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ABLATION GAS DYNAMICS OF LOW-Z MATERIALS ILLUMINATED BY 
SOFT X-RAYS 

Stephen P. Hatchett 

I. INTRODUCTION 

Though many of our results will have much greater generality, 
the main purpose of this paper is to provide a simple, accurate, 
physical theory of what happens when a Planckian spectrum of soft 
X-rays is incident on one side of a slab of initially cold, dense 
material, of small nuclear charge Z. Our approach will be to 
consider in some detail the idealized situation shown in Fig. 1. 
A semi-infinite (x S 0) slab of initially cold (T < 300 K), dense 
(p ~ 1 - 10 g/cc), low-Z (Z < 5) material is suddenly subjected at 
time t = 0 and thereafter to radiation incoming from x = +<» with a 
specific intensity in directions toward the slab that is 
Planckian, characterized by a black-body temperature, TR in the 
soft X-ray region. 

We naturally expect the incident X-rays to be absorbed by the 
slab material and heat it up, and that hot (T ~ TR ) material will 
blow off the face of the slab. The problem of what happens after 
enough material has been heated that the hot material is quite 
optically thick to incident X-rays has already been solved to some 
extent by the theory of "Marshak waves." However, for the case 
of low-Z materials the hot portion will be fully ionized so that 
its opacity will be relatively low, and there may be a significant 
period of time (of order tens of nanoseconds) during which the hot 
blowoff has a Planck mean optical depth, Tp, of less than a few. 
Radiation will not then diffuse toward cold material but will be 
more or less incident directly on it. We shall concern ourselves 
here with these "early" times. 

We expect the following general features of the resulting gas 
dynamic flow. The X-rays will be absorbed in a boundary between 
hot and cold material — at a radiative heat front, or what we 
shall simply call a heat front. This heat front will be rather 
narrow having a thickness of about one Planck mean free path 
(photon mfp averaged with respect to ByiTu)) in un-ionized, dense 
material. Assuming the flux of radiation driving this heat front 
is steady or slowly varying, we expect the heat front itself to be 
nearly steady. Depending on how fast the heat front is able to 
propagate into the slab, a shock wave may or may not break off and 
propagate ahead of it. Behind the heat front will be some sort of 
rarefaction flow of hot, ionized material into the vacuum. If its 
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opacity does not get too low, the hot gas will remain coupled to 
the radiation bath in which it is immersed, and will be 
approximately isothermal with T = r«. 

In the next section we shall develop the theory of heat 
fronts driven by a steady flux of radiation and then use that 
theory and the physical conditions of our model problem to 
construct explicit solutions for the gas dynamic flow. Following 
that, in Section III we shall modify our theory to introduce some 
time-dependent effects and discuss such things as conditions 
before a steady heat front is set up, so called "transonic" 
fronts, and albedo affects. 

II. GAS FLOWS DRIVEN BY STEADY RADIATIVE HEAT FRONTS 

Steady Heat Fronts: In the same manner as is usually used to 
discuss shock fronts, we shall write the equations for 
conservation of mass, momentum, and energy in a frame in which the 
heat front is motionless. Since we are solving a one dimensional 
problem, all velocities are assumed to be perpendicular to the 
heat front. Let subscript 1 refer to quantities immediately 
upstream of the heat front and subscript 2 to quantities 
immediately downstream. On the assumption that the heat front is 
steady we can integrate the differential equations of motion 
across it and obtain: 

PliJl = P2U2 (1) 

2 2 
-Pi + PlUi = -P2 + P2"2 (2) 

2 ^ pu -̂  2 2 (3j 

(equations representing the conservation of mass, momentum, and 
energy, respectively), where p is density, u is velocity, P is 
pressure, h is enthalpy per unit mass and F is a flux of energy 
absorbed and thermalized at the front. 

To place heat fronts in the context of other gas dynamic 
fronts, we note that these are, of course, just the familiar shock 
equations with the addition of the F/pu term to the energy 
equation. For combustion fronts (detonations and deflagrations) 
the corresponding term is Q, the specific heat of combustion. One 
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difference between the physics of heat fronts and that of 
combustion fronts is that for a heat front F is regarded as known 
a priori but the mass flux, pu is not; for combustion Q is known. 
The equations are also similar to those describing astrophysical 
ionization fronts, but there the quantity usually regarded as 
known is the number flux of ionizing photons or equivalently the 
mass flux. 

