PNy y / Lonf- 9011192 -- 7

SLAC-PUB--5504
DE91 011754

Jazelle

History, Status and Future Plans’

A.S. Johnson
Dept. of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.

H. Hissen
Department of Physics, University of inois, 1110 W. Green Street, Urhana, IL 61801, U.S.A.

G.B. Word
Departrnent of Physics, Rutgers University, Piscataway, NJ 08855-0849, U.S.A.

M. Breidenbach, P.F. Kunz and D.J. Sherden
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, U.S.A.

ABSTRACT

The data management system Jazelle has been created as a successor to earlier
HEP data managers such as YBOS and ZEBRA. While it has many similarities
with these systems, it also has many enhancements such as self-documenting
- data descripticns, mnemonic access to all data, relational data structures, power-
ful machine-independent IO facilities, including network 10, and many mecha-
nisms for presenting data to the physicist in an intuitive manner. The emphasis
has been on producing a powerful, use: friendly, data management system which
can be accessed from many languages as a natural extension of those languages.

Invited talk presented at the INFN Eloisatron Project 14™ Workshop: Data Structures
for Particle Physics Expariments, Erice, Italy, Novermber 11-18, 1990.

*Work supported in part by the Department of Enesgy, contracts DE-ACO03-7651:00515 and DE-ACO02-
89ER40509 and by the National Science Foundation.

+ ctin MASTER

1.1 Why was Jazelle created?

The data obtained from a typical High Energy Physics experiment represents the result of many
thousands of man years of effon and the expenditure of tens of thousands of dollars. The ex-
periment’s ability to manipulaie and exploit these data is essential to the timely production of
physics results. The data include both raw and reconstructed event data, calibration data such as
detector gains, drift velocities, etc., and data which describe the experiment, such as detector
geometry descriptions. During analysis and rcconstruction, the data must typically be processed
through sev=rai programs, often moved between several different types of computers, and at all
stages the experimenters must have easy and efficient access to the data. The various types of
data may differ dramatically in size, from several hundred kilobtyes of raw data per event, to
several bytes per event in the final stapes of analysis. Therefore, an essential part of any High
Enesgy Physics experiment’s software should be a data management system capable of han-
dling these varied needs.

When the SLD experiment began, we looked for a system which would be able to handle all of
these requirements. We Jooked at many different languages, bui, while many existing languages
have very powerful mechanisms for defining and manipulating dala siructures within a pro-
gram, they do not, in genesal, have good facilities for moving data between programs or far
providing casy interactive access to the data. Similarly, although there are many commercial
database programs available, they are in general not well suited to handle the range of different
data types and sizes needed and do not provide sufficiently efficient and easy to use program
interfaces.

Finally, we looked a1 other data management systems developed specifically for HEP applica-
tions, specifically ZBOOK, ZEBRA! and YBOS.> While these systems are well sujted to han-
die the data processing needs of HEP experiments, they generally fall shont in the area of user
friendliness, forcing users to memorize numeric offsets within data structures, thus making pro-
grams rather hard 1o read and undersiand.

For these reasons it was decided to develop an entirely new data management system for the
SLD experiment, called Jazelle. Jazelle has been in use by SLD now for aver four years and
currently runs on both IBM/VM/XA and VAX/VMS operating systems. In addition, work is
underway to port it to several UNIX-based workstations.

1.2 Main Fealures of Jazelle

Jazelle has many similarities with the eardier HEP data managers mentioned above and has
adopted many of the best features of these systems. Data are stored in structures called bank-.
Banks may be dynamically created, modified and destroyed during program execution and may
be read in or written out from programs. Some of the more novel features of Jazelle include:

—
g

. R
DISTRISUTION OF THIS DOCUMENT IS UNLIMITED

et et R eeery
B A i

e The structure of eac' type of Jazelle bank is defined in a template file. In the file each ele-
ment is typed (real, integer, etc.) and named. The template file allows a description to be at-
tached to each element and therefore fulfills an important documentation function as well.
Elements of different types can be freely mixed within banks.

¢ Jazelle has been interfaced to several languages including Fortran and C. All access to data
in Jazelle banks is by name. Particular care has been taken to produce easy to use and effi-
cient language interfaces.

