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Abstract

The linearized ideal MHD equations are cast into a set of global differential equations from

which the field line resonance equations of the shear AlfvEn waves and slow magnetosonic waves

are naturally obtained for finite pressure plasmas in general magnetic field geometries with flux

surfaces. The coupling between the shear AlfvEn waves and the magnetosonic waves is through

the geodesic magnetic field curvature. For axisymmetric magnetospheric equilibria, there is no

coupling between the shear AlfvEn waves and slow magnetosonic waves because the geodesic

magnetic field curvature vanishes. The asymptotic singular solutions of the MHD equations near
the field line resonant surface are derived. Numerical solutions of the field line resonance

equations are performed for the dipole magnetic field, and it is found that the shear AlfvEn wave

field line resonant frequency is proportional to L'4p-1/2. The slow magnetosonic wave resonant

frequency is much smaller than the Shear AlfvEn wave resonant frequency and is roughly

proportional to P/pL 2, where L is the equatorial L-shell distance, P is the plasma pressure, and p is

the plasma mass density. The results help to understand the continuous spectra observed by

. AMtrFF_JCCE.



1. Introduction

Observations and theories of ULF magnetic pulsations have been studied for more than two

decades since they were first reported in the 1960's [Judge and Coleman, 1962]. The magnetic

pulsations have been classified through their frequencies, waveforms, dominant magnetic ,

components (transverse or compressional waves), and the associated plasma and geomagnetic

conditions. These morphological features provide clues for understanding their excitation

mechanisms (internally-driven instabilities or externally-driven Alfvdn waves). To understand the

physics of the magnetic pulsations, it is most important to identify their excitation mechanisms.

The internally driven plasma instabilities usually have large azimuthal mode numbers on the order

of 100 and are mainly observed in the magnetosphere by satellites [Takahashi, 1988a]. The

externally excited Pe waves have azimuthal polarization and small azimuthal mode numbers on the

order 10 or less and is observable on the ground.

Recently, AMPTE/CCE has observed multiharmonic Alfvdn resonances previously

observed near geostationary orbit [Takahashi et al., 1982; Cahill et al., 1986] and firmly

established that they are the most commonly excited Pe 3-5 waves in the dayside magnetosphere

from the plasmapause to the magnetopause [Engebretson et al., 1986]. The distinctive structures

in the azimuthal component, consisting of several frequency components, corresponds to the

fundamental and the harmonics of the local toroidal Alfvdn resom_nces. The L-shell dependence of

the frequency and the latitudinal dependence of wave amplitude are unambiguous evidence for local
Alfvdn field line resonances.

The excitation mechanism of these pulsations has also been observed to be due to external

sources. Correlating the CCE magnetic field data with simultaneous solar wind data from

AMPTE/IRM, Engebretson et al. [1987] found that botil the direction of the interplanetary

magnetic field and the velocity of the solar wind govern the amplitude of the harmonically

structured pulsations. A comprehensive statistical study of the resonant harmonic waves

[Anderson et al., 1987] concluded that different source mechanisms can generate different

harmonic modes at different local times. The dayside source may be related to the bow-shock-

associated upstream waves, and the flankside strong fundamental waves may be driven by the

Kelvin-Helmholtz instability generated waves. These toroidal Alfvdn resonances can also be "

excited impulsively by a dayside pressure change imbedded irl the solar wind [Potemra et al.,

1989] '



The theory of local field-line resonances of standing shear Alfv6n waves in response to the
propagation of external disturbances [Dungey et al., 1955; Radoski, 1966; Cummings et al., 1969;

Tataronis and Grossmann, 1973; Chen and Hasegawa, 1974; Southwood, 1974] had received

earlier attentions and seemed to be able to explain the basic features of low- to mid- frequency (Pe

3-5) transverse waves. The original theory of the field line resonance was studied using cold

plasma model and assumed one-dimensional inhomogeneity perpendicular to the ambient magnetic

field. The corresponding eigenfrequencies for the transverse shear Alfv6n waves standing along

the field lines also vary spatially and constitutes the so-called shear Alfv6n continuum. For an

excitation frequency matching an eigenfrequency inside the shear Alfv6n continuum, the the wave

resonance generates perturbations that are radially singular near the particular resonant magnetic
field surface.