It is more convenient for many purposes (including comparison 
with results in books) to use the specific volume V = 1/p rather 
than the density in our discussion. 

If we define the (constant) mass flux, pu = j, then equations 
(1) and (2) can be combined to give the "Rayleigh line" of final 
states, so called because on a P vs V graph it is a straight line 
through (P-,, V-,) with slope -j^. We have 

T/o - U-i I A\ 

We note that in the absence of the viscous dissipation of 
momentum, P2 and V2 can be replaced by P and V for all intermediate 
states inside the heat front as well. Equations (1), (2), and (3) 
may be combined to give the heat front Hugoniot: 

F = i- y\ i2zEl. 2f P2V2 - — PiVi - P2V1 + P1V2 
2 V V^-V2 1 72-1 n-l ) (5) 

where we have introduced an equation of state in the form 
h = {yl {J - 1)] PV. The schematic behavior of heat front Hugoniot 
curves is shown in Fig. 2 for two different values of F. The 
Hugoniot curve has two branches. The one extending toward high 
pressure has infinite slope at Pi = P2 and is asymptotic to 
(72 - l)/(72 + 1) • The lower branch for P2 < Pi is asymptotic to 
P2/P1 = 1 and (unphysically) to P2/P1 = (1 - 72)/(I + 72). In the 
limit F —> 0 the two branches merge into the ordinary shock 
Hugoniot curve together with a horizontal line. Pi = P2. The 
curve then represents the three types of discontinuities allowed 
by the equations of motion: ordinary compressional shocks, 
unphysical (usually) rarefaction shocks, and so called 
"tangential" discontinuities (Pi = P2, ui = U2 = 0, Pi '*• P2) • 

Equations (4) and (5) are essentially two equations in three 
unknowns; j, P2, and V2. (For the moment we regard F and the 
upstream quantities. Pi, and l̂ i., as known.) To make further 
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progress we must find an additional constraint from the physical 
conditions of the problem at hand. 

Heat Fronts Driven by Soft, Thermal X-Rays in Particular: 
For the model problem considered the additional constraint is 
provided by the heat bath of Planckian radiation in which the gas 
finds itself as it exits the heat front: 

T2 = TR (6) 

Our heat front would be constrained at this point if the 
radiative flux FR arriving at the front were known. For the 
problem at hand, however, that is not precisely the case, even if 
we ignore any nonzero albedo as insignificant. The reason is that 
the hot gas is blowing off into a vacuum, and it is approximately 
isothermal. As we shall see in the next section this means that 
there will be, for times of interest, an isothermal similarity 
rarefaction (ISR) wave between the radiation source and the heat 
front. For an ideal gas, an ISR, in order to remain isothermal, 
requires a constant power input per unit cross sectional area of 
P23/2 y^i/2 where P2 and V2 are the values at the leading edge of the 
rarefaction wave. Again anticipating results of the next section, 
we have used the subscript 2 implying that conditions at the 
leading edge of the ISR are those at the exit side of the heat 
front. We therefore make the substitution FR = FR° - P2̂ ''̂  l̂ ^̂ ^ in 
Eq. (5), yielding 

2 V V1-V2 

yz+i 7i+i 
——P2V2 - ——PiVi - P2V1 + •P1V2 
Tz-l 7i-l 

(7) 

where FR° = OTR'' for now. The modified Hugoniot curve. Fig. 3, has 
similar behavior to the Hugoniot curve shown in Fig. 2 with two 
exceptions. First, the high pressure branch is asymptotic to 
Va/Vi = 1/10 (for 72 = 5/3) ; second, the upper part of the low 
pressure branch ends with zero slope at V2/V1 = (FR°/PI'V-PIV'I) ̂ . The 
ideal-gas result for the ISR power consumption has been used 
because that is an excellent approximation for low-Z materials at 
soft X-ray temperatures with density less than a few g/cm^. Hence 
we shall also rewrite Eq. (6) as 
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P2V2 = ^ ^ 
(8) 

where R is the gas constant and H is the fully ionized mean 
molecular weight, fi = A/{Z + 1) . 