¢ Jazelle contains ntilities for presenting data to the user in many different formats. The name
of each elememt and the description from tt.c template can optionally be included along with
the data itself.

o Jazelle is fully integrated into SLAC's interactive data analysis program, IDA.3 A complete
set of interactive commands are available for manipulating and viewing Jazelle structures,
and data stored in Jazelle banks can be freely accessed from IDA’s interactive data analysis

language, IDAL.*

¢ Debugging facilities are provided by making the entire set of interactive commands also
available from within the VMS and VM debuggers.

¢ Jazelle contains facilities for describing data structures using a relationa! technique, in addi-
tion to the more common hierarchical data descriptions.

¢ Jazelle obviates the need for the large pre-assigned common block found in earlier systems
by using the virtual memory services of the host operating system. Data can be partitioned
into vintual memory zones (called contexss in Jazelle).

» Jazelle includes facilities to handle input and output of data to both sequential and indexed
files. Data written to disk or tape on VM or VMS can be read on either system.

¢ The VMS version of Jazelle includes features, such as asynchyonous inter-process I/O, which
are useful in connection with online systems.

« INTEGER [*4I*2) » STRING [*11*41*B) o ENUM [*41*2)
o HEX [*41*2 » COMPLEX ¢ BITS [*41*2)
» REAL [*41*8] « POINTER

o LOGICAL [*41*1] » KEY

Figure 1. Elament Types Supported by Jazelle

All types may be used as scalars or vectors (fixed or variably dimensioned). Elements of different
types may be free mixed within banks. Jazelle alse supports user-defined types. The brackets are used
to denote optional size modifiers.

2 Using Jazelle banks

2.1 Defining Data Structures - Jazelle Templates

Jazelle data structures are composed of banks. A bank is a contiguous piece of memory consist-
ing of two parts: a 16-byte header section containing Jazelle system data and a user area where
the user data associated with the bank are stored. The user area contains a sequence of elements
which is defined in a user supplied template file. The various types of clements supponted by
Jazelle are listed in Figure 1.

The syntax of the template file allows each element within the bank to be named and typed, and
also allows for initial values and descriptions to be artached to each element. Well written tem-
plates contain all the information needed to document the data structure. Figure 2 shows an ex-

ample template.

[Bank declaration specifies family
pame, context and Litle

CONTEXT=JUNK NOMAXID "Title"

INTEGER A "Descriptiocn of A"

REAL c
INTEGER nw Simglescalarelemem. I
MALY8 DU0) g

LOGICAL*] X{-1:7) Declaration and .

on use O
INTEGER Y/0/ harameter.
PARAMETEZR SIZE=8

INTEGER N (SIZE) /SIZE*7/ A
BLOCK VELK (NELEMS)
STRING F{B0) Variably dimensioned block created

INTEGER I by use of previously declared integer
element as dimension.

Figure 2. Example Template
An example template file demonstrating many of the different syntaxes that may be used.

-4 -

LY

Banks may contain arbitrary combinations of data types in any order, including both scaler and
vector elements. Banks may also contain constants (declared using a paramierer statement). In
addition, elements within a bank may be grouped into blocks. Blocks themselves may be
dimensioned to create an arbitrary number of repetitions of the elements within the block.
Blocks can also be nested. In addition to constant dimensions, the lust element or block i each
bank may be given a variable dimension. The template in Figure 2 contains an example of a
varigbly dimensioned block, VBLK. Variable dimensions ase created by specifying the dimen-
sion of a block or element as an integer element declared previously in the bank (NELEMS in
this example). The amount of memory allocated for variably dimensiuned elements can be in-
creased or decreased dynamically. This last feature is extremely useful since it allows, for ex-
ample, en arbitrary number of hits to be stored in a bank describing a track, and for the bank to
be expanded indefinitely as new hits are added to the track.