In realistic plasmas, such as the magnetospheres, besides being nonuniform in the radial

direction the Alfv6n velocity is also nonuniform in the azimuthal direction as well as in the direction

along the ambient magnetic field, the plasma pressure is finite, and the particles are trapped in the

low magnetic field region. Based on the cold plasma model, Southwood and Kivelson [1986]

employed the rectangular box model to investigate the effects of parallel inhomogeneity. Chen and

• Cowley [1989] studied the field line resonance theory in the dipole magnetic field geometry with

the cold plasma model. Lee and Lysak [1990] studied the field line resonance phenomena by

solving the MHD cold plasma equations as an initial value problem. By employing the ideal MHD0
model with finite plasma pressure, the theory of continuous and discrete shear Alfv6n spectra in

toroidal plasmas has been studied [Cheng and Chance, 1986].

In the paper, we first formulate in Section 2 the ideal MHD eigenmode equations in a form

to provide for a better physical representation of the MHD continuous spectra for finite pressure

plasmas in general magnetic field geometries with magnetic flux surfaces. In Section 3 the field

line resonances that correspond to two branches (shear Alfvdn waves and slow magnetosonic

waves) of the MHD continuous speclr.a are naturally defined [Cheng and Chance, 1986]. These

two branches couple through the geodesic magnetic field curvature. In Section 4 we present

asymptotic singular solutions of the MHD equations near the field line resonant surface. In Section

5 the shear Alfv6n and slow magnetosonic continuous spectra are numerically studied for a dipole

, field geometry, and the corresponding eigenfunctions are given. The shear Alfvdn wave field line

resonant frequency is proportional to L-4p -1/2, and the slow magnetosonic wave resonant

• frequency is roughly proportional to P/pL 2, where L is the equatorial L-shell distance, P is the

plasma pressure, and p is the plasma mass density. The results help to understand the continuous

spectra observed by AMPTE/CCE. Finally, in Section 6 a summary of the major results is given,



and the implications of physical effects'chat are absent in the MHD model and the future efforts

involving global computation of wave propagation are discussed.
t

2. MHD Eigenmode Equations ,

We consider static magnetospheric equilibria described by the system of equations

J x B = VP, V x B = J,and V• B 0, (2.1)

where J, B, and P are the equilibrium current, magnetic field, and plasma pressure, respectively.

For a general three dimensional magnetospheric equilibrium wit,h nested flux surfaces, the

magnetic field can be exp_ssed as

..,#

B = V_ x V t_:, (2.2)

where V is chosen as the nlagnetic flux function. Both NIand ot are constant along magnetic field

lines. The lines where surfaces of constant _ and constant ct intersect represent magnetic field

lines. Note that V must be a periodic function of toroidal angle ¢ in cylindrical (R, t), Z) coordinate

to ensure periodicity constraint. In terms of a flux coordinate system (_,d_,Z) with Z is a t

generalized poloidal angle varying between 0 and 2_, 0t can be expressed as ot = _ - q(gt) Z -

_5(V,O,Z) without loss of generality, where _5(V,O,Z)is periodic in both Z and _. Note that since

B•VP = 0, P is a function of V only.

-'# -.# -,o

With the time dependence _(x,t)= _(x) exp(-io_t) and applying the Laplace transform, the

linearized ideal MHD equations governing the asymptotic behaviors of the perturbed quantities are
given by

..,#

t.o2p _ = V_p + bx (VxB) + B,x(Vx b) , (2.3)

Q

ap + _ • VP + l"sP V • _ = 0 , (2.4)

b = V x ({ x B) , (2.5)
and



-,o

8E = le} _ × B, (2.6)

e

where { is the usual fluid displacement vector, b is the perturbed magnetic field, 8p is the

' perturbed plasma pressure, and p is the total plasma mass density, 8E is the perturbed electric

field, and Fs - 5/3 is the ratio of specific heat.