We seek solutions then to Eqs. (7) and (8) for P2 and V2 given 
FR°, TR, P I , and Vi. Depending on the relative values of these last 
parameters there are (it can be shown) one, two, or four real, 
positive solutions to these equations, corresponding to the 
possible intersections of the appropriate isotherm with the 
appropriate modified Hugoniot curve (Eq.7). 

Rather than proceed directly with an exhaustive discussion of 
the various solutions, we will use some physical arguments to 
determine the unique solutions physically possible in the context 
of our particular gas-dynamic problem. Because we shall be 
extensively concerned in what follows with the speeds at which 
various signals propagate, it is useful to^ie±J_ae_two rnnrp; 
symbols: the adiabatic sound speed, r = y {r)P/dp} s, — \/\-(r)P/dV) s 
and the isothermal sound speed, a = ^j(dP/dp)T - vyj-(dP/dV) T-

Consider what we can infer from the constraint (8) that the 
final state (P2, V2) of the gas flowing through the heat front must 
lie on the TR isotherm, c.f. Fig. 4. We note first that the part of 
the isotherm between points C and D is excluded since the mass 
flux, j = [ (P2-P1) / (V1-V2) ] ̂ /2^ must be real, i.e. the slope of the 
Rayleigh line must be negative. 

Next consider heat fronts resulting in a compression of the 
gas corresponding to points above C on the isotherm such as A, B, 
or 0. For a given mass flux (a given Rayleigh line) there are in 
general two possible final states, points A and B for example. For 
final states above O, such as A, the exit speed of the gas from 
the heat front is less than the isothermal sound speed, U2 < 32. 
This follows immediately from the relative slopes of the Rayleigh 
line and the isotherm at point A: 

2 ,2 2 
"2 = J ^2 < dP2 

dV2 
V2 = a2 

T2 (91 

Conversely, for final states such as B between C and O, the exit 
speed is supersonic (U2 > a2); while for final state 0 it is sonic 
(U2 < 32). If the exit speed from our heat front were less than 
the isothermal sound speed, then the isothermal rarefaction 
downstream from the heat front would catch it and weaken the 
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compression until the exit speed was sonic (U2 —> a2) . We conclude 
that the only compression heat fronts that can be physically 
realized in our situation have final states corresponding to 
points between 0 and C on the TR isotherm. It can readily be shown 
that these correspond to compressions by a factor of 2 or less. 
Finally, all compression heat fronts for our problem propagate 
supersonically (ui > Ci) into the gas ahead of them. This follows 
from the fact that for our problem T2 » Ti so that the possible 
Rayleigh lines are much steeper than the adiabat through (Pi, Vi) . 
Therefore a compressional heat front cannot be preceded by a shock 
wave. 

Finally consider expansion heat fronts corresponding to final 
states below D on the TR isotherm. Using the same arguments as 
above we see that these fronts propagate subsonically into the gas 
ahead of them, (ui < ai) . And, following the above arguments, we 
see that final states such as E between D and O' have subsonic 
exit speeds (U2 < 32) while those below O' such as F have 
supersonic exit speeds (U2 > a2) . Therefore final states between D 
and O' are impossible in our situation — the isothermal 
rarefaction would catch them. But final states such as F below 0' 
are also impossible! There are two reasons for this. First, the 
implied intermediate states of the gas are impossible for such a 
front. The thickness of a soft x-ray driven heat front must be of 
the order of a Planck mean free path for the photons providing the 
heat. It can readily be shown that molecular viscosity is a very 
small effect indeed in a front of that thickness, (photon mean 
free path » electron or ion mfp), and that therefore all 
intermediate states of the gas within the heat front must lie on 
the Rayleigh line (no viscous term in the momentum equation). The 
state of the gas must vary continuously, and so in traversing the 
Rayleigh line to a state such as F must cross through a region 
between E and F in which T > TR. This is impossible: there is no 
way to heat the gas to such temperatures. 