Templates support data types beyond those found in similar systems. "Pointer” and "Key" data
types are used to form links between banks and are discussed further in Section 3. "Enum” and
“Bits” data types allow mpremonic names to be assigned to cach value (Enum) or each bit (Bits)
thus allowing code menipulating bit masks or lists of values to be coded in 2 clear way, with no
need for memorizing arbitrary values. In addition, users can define their own data types. Ex-
amples of data types defined by SLD include "Time" (8-byte absolute data and time) and
"Partid" (LUND particale code).

2.2 Families of banks

Jazelle banks are grouped into families, each of which has a unique famify name. All banks in a
family share a single template, and hence a single data structure. If the template includes a vari-
able dimension then the variable dimension can have a different value for each bank within the
family. To distinguish banks within a family, each bank is assigned a unique ID in the range
0-65535.

Banks can be referenced either by a family-name/ID pair or, more commonly, by means of a
pointer. Jazelle pointers are simply variables which point to the memory location at which the

Famil
Block’ “']‘ “l
in-’o

o «—{ Header |o— Header & eader
User User User
Data Data Data

Figure 3. Family

Pointen inside each Jazelle bank's beader are used to link the banks within a family into 2 doubly linked
list, Forther pointers are used to link each bank back to its family block where information on the banks
structure is kept. The bank headers make Jooping over all of the banks in a family an easy and efficient

operation.

bank stans, and are used whenever it is desired 10 access data from or store data into 2 bank. A
unique feature of the way in which Jazelle pointers are implemented is that their values remain
constant so long as a bank remains in existence. In particular, the value does not change when
the bank is expanded or deleted, and is never changed due to memory cleanup operations (gar-
bage collections).

Pointers within banks can be used to form links from one bank to another. For example Juzelle
automatically keeps pointers inside the bank header updated in such a way as to chain tagether
all of the banks within a family, as illustrared in Figure 3. Similardy, pointers within the user
section of the bank can be vsed to form arbitrary Jinks between banks (discussed further in Sec-
tion 3).

2.3 Creating and Manipuiating Banks

Jazelle provides a powerful set of routines to allow users to create and manipulate banks, as
well as to write out and read in banks. Routines can operate on individual banks, families of

JZBADD Create a bank

JZBDEL Delete a bank
JZBEXP Expand/contract a bank
JZBFND Find an existing bank
JZBLOC Find a family of banks
SZBCPY Create a copy of a bank
JZBDMP Output (dump) bank(s)

JZBTBL Tabulate bank{s)
JZTDEF Modify or create 1abulation forma

Bank
Manfpulation
Routines

Routines for
Examining
Banks

JZIOPN Open a file for Jazelle 10 Sequential and
Indexed 10

Routines

JZIOCL Close a file

JZIOWR Write a record using a list
JZIOWC Write a record using a context
JZIORD Read a record

JZINDX List existing banks Miscellaneous
Routines

JZSTAT Summarize memory usage
JZTSCN Scan a relational table
JZXWIP Delete an entire context
JZPCMP Compare two banks

Figure 4. Commonly Used Jazelle Routines

banks, or on arbitrary collections of banks. Some of the more common routines are summarized
in Figure 4.

In addition, there are many routines which allow the contents of banks to be examined. In de-
signing these latter routines, considerable attention has been paid to producing easy-to-read
dumps based on the information given in the bank’s template. Each routine allows the data (0
be dumped in several different levels of detail: full dumps being suitable for users unfamiliar
with the contents of the bank being dumped, with progressively more abbreviated dumps for us-
ers with greater familiarity with the bank.

Fortran Mortran
Subroutine FILLPTOT (MCPART) $51d integer_ function FILLPTOT
Pointer MCPART-—->MCPART {Pointer MCPART-->MCPART]);
PTSQO=0 : PTSO=0;
Do I=1,3 Do I=1,3

PTSQ=PTSQ+MCPARTS (P {I)) **2 [
Endda PTSQeBTSQ+MCPARTS (P (I)) *%2;

1

MCPARTS (PTOT) = SQRT(PTSQ}
MCPART% (FTOT) = SQRT(PTSQ):

Return
End SRetuarn;
End;

FillPtot {Mcpart) . |pef FILLPTOT (MCPART)
jpointer Mcpart; Pointer MCPART-->MCPART
{ PTS0=0

int ptage(;

iat i; Do I=1 ta 3

PTSQ=PTSQ+MCPARTR {P (1))} **2
for (i=0 ; i<3 ; i++ } Enddo
pPrag += _Mcpart->P (L) *
_Mepart=>P (i) ; MCPARTS (PTOT) = SQRT(PTSQ)
_Mcpart->PTOT = sgrt {ptsq); Enddef

Figure 5. Example Program In Four Languages usiﬁg Jazelle.