We decompose the displacement vector and perna'bed magnetic field as

- ,+ + ,

Ivv(- B2 (2.7)

and

_' Qv V_' Qs xV_ Qb B- + + ,

Ivv Ivvl= B= (2.8)
I,

so that _v- _'VV, _s = _.(g×vv/Ivvl al,_b- _.g, Qv = b"VV, Qs = b'(BxVv/B2),

' and Ob = b • B. The three components of the induction equation, Eq. (2.5), obtained after taking

the scalar products with V_, (B x V_), and B, can be,written as

"--lD

-- O v = B • V _v ' (2.9)

=
B2 (2.10)

B 2 "" -" 2)Qb = - V,_.L- _.L*V(P+B , (2.11)

' wh_ S=-(_xvv/IvvIa). v(_xv,v/IvvIa)isthelocalmagnetic shear.' Sk'nilarly, the
three components of the momentum equation, Eq. (2.3), can be rewritten as

,

1 5



_Iv+l2 - )_v+l_( _) -s +J.§ ...._. v_o +s_ + 2_. vv Qb,
B2

(2.12) I

2 12

I_Vl m_,+ B'+ _.v , .v s_. -v. B×vVlQ+,
(2.13)

... 2 --#

B.V{ipl = co 9_u- b. VP , ,' (2.14)
+

where K: = (B/B) • V (B/B) is the magnefi,: field curvature, and _Pt is the total perturbed

pressure given by 8pl = Sp + Qb.

V, P,can be explicitly expressed as II

V,_ = V_*V_v . V. _v + B.V m2 2

Iv,_l vi

- (+ BxV_ gxV_• V_s + V. _s.
B 2 B2 (2.15)

Now _b, Qv, Qs, and Qbcan be eliminated by using Eqs. (2.9), (2.10), and (2.14). Then after

some algebra, we obtain from Eqs. (2.3) and (2.4) the following set of two-dimensional

eigenmode equations [Cheng and Char.,:e, 1986]:

+ ){2 ,2VvoVSpl= co p+v + vv BoY 2
Iv,_l

B2 V 1 "

6



i 12-_)Iv_l_- Vx_ S + J • B• V _s + 2 F_K vv • _,2
B

0 (2.16)

. ( ) I ]vv v_,, [vvl_ vv , _ B×vV• = - V• _V +IVvl 2K, oV _s

Vgl 2 B 2

+ Vg V•{+B,V BoY V, ,
2 2

to pi3 (2.17)

I ( io02 IVV _s + fi•V VV fi,V_ s +2r'_K V,_
P O2

=-g•V Vx¢ S ,- 2P'K s_v- (J•B) g•V_v
, B2 v '

BxVgt
.... • V-2K 5pr,

lt + B2 (2.18)

1+ V•_+ B,V BoV V, + 2 Ks_ _

(o29 B2

__ 3_ _,,
'9t... 19)

where P' =/)P/Oxtt, Kx¢= _c• V_ is the radial magnetic field curvature, and Ks = (K:,BxVgt)/B 2

e is the geodesic magnetic field curvature. Note that from Eq.(2.4) Qb cml be expressed as

• Ob= _5pl + P'{v + FsP V•{. (2.20)

7
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Eqs. (2.16)-(2.19) represent the set of eigenmode equations describing the MHD wave

propagation and MHD instabilities in a general plasma system with magnetic flux surfaces. Eqs.

(2.16),(2.19) can be written symbolically in the following form

0

= (2.22)

and

E _s = F

v. (2.23)

where C, D, E, F are 2x2 matrix operators involving only surface derivatives B*V and (B × VW)
eV.

3. The Continuous Spectrum

' For a given magnetospheric equilibrium, we first solve _ and V._ in terms of 8pl and _v i

from Eq. (2.23) by inverting the surface matrix operator E. Eq.(2.22) then reduces to an equation

for _Pl and _v, i.e., '

• k gr/ (3.1)

Admissible regular solutions of Eq.(3.1) must satisfy the proper boundary conditions. This

procedure fails if the inverse of the surface operator E does not exists (i.e., detlEI = 0) fo_ a given

coo at certain flux surface _o- Then Eq.(3.1) has a radial singularity at _o, and non-square-

integrable solutions of _v and 8pl with logarithmic singularity along the w-direction at the singular

surface _to are possible.