The second reason that fronts having final states below 0' 
are impossible is that they are absolutely unstable. Such a front 
is subject to (in one dimension) five independent perturbations: 
displacements of the front, entropy disturbances left behind in 
the gas behind the front, sound waves propagating ahead of the 
front, and, because U2 > a2, sound waves propagating both forward 
and backward in the gas behind the front. The front is absolutely 
unstable because its perturbations are subject to only four 
constraints; conservation of mass, momentum, and energy, and the 
imposed final temperature. We conclude that an expansion heat 
front must be "critical" in the sense that only final states 0' at 
which the Rayleigh line is tangent to the TR isotherm and for which 
the exit speed is exactly the isothermal sound speed, U2 = 32/ are 
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possible. This condition is analogous to the Chapman-Jouget 
condition on a combustion front. 

Now if FR° is too small, and it falls like TR'^, there may not 
be enough radiation flux to sustain the minimum mass flux through 
a compression heat front (c.f. Fig. 4); an expansion heat front 
may be the only course open. But we have concluded above that for 
a given Pi, Vi, and TR that the final state is determined (point 0 
in Fig. 4) — the expansion heat front must be "critical." What 
if that final state (P2, V2) does not satisfy Eq. (7), i.e. does 
not lie on the appropriate Hugoniot? In general it will not; we 
need another free parameter, and it appears that we do not have 
any. The way out is to vary the Initial state (Pi, Vi) . We can 
show, in fact, that together the above constraints imply that the 
initial state (for a y = 5/3 ideal gas) must lie on the curve shown 
in Fig. 5. Our expansion heat front is propagating subsonically 
into the gas ahead of it so it can be preceded by a shock or 
rarefaction. These are just the one parameter disturbances of the 
initial conditions that we need: 

shock or 

(POrVo) -> {PlrVl) 

rarefaction /nnx 

From Fig. 5 note that for TR _ 100 eV we have Pi _ 10 Mbar. The 
solution with a rarefaction might be appropriate if a sufficiently 
strong shock had already compressed the material. Since our model 
problem involves previously undisturbed, ordinary terrestrial 
material, we shall be concerned with the solution in which a shock 
precedes an expansion heat front. 
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Table I summarizes the properties we have so far derived for 
the soft X-ray driven heat fronts appropriate to our model 
problem. 

TABLE I 

Compression heat fronts Expansion heat fronts 

ui > ci "supersonic" 

U2 ^ a2 

0.5 < V2/V1 < 1 

P2/P1 ^ 1 

Not preceded by anything 

ui < aj "subsonic" 

U2 = 32 "critical" 

V2/V1 > 1 

P2/P1 ^ 1 

Preceded by shock or rarefaction 

Complete Gas Flow Solutions: Up to this point in our 
development the only physical parameters we have been considering 
are PQ, Por F-R, and TR. We make the usual dimensional-analysis 
argument that since these parameters cannot be combined to give 
length and time dimensions in any other combination than 1/t, 
there are no effective length or time scales. This is, of course, 
not quite true. There are length and time scales associated with 
the opacity, and these do indeed introduce important effects (such 
as "transonic" heat fronts). However, we shall presently show that 
these scales are generally either much smaller or much larger than 
the length or time scales in which we are interested. For the 
moment, therefore, we shall look for similarity solutions such 
that all the gas dynamic flow variables are approximately 
functions of the single space-time variable x/t. 

On an x-t diagram we expect the flow to look like that shown 
schematically in Fig. 6. Ignoring the pressure ahead of the heat 
front as negligible compared to that behind it, we combine Eq. (7) 
and (8) in the dimensionless form 

(j) = p + p 72 + 1 

2 f ^ I 72-1 
- P 

(11) 
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where ^ = FR°/[po (i?rR//i) 3/2] is a dimensionless flux and 
P - -Pmax/(PO-R̂ R//!) is a dimensionless pressure. P̂ ax Is the maximum 
pressure in the flow — in this case, the pressure between the heat 
front and the leading edge of the rarefaction (i.e. behind the 
heat front) . The function p((/>), which Eq. (11) gives implicitly, is 
shown in Fig. 7. 