2.4 Accessing Data in Jazelle Banks

One of the main aims 1n designing Yazelle was to make it fit elegantly into the programming
language(s) used to write code for the experiment: in effect to give the vser the impression that
access to Jazelle data is & natural extension of the language. SLD chose to use an existing pre-
processor, MORTRAN, und 10 extend it to provide access to J azelle®. However, the same fea-
tures can be made available in almost any language, and Jazelle has so far been interfaced to
Fortran-77, C, and IDAL., a language designed specifically for physics analysis. A simple pro-
gram making use of Jazelle from four diffeseni languages is shown in Figure 5.

The interface to Fontran is by way of a pre-processor that convens the Jazelle language refer-
ences into standard Fortran code. In the case of C, no pre-psocessor is required since the Jazelle
structures can be mapped directly onto C-structures and the native C syntax can be used to ac-
cess data from Jazelle banks. It is hoped that in the future jt will be possible to design a Fortran-
90 imterfacc similar to the cumrent C imerface.

Note that in all language interfaces, access to Jazclle data js achieved using purely in-line code.
No function or subroutine calls are necessary to access the data. Care has been taken to generate
1arget language expressions which do not inhibit the normal ability of the compiler to optimize
the code. Real Fortran applications making extensive use of Jazelle show that the typical CPU
time overhead incussed by vsing Jazelle as opposed to common blocks is only about 5%.

For those language interfaces that make use of a pre-processor, one concem is that the pre-
processor will form a barrier to the use of symbolic debuggers. There are two aspects to this
problem. Firstly, the code seen by the user in the debugger will not correspond exactly to the
code written by the user and, secondly, the debugger will not be able to access data stored in
Jazelle banks. To overcome the first problem we have been careful to restrict the Jazelle pre-
processor to making only local (within one line) changes to the code, and to always produce a
comment in the output code indicating the original source expression. In addition, it has been
possible with both the VM and VMS debuggers to interface Jazelle to the debugger so as to al-
low the direct examination and modification of Jazelle data structures and painters from within

the debugger.

3 Using Jazelle to Build Complex Data Structures

There are many reasons 10 keep individual banks small and to compose complex data structures
by linking together many small banks. Jazelle provides mechanisms for Jinking banks together
to make arbitrarily complex data sinuctures, as illusirated in Figure 6.

Fhe simplest of these mechanisms is 10 imbed pointers 10 banks inside other banks. A 1ypical
use of pointers is to create hierarchies of banks with a top level bank printing to other banks
which contain more detailed information. For example, in the SLD DST structure (Figure 7) a
patticle summary bank (PHPART) comains pointers to Jower level banks which contain de-
1ailed inforination from each of the deicctor elements in which the partic e was reconstructed.
Some of these in tumn point to still lower level banks containing even greater detail. Arranging

the data in this way, rather than in one huge bank, allows efficient representation of the fact that
not all particles are seen in all detector elements; nnnecessary banks are simply not created and
the pointer which would otherwise point 1o them is assigned a null value. In addition, such a
structure allows the user to drop any infermation which is not required for a particular analysis.

A second and more innovative way of representing relationships between Jazelle banks is by
the use of relational tables, A relational table is a family of Jazelle banks whose structure con-
tains one or more elements of type Key. Within a relational table, each bank represents a rela-
tionship, with the key(s) pointing to the bank(s) being related. The bank containing the key(s)
is alsp able to store additional information about the relationship. For example, the SLD DST
structure includes a relational table which relates vertices and particles. Given that venices are
not reconstructed unambiguously, each vertex can be associated with any number of particle,
and each particle can be attached to an arbitrary number of vertices. Thus it was required to

® Many to One

One 1o one relationships are easily
represented by a pointer in one bank 1
pointing to another bank. s

Again easily represented by simple
pointers

One 1o many relationships can be
represented by a vecior pointer in
the single bank, but with Jazelle
they are befter represented using
a Key in each of the target banks.
Keys allow the Jinks 1o be trav-
ersed efficiently in either direc-
tion.