Therefore, the MHD continuous spectrum is determined by the eigenvalues co of the •
!

equation
.,



, (3,2)
1

-.#

e on each flux surface _ with non-trivial single-valued eigenfunctions _s and V._ satisfying

appropriate boundary conditions along the fit;ld line. Since Eq.(3.2) can be reduced to a fourth

order ordinary differential equation along the fi!eld line with the coefficients being ali non-singular,

the eigenvalues co must be discrete. Thus, at each flux surface _, a discrete set of eigenvalues

0)n(_), where n is an integer, can be found With the corresponding eigenfunctions _s(n)and (V
'L

*_)l,_ satisfying appropriate boundary conditior_s along the field line. Both the eigenvalues COn(_)

and eigenfunctions _s(,)and (V._)(,)are smooth functions of _ and form the discrete continuous

spectra for the equ;.librium. Note that _(,)and (V*_)(n_are linearly dependent through Eq.(3.2).
',

Eq.(3.2) represents the coupling of two branches of MHD field l:[neresonances - the shear

Alfv6n branch and the slow magnetosonic branch - through the geodesic magnetic field curvattu_

Ks. We also note that in the cold plasma limit (P=O), Eq. (3.2) ,-'educes to a second order ordinary

' differential equation, and the _low magnetoson_ic wave does not exist with corresponding

eigenfunctions (Va_)(,)becomit:g trivial. As will be shown in Section 3, near the resonant surface

_o, _v and 8pl diverge logarithmically, while _s and V._ diverge as (xt/-_o)-l. Thus, the

dominant eigenfunctions of the shear Alfv6n branch at the resonant surface are mainly in terms of

_s and correspondingly in the components of the rad_ialelectric field 5E'.®V_and shear magnetic

field Os = b*(B×V_fB 2) as seen from Eqs.(2.6) and f2.10). The dominant eigenfunctions of the

slow magnetosonic branch at the resonant surface are given by the compressibility V._ and are

hence from Eq.(2.20) by the compressional magnetic field Ob. The perpendicular electromagnetic

field co;nponents are smaller.

Operating on Eq.(3.2) with the matrix [ _ -(V,_)], and integrating along the field line with

ds/B, a Lagrangian functional L can be obtained and is given by
|

ds 0) 2 _7_1 2 B2 2

9 L = _ p B E I_sl + IZl
1



- " + rB' ,
(3.31

, --.o

where s denotes the distance along the field line so that B,V B(d/ds), Z = FsP B.V(V._) / o

pto2B2, and s1 and s2 are the two end points of the field line. In deriving Eq.(3.3) we have
, "'lD

employed the standing wa,ve boundary conditions with _ and Ve_ vanishing at the two end points

of the field line. h is straight forward to verify that Eq. (3.2) is a consequence of the requirement

that the functional L be stationary. Since L = 0, it is clear that the eigenvalues ton and the

corresponding eigenfunctions must be real. The determination of the continuous spectrum reduces

to that of finding the eigenvalues to and eigenfunctions so that the Lagrangian functional L is
..,o

stationary with respect to variatios of _s and V._. The admissible variational functions must be

square-integrable and satisfy the standing wave boundary condition.

.-.o

One can also show that the discrete set of eigenfunctions { _sl,i ; (V,_)I,I } are complete and

orthogonal with the orthogonality condition given by
I!

fS $2 2

ds VI B 2, -ffP + = 8.,,, .
t 132 (3.4)

where 8n n is the Kronecker delta, lt can be straight forwardly shown that

(I )fs $2 2(COn " ton' ) _- P B2 Z(n)Z(n') = O ,
I ' (3.5/

from which the orthogonality condition Eq.(3.4) follows.

Thus, we have established that there are only two branches of continuous spectra in the ideal

MIlD theory for finite pressure plasmas in general magnetic field geometries with flux surfaces. In

general there are three branches of MHD waves. The third branch of MHD waves, the fast qP

10



magnetosonic wave, represents a regular global solution of Eq.(3.1), which is influenced by the

local magnetic shear, the magneticfield curvature, and the field-aligned current.

