain extension 10
viscoplastic material behavior. Moving finite element formulagons are recovered by inroducing
the discretized total material acceleration, the constitutive laws and the strain-displacement
relations into the variational equation of riotion. The resulting system of equations for dynamic
equilitrium, expressed in terms of nodal displacements U, velocides U, and accelerations U is

given by
MU+C' U+(X+C)HU=P, 1)

which involves mass and stiffness matrices M and K, along with nonsymmetric matrices C* znd
C" associated with the convection of momentum. Integration in time is achieved using the

central difference scheme, where the well known kinematic approximations for U and U zre
inserted into Eq. (1) to obtain

Mo C, . 2M C,
r7+ Uy A :papp_pm1+ ~—~‘7—C,, U + J__;*{?_ U,
(AI)“ At L+ At t t (AI)" t { At (AI)" U—At (2)



The subscrpis t and 1 £ At indicate the time stepping sequence with respect 10 time step At
definidons of the intemal system of forces p'ntare

T

o 7
P: _KlLl (3)
i [ BTE 3 '] A
p: R b Ux El cv (_j)
for the elastic and the elastic/viscoplastic cases, respectively. In Eg. (1), B is the urain-
d1<p acement matrix and E is the matrix of elastic constants, and €;YP is the vecior of cuiment
ss sigte

elastic/viscoplastic strains. Equation (4) reflects that the elastic strzins and internal sire
can bc determined by subtracting the nonlinear component from the total strains given
product B U Ifa umped mass matrix is used, then Eq. (2) can be solved dmct]v withou
recourse to mamix inversion for regions where C” and C” are identically zero, i.e., ouiside
moving mesh zone of Fig. 1.
2.2 Implementation of elastic/viscoplastic model

The plastc srain raies in the following computational procedure are characterized by the power-
law overstress model of Perzyna (]066). Owen and Hinton (1980) have given procedures for
imp lementing this model into an explicit transient finite element code and Brickstad (1853) has

demonstrated its apriication to dynamic crack growth using nodal relaxation. In the same

menner, DYNCRACK has been adapted 10 e]asnc/\lcop astic material behavior and p Pc*{om]s
identically for problems not involving moving elements. A discussion of the relevant principles
is described bv Bass et al. (1989), w here DYNCRACK was used to duplicate Brickstad's (1953)
vibrating beam problems for comparison to results from ADINA.

The adapiation of the model 10 a moving elernent scheme involves a parallel algorithm for
updating €YP with respect to time and position. Figure 2 gives a simple flow chart Jor ihe
procedure. At cwrent dme t and Gauss point location 1, the current state of stress Gy is evaluzied
for input to the updating algorithm described in Fig. 2a. The current viscoplastic strain rafe is
evaluated from Perzyna's model using an associative flow law and von Mises yield criierion.
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Procedure for updating viscoplastic strains with respect to ume and space: (a) flow chart
orithm; (b) spatial interpolation.
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Euler time integration is then used to update €7,
location in a loop over all elements in the region of plastic deformztion. Note that 2 stzbiliny Himit
must be imposed on At according 10 Eq. (11) of Brickstad (1983).

Next, a gradient algorithm computes the gradient of the \1<cop1a<hc strains in the x5 direction
between each palr of ad acent Gauss points in the plastic zone. With knowledge of the che: g ein
Gauss point position Al and a simple spauial interpolaton, the new viscoplasuc sirains &tihe rmew

Gazuss point locations are obtained. Figure 2b illustrates the necessary spatial inierpolztion.

This is accomplished for each Gzuss point

3 TEST PROBLEM: RESULTS AND DISCUSSION

A simple center-cracked pla e geom was chosen to test the elastie/viscoplastic formulzion in
DYNCRACK. Figure 3 gives hc geonemf end material properties of the problem. I
conditions were determined from an clasio-siztic solution. Values of erack opening displacement
COD) energy-release rzie G m;d energy flow 1o the crack up 7 have bun converied 10 preulo-
ess iniensity K for companison. Results are compared o solutions from the nod:l r:;f;-. S
code CRACK 1 developed by Brickstad (1983).
The full series of mech “ef_nemmz specified in Fig. 3 has been znalyzed with the oré
jgular elements set 1o zero, i.e., identical 10 normal isoparametric clements. F 1gur

tadd

si
results for the coarsest (F]o 43) and finest (Fig. 4b) meshes 10 illustrate comvergen

characterisdcs. The complete matrix of mesh sizes has not \el been analyzed for the order of the
singular element set to the square 100t singulanty, but Fm 4¢ presents results for the coarsest

mesh size,
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(b) Yaterizl Frcrerties
Young's Modelus, E = 206.84 GPa,
Poissen's Reto, v = .3
Terngernt Mocdulus, E.= E/75
Perzyna’s Mocel: Yield Swess, Oy = 229 Nipa,
o 2 ,
Fluiciyy Peremeter, 7 = 10.000/sec, 2= 2.5
(c) Finite Zlement lMecsnhes:
No. of Elemenis Element Size
(mim)
512 )‘/]6~2 €00
2048 h/32 62‘0
§162 h/64 O

Fig. 3 Center-cracked panel: (a) geometry; b) matenal propernies; (¢) mesh refinement.
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In general, the results in Fig. 4 show a distinct oscillatory behavior in the DYNCRACK resulis
in comparison 10 CRACKI results. It should be kept in mind that ¥ and COD can only be
computed from CRACKT1 after the crack has transversed each discrete element. If the sampling
in DYNCRACK was as coarse as the CRACK1 analysis, the data from DYNCRACK would
also appear smooth. The existence of these oscillations is a common feature of moving element
formulations with periodic remeshing (Thesken and Gudmundson 1990).

Although resulis for G and vy appear in close agreement, the COD results from both anzlvses
appear as upper and lower bounds to the solution. This aberration could be explained with
respect to the assumption of zero plastc strains with the inigal condigons. With the release of the
first node by the CRACK1 program, an exweme local yielding causes an unrealistic negative
displacement of the crack surface and a corresponding negative spike in the K from COD. This
has the eifect of producing a permanent bias in the COD results. With mesh refinement, Fig. 4b
shows that this aberration is not so apparent.

Figure 4c shows that the results from the G-integral and the COD seem to diverge when the
square root singularity in the variable order singular element js activated. Now the G-integral is
lower in magnitude and the COD values are higher than any of the results in Fig. 4a. The
presence of extreme oscillations in the G-integral calculations after 12 us seems to indicate an
instability in the solution as large plastic strains accumulate. However, the COD results from this
solution are reasonable, indicating that the finite element solution itself maybe acceptable, while
the method for computing the G-integral may not perform properly when the singular element is

inroduced.

4 CONCLUSIONS

The close agreement between CRACK1 and DYNCRACK with zero singularity gives configence
that the general approach could prove to be a functional tool with further development. Despite



the questionable behavior of the G-iniegral in conjuncion with the activaied singular element. the
COD results appear acceptable, thus indicating that further work with the G-integral algorithim is
necessary. Presenily, the emplovment of the G-integral requires a moving element zone of four
layers of elements around the crack tip, so that an extremely large zone of elements are involved
1n the spanal interpolation of the viscoplasic swain, plastic strain energy density, etc.

An alternative approach would be 1o shnink the moving zone 10 two crack up elemenis and
forgo the use of the convecting G-integral in favor of the COD as a crack tip parameter. The
errors due 1¢ interpolation could be reduced over a smaller region, allowing a more accurate
model of the general plastic zone. This approach is currendy being implemented and applicaions
to expenmental data will be reported in a future publicanon.
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