It is a simple matter to use the equations of continuity and 
momentum conservation to derive some useful formulas for the 
velocities. The heat front propagates, relative to the material 
ahead of it, at a speed 

Zs. = P _ 
(12) ^ VFT 

where a = {RT^/fX) ̂ ^̂ . The heat front separates from the leading edge 
of the isothermal rarefaction wave at a speed 

^sep ^ 1 _ ]_ 

(13) f^ 

Equation (13) immediately implies that we should not consider 
solutions to Eq. (11) for p > 2, that is for 0 < (72 + l)/(72 - D • 
Such solutions correspond to heat fronts which have exit speeds 
less than the isothermal sound speed and so cannot exist under the 
conditions of our problem. From its definition, p is also the 
factor by which matter is compressed in passing through a 
compression heat front. Hence follows our previous remark that 
such a heat front can give a compression no greater than a factor 
of two. 

The flow previously described for an expansion (subsonic) 
heat front should look like that diagrammed in Fig. 8. We can 
assume that the pressure in the cold dense material ahead of the 
shock can be ignored, i.e. that the shock is very strong. However, 
we can in general make no such simplifying assumptions about flow 
variables on either side of the heat front. We have the 
additional constraint that the exit speed from the heat front must 
be equal to the isothermal sound speed, or equivalently that the 
Rayleigh line is tangent to the final isotherm. This constraint 
can be written 

P2-P1 = _ P2 
V2-V1 V2 (14) 
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Making the strong shock substitution, Vi = Vo(7i - l)/(7i + 1) we 
combine Eqs. (7), (8) and (14) into the dimensionless form 

0 f^ 
il^ + il^i 

R2-P 
2 

+ 1 
(15) 

where 1̂,2 — (7i,2 + l)/(7i,2 - 1) and again <p and p are the 
dimensionless flux and pressure as defined earlier. Here, the 
maximum pressure is achieved ahead of the heat front, between the 
heat front and the shock. The inversion of Eq. (15), p(0), is 
shown in Fig. 7 for the case 7i = 72 = 5/3. A very good fit (to 
better than 3%) to the inversion of Eq. (15) for this case is 

(16) 

Putting the dimensions back in the limiting form of Eq. (16) we 
have 

p ^ 1. <^R 

V¥ (17) 

demonstrating the P ~ TR^-^ , P independent of Po , scaling expected 
from dimensional analysis, together with the correct numerical 
factors. 

Again, it is straightforward to derive some useful velocity 
formulas. The shock propagates into the material ahead of it at a 
speed 

Zs. = ,/ PP-i 
a V Rx-1 (18) 

The shock and heat front separate from each other at a relative 
speed 
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\vs-Ve\ 

^RliRl-1) ^ V' 
1 _ ^ - 1 

Pl{Pl-l) V Pi (19) 

For small (j) (small p) , this speed is proportional to p^^^. As TR 
(and hence 0 and p) increases, however, this separation speed 
reaches a maximum and then diminishes until for p = 4(1 - 1/Pi) 
(corresponding to 0 = P2) It vanishes, and the heat front keeps up 
with the shock. 

As we have noted, (p = R2 is the critical value for compression 
heat fronts, and hence it is the critical value for the transition 
from the expansion-heat-front-plus-shock type of solution to the 
compression-heat-front-solution. For 72 = 5/3 this condition 
defines a critical radiation temperature for a particular 
material: 

^R,cri t -
4Pof^ ' /p\3/5 

<^ I W) (20) 

( 2 i ; 

There are limitations of the validity of self-similarity. In 
deriving a similarity solution we have been implicitly ignoring 
the fact that there are indeed length and time scale parameters 
associated with the opacity of the material being irradiated. For 
our problem it is often enough to consider the "Planck mean free 
path", Ip of the photons driving the heat front 

[ By {TR 

• / 

^% dv 

Ip (p, T, TR) = 

By (TR) dV 

(22) 

as the scale parameter. Here K"v(p, T) is the opacity of matter at 
density p and temperature T to photons at frequency V. The Planck 
mean free path is simply a useful estimate of how deep and over 
what depth range the incoming energy flux of radiation penetrates 
before being absorbed. Note that this is quite different from a 
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Rosseland mean free path which is only meaningful for T = TR and 
which uses a different weighting function, dBy/dTR, which peaks at 
higher energy (about AJCTR) than By(TR) . 