For a simplified axisymmetric magnetosphere with nested magnetic flux surfaces, the

magnetic field can be expressed as
@

B = V_ × V(I). (3.6)

_._here_ is a function of R and Z only. Since B.V_ = g.V_ = 0, the lines of the magnetic f_Id

and the lines of constant _ coincide. The local magr,etic shear S and the field-aligned current J.

vanish. We also note that the geodesic magnetic field curvature Ks vanishes, and the shear Alfvdn

waves and the slow magnetosonic waves decouple as shown in Eq.(3.2). In the decoupled li_nit

the Shear Alfven field line resonance equation given by Eq. (3.2) corresponds to the toroidal

magnetic field equation previously studied numerically by Cummings ct al. [1969] by employing a

model field-aligned density profile. The finite pressure effect enters through the change in the

equilibriam magnetic field. In addition, to be consistent with the ideal MHD model the density

should be constant along the field line. The effect of the field-aligned density variation will be

• considered in the future with a consistent anisotropic MHD model.

4. Singular Solutions Near Field Line Resonant Surface

To obtain the radial field structurenear the field line resonant surface, we will follow the

approach of Pao [1975] in his investigations of the continuous spectrum in axisymmetric

tokamaks. By first assuming the existence of singular solutions of Eqs.(2,22-23) near the

resonant surface, the necessary compatibiLity conditions axe then derived. We also note that Chen

and Cowley [1989] has used the similar approach to obtain the singular solutions near field line

resonant surface for a cold plasma model.

Let _o label the field line resonant surface of an external disturbance with the excitation

frequency co2 = C0n2(Vo), and we define a smallness parameter e = I(_t-Wo)Altol<< 1. Therefore,

t there are two spatial scales; the slow equilibrium scale and the fast radial perturbation scale. We

note the following orderings: I_o(O/Oalt)l-O(1/£) >> 1, the operator E -O(£), and the operators C,

_) D, F - O(1). Then, the solutions of Eq.(2.22-23) near the resonant surface _to can be expanded

asymptotically as

11



(o) (i)
8pI= 8p_ + 8p_ + ....

!

@

(o) (z)
{v= {v . {v . .... ' O

(o) (z)
_= _,_-_)+_, + _, + ....

!

.. (-I) .. (o) .. (i)

v,_= (v,_) + (v,_) + (v,_) + .... , (4.1)

where the superscripts denote orderings in e. Then, from Eq.(2.22) we have in the lowest order

_ (o)! = D / _.(-1) ,

(4.2)
Q

and from Eq.(2.23) we have

@

/ (.,) / (o)_
E _. (_> F

(v,_) _) '
(4.3)

To proceed further we express _s (1) and (V.{)("1) in terms of the field line resonance
,,,.,#

eigenfunctions _,_ and (V._)I,, I as

_, (s,v) g_(_.)(s,v)_.(-_) = ),.n(y,xl,O
(v._) (s,v) (V*_)(n)(S,V) ,

(4.4)

12



where y - _-Vo)and V represent the fast and slow radial variations in V, respectively.

Substituting Eq.(_ 4) into Eq.(4.3), operating on Eq.(4.3) with the matrix [ _s<°l -(V*_)lnl ],

integrating Eq.(4.3) along the field line with ds/B, and applying the orthogonality condition

Eq.(3.4), we then have

• 2 2

[co - COn(V) ] _n(Y,V) = An(Y) , (4.5)

where

_ (o)1

An(V) -= -_- _s(n) -(Vo_)(n) F (0)| •

t _v J (4.6)

Note that we have demanded An(V) to be finite and dependent on V but l_.oton y. Then, Eq.(4.5)

readily shows the singular nature of La(y, v) near the resonant surface _to wiaere o)2 = COn2(_to);

i.e.,

An(V) fn(V)
_'n(Y,V) = = •2 2 y

[ CO-COn(V)] (4.7)

Integrating Eq.(4.2) over y by making use of Eq.(4.4) and noting that D ~ O(1), we have

(°/ ( )t• (0)/ = n_ f dY_n(y,V) D +

Cp(s,v)
= In(y) fn(V) D _s(n)(S'V) +

C (s,v) (4.8)

o where Cp(S,V) and C_(s, v) are integration constants that depend on the slow equilibrium scale.
By substituting Eq.(4.8) into Eq.(4.6), the constraint that An depends only on _ but not on y can

r. be met if the compatibility condition,

13



ds _s(n)(s'l}/)
-(v.v,1(,>F D -. --O. ,

, (V.{lc.)(s,v)
! (491 t

is satisfied.
Q

For the cold plasma model in a dipole magnetic field [Chef, and Cowley, 1989], the

compatibility condition, Eq.(4.9), is trivially satisfied by noting tha,. the geodesic magnetic field

curvature K s, field-aligned current J,B, the loca[ magnetic shear $, and the leading order
--.,lD

compressibility (V._) ('1), i.e., (V ._)(,), are all vanished. Following the analytical procedure

presented in this section, it can be easily shown that 8pl, which reduces to the compressional
-=lD

magnetic field b*B in the cold plasma limit, is a constant in the fast y scale [Chen and Cowley,
-¢,