Many 10 many relationships can also be repre-
sented using Jazelle Keys, The intermediate banks
in this case are called a relational jable

Figure 6. Types of Relationship Supporied by Jazelie

represent a completely arbittary N by M relationship. The family of banks used to create the
patticle-veriex relational table is called PHPTVX, as is shown in Figure 7. Properties of the re-
lationship, such as the distance of closest approach of the track 10 the vertex, are stored in the
bank along with the keys whici: point to the track and vertex banks.

Unlike all other Jazelle element types, keys can not be assigned values directly. Their values are
set when the bank containing them is first created and can only be modified by calling a special
key-modification routine. This enables Jazelle to create additional hidden links between banks
containing keys. One link interconnects all keys which have the same value, while a second link
interconnects the first occurrence of each value within a table. These two sets of hidden links
make very efficient scans of tables possible. Using Jazelle tools for handling relational tables,

Figure 7. The SLD DST Data Structure

questions such as, "Which particles are attached to this vertex?" as well as the symmetric ques-
tion, "Which vertices is this particle attached t00?" can be answered very easily and efficiently.

By describing relationships with relational tables it is very casy to add additional relationships
by simply creating new banks, or tc remove existing relationships by deleting banks. Again,
this mechanism is well suited to the case of tracks and veniices, where the precise relationship is
often built up slowly, with frequent changes and ambiguities.

4 Conclusions and Future Plans

Data managers have in the past been viewed by many people as only ne.essary to compensate
for the inadequacies of older languages such as Fortran. During the development of Jazelle it
has become apparent that it is possible to develop teols which have considerable advantages
over those provided by any programming language alone. Examples of these advantages are the
ability to transport complex data-straetures easily and flexibly between programs and between
- different machines, tools to allow easy examination of the data, and perhaps most importanily

the ability to access and manipulate the data interactively from data analysis programs such as
IDA and PAW'.

A further advantage of Jazelle is that it can be used as a tool in multi-language environments.
One of the major problems in mixing languages is transporting complex data structures between
differem languages, since the intemal representation of the data is often very different. Jazelle
provides a language independent data repository and makes transporting data between different
languages much easier.

Jazelle currently consists of approximately 50,000 lines of code, and represents almost 10 man
years of cffort. Less than 25% of this represents work which could be eliminated in producing
an equally functional system based on a more recent high level language. For these reasons
some of the authors would like to continue the development of Jazelle by adding support for
other languages such as Fortran-90, by porting the system to new environments such as UNIX
and by continuing to add new features and improve existing ones. We would particularly like to
find new experiments interested in using Jazelle in the upcoming SSC/LHC era.

5 Acknowledgments

We would like to thank all the members of the SLD collaboration for their ideas and patience
during Jazelle's development and especially those who have contributed code, in particular
D.Aston, W.Ballentyne, C_Boeheim, M.Gravina, Y.Lu, LJ.Moss and 8. Sterner.

'll bas only been possible 1o cover a few of these topics hiere, for fnther discussion the reader is encour-
aged to consult the Jazelle User Guide, reference 6.

6 References

1. R.Brun, M.Goosens, J.Zoll, CERN DD/EE/85-6 and papers presented at this conference.
V Blobel, DESY-R1-8B-01 and papers presented at this conference.

T.H. Bumett, Comput. Phys. Commmm. 45 (1987) 195-199.

A.S.Johnson el al., AIP conference proceedings 209, 285.

A.S. Johazon, Comput. Phys. Commun. 45 (1987) 275-281.

A.S.Johnson and D_J.Sherden, SLAC-PUB-263.

LAl I

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, cxpress or implied, or assumes any legal liability or responsi-
bility for the accuracy, completencess, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein 1o any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expresscd hercin do nol necessarily state or reflect those of the
United States Government or any agency thereof.

-1z -