As we have mentioned, we are able to ignore this length 
scale, ip, because for times of interest (t from a few nanoseconds 
to a few tens of nanoseconds) it is either much smaller than or 
much greater than the other gas dynamic scale lengths of the 
problem. For illumination by soft X-rays, this property occurs 
only for low-Z materials. The opacity of these materials to soft 
X-rays is dominated in the fat part of the black body spectrum by 
photoionization from the K-shell of electrons, the energy 
threshold for K-shell photoionization being at ~ 13.6z2 eV. In the 
matter just ahead of the heat fronts we have been considering, the 
temperature is low enough that the K-shell electrons are retained 
by the nuclei with Z > 3. This is true even though the matter may 
have been shock heated to tens of eV in the case of expansion heat 
fronts. However, the matter behind the heat front has been heated 
to ~ TR, at which temperatures materials with Z <~ 6 are fully 
stripped of electrons and the opacity drops by orders of 
magnitude. Now ip for cold materials at their normal laboratory 
densities ranges from ~9 {TR/100 eV) |lm for Li H down to 
~ 0.7 (TR/100 eV) |Im for CxHx • It is easy to calculate from the 
previous formulae in this section that after a few nanoseconds or 
even a few tenths of nanoseconds the relevant length scales of the 
problem, such as the distance by which the shock and an expansion 
heat front are separated, greatly exceed Ip in the shocked matter. 
(This is not true if TR is near Tent as we discuss in the next 
section.) It is likewise straightforward to use the formulas 
together with the Saha equation to estimate the Planck mean 
optical depth of the matter at ~ TR behind the heat front and find 
that it is small for times ranging from several tens of 
nanoseconds for LiH to several nanoseconds for CxHx. 

The dramatic change in opacity to soft X-rays at the heat 
front is what limits this whole analysis to low-Z materials. 
Retaining (at least) their K-shell electrons at soft X-ray 
temperature, high-Z materials retain their opacity and there is no 
significant time other than the initial penetration when radiation 
is not diffusing into these materials. The assumption of a steady 
heat front with a steady flux of radiation incident on it then 
breaks down. 

III. SOME TIME-DEPENDENT HEAT FRONT EFFECTS 

"Transonic" Heat Fronts: When the X-rays are first incident 
on cold, dense matter they propagate forward at the speed of light 
until they are stopped in a region about one Planck mean free path 
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thick. This region heats to a matter temperature T with a 
characteristic heating time 

th = 

1 
2 

iPoPT , 

1 /̂  '' 
OTR (23) 

and expands with a characteristic time (sound crossing time) 

t - ^ 

Vf (24) 

The ratio of these times 

th 3 \TI (25) 

roughly indicates which process is most rapid. For the 
temperatures and materials we are concerned with here, we have 0 >~ 
0.3, and we see that the matter heats up to a substantial fraction 
of TR before expansion and adiabatic cooling can slow up the 
heating rate. (It is interesting to note that the heating time to 
TR is approximately independent of TR since Ip °^ Tg^. 

At these very early times our unsteady heat front is 
propagating supersonically. The question is whether the pressures 
being generated in it will form a shock wave that can propagate 
through it and get ahead of it. The answer is presumably no for 0 
> 4 . For 0 < 4 we expect that eventually a distinct shock wave will 
break out ahead of the heat front. This can take a while, however, 
because Eq. (19) shows that an expansion heat front and the shock 
it spawns ahead of it have a maximum separation speed at p = 2 
(0 = 3). As 0 (which is proportional to TR^''^) increases further 
toward the limiting value of 4 the separation speed declines to 
zero. Unless the shock and heat front are separated by at least a 
Planck mean free path they cannot really be said to have a 
separate existence. Therefore a reasonable lower limit to the 
time required for the gas dynamic flow to "relax" to the 
similarity solution of shock plus expansion heat front, described 
previously, is 
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_ Ip {p=po,T=0) 
ttrans ~ i i 

ks - Ve\ (2 6) 

(which formally diverges as 0 —> 4 from below) . In this 
"transonic" heat front situation the front can take a very long 
time to relax from its initially supersonic propagation toward a 
steady state. (So long, in fact, that albedo effects become 
important and the front is never steady.) 

"Reflected" Flux Effects: Finally we shall stop sweeping 
under the rug the fact that the hot (~ TR) blowoff material in the 
flow can lose energy by radiation that escapes to x = +°o. This 
effect is cumulative with time as the optical depth of the blowoff 
increases. It causes a lowering of the flux actually reaching the 
heat front and, therefore, in the pressure the flux generates. We 
describe below a reasonable way to estimate this effect for the 
expansion heat front case. The other case can be analyzed 
similarly. 

First, no matter how optically thick it is, a region cannot 
emit a thermal radiation flux greater than (JTR'^; and unless the 
flux emitted is comparable to OTR'^ it has little effect on the heat 
front. Hence we ignore regions with T < TR (e.g. the heat front 
itself and shocked material). 

Within the framework of our theory the outgoing (to + °°, cf. 
Fig. 1) flux, Frefi/ can be estimated by integrating the equation of 
radiative transfer through the ISR. This can be done because 
p(x,t) is known in terms of the exit density from the heat front, 
and the temperature is ~ TR. Hence one can use hydrogenic bound-
free and free-free opacities together with the Saha equation (the 
low-Z matter is very nearly fully ionized) to estimate the optical 
depth of the ISR. The standard formula below gives the emergent 
flux: 

Jo 
Frefi = 7t S U T R ) [ 1 - 2 F 3 ( T V ) ] dV 

fo (27; 

Where Ty is the optical depth of the ISR at frequency v and E3 is 
an exponential integral. 
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(28) 

One then can use FR° = <JTR'^ - Fj-efi to make a first-order 
estimate of how the ablation pressure diminishes with 
time. 
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Figure Captions 

1. The model problem is a slab of cold, dense, low-Z matter 
suddenly illuminated on one side by thermal X-radiation at time 
t = 0. 

2. Heat front Hugoniot curves for two different values of the 
driving flux, assuming 7i = 72 = 5/3. 

3. Heat front Hugoniot curves, modified to account for flux loss 
in an isothermal similarity rarefaction wave, for two different 
driving flux values, assuming 71 = 72 = 5/3. 

4. P, V diagram showing various possible transitions from an 
initial (Pi, Vi) state to states on a higher temperature isotherm 
(T2 = TR) . 

5. Required upstream (Pi, V\) conditions for "critical" expansion 
heat front. (The dashed portion of the curve corresponds to 
'^R > ĉritf arid is not physically possible for the model problem 
considered). 

6. Space time diagram for a compression (supersonic) heat front. 

7. Maximum pressure achieved for both expansion and compression 
heat fronts as a function of the driving flux. 

8. Space time diagram for an expansion (subsonic) heat front. 
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Fig . 1 The model problem i s a s lab of cold, dense, low-Z matter 
suddenly i l luminated on one side by thermal X-radiat ion at time t=0. 
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Fig. 2 Heat front Hugoniot curves for two different values of the 
driving flux, assuming y = y„ = 5/3. 
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Fig. 3 Heat front Hugoniot curves, modified to account for flux loss 
in an isothermal similarity rarefaction wave, for two different 
driving flux values, assuming Y, = Y, 5/3. 
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Fig. 4 P, V diagram showing various possible transitions from an 
initial (P]_, V-^) state to states on a higher temperature isotherm 
(T, = Tp). 
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Fig. 5 Required upstream (P-^ , V-^) conditions for a "critical" 
expansion heat front. (The dashed portion of the curve corresponds to 
Tp^ > Tcrit f srid is not physically possible for the model problem 
considered.) 
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Fig. 6 Space time diagram for a compression (supersonic) heat front. 
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Fig. 7 Maximum pressure achieved for both expansion and compression 
heat fronts as a function of the driving flux. 
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Fig. 8 
space ti.e diagram £or an expansion 
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