1989]. Also from Eqs. (2.19) and (4.8) that V._ and _v have a logarithmic singularity _ --, _o'

, On the other hand, _s diverge as (_-_o) -t. This result is similar to that with one-dimensional

nonuniformity perpendicular to the field line in the cold plasma limit[Tataronis and Grossmann,

1973; Chert and Hasegawa, 1974; Southwood, 1974].

Thus, we have shown that in the ideal MHD model with finite pressure _v and 8Pl have a

logarithmic singularity as _ _ _o, while _s and V._ diverge as (_-_o) -t. We also note that for •
[

a given excitation .frequency in general there can be more than one resonant surfaces. The strength

of the coupling to field line resonances depends on An(W), which represents the projection of the

perturbations _v and 8Pl into the field line resonance eigenfunctions _st,) and (V._)t, t at the local

resonant surface _o' From Eq.(2.9) _ relates to the radial magnetic field perturbation, and 8Pl

corresponds to theparallel magnetic field perturbation in the cold plasma limit.

5. The Continuous Spectrum in a Dipole Magnetic Field

In the following we will present solutions of the field line resonances for the shear Alfvdn

and slow magnetospheric continuum in a dipole magnetic field geometry. For the dipole magnetic w

field we have _ - - M cos20 / r, where r and 0 are the radius and polar angle in a right-handed

spherical coordinate system (r,0,_) with-r_/2 < 0 < r_/2, and M is the dipole moment. The , ,
vi

components of the dipole magnetic fieldare given by Br = 2M sin0 / r3, and B0 = - M coso /

14



r3. In terms of the (_¢,0,_) flux coordinate system the Jacobian is J = (V_V0.V_)-I = r4 / M

cosO, and B,V _j-1 (i)/_d) on a flux surface, To be consistent with the ideal MHD model we

have taken both the plasma density, and pressure to be constant along the field line. The shear

Alfvdn waves and the slow magneto_nic waves decouple, and their governing field line resonance

• equations, Eq.(3.2), are given independently. The shear Alfvdn resonance equation is given in a
dimensionless form by

(cosO) d0J + fl cosI3O _s =0, (5.1)

where _2 = (COL/VA)2,VA2= Bo2/ p is the square of the Alfvdn speed at the equator, Bo(L) = M /

L3 is the dipole magnetic field intensity at the equator, and L is the equatorial L-shell distance.

Note that numerical solutions of the shear Alfvdn resonance equation with a model density profile

along the field line had been studied by Cummings et al. [1969]. Similarly, the slow magnetosonic

resonance equation is given in a dimensionless form by

2 70 _cos13cos50 V, + _ cos I+ V*F4 =0,

" dO (1 +3sin20) (l+3sin:_O) (5.2)

,Q/

where [5= FsP/Bo 2 is the plasma beta at the equator. Then, Eqs.(5.1) and (5.2) are solved

numerically by a shooting method with the reflecting boundary conditions that the perturbations.

vanish on the Earth's surface for each field llne. Note from Eqs. (5.1) and (5.2) that for different

L-shells the dimensionless eigenvalues _ for the shear Alfvdn wave depend only on the boundary

condition through the boundary 0 locations, and the dimensionless eigenvalues f2 for the slow

magnetosonic wave depend on both the equatorial plasma beta and the boundary 0 locations.

Table 1 shows the eigenvalues _n 2 of the shear Alfvdn resonances versus L values ranging

from 3 to 10RI_for three symmetric and three antisymmetric modes, where n represents the number

of points the corresponding eigenfunction goes through zero excluding the boundary points, lt is

clear that the eigenvalues D,n2are fairly constant versus L, and we conclude that the shear Alfvdn

resonant frequency co is proportional to L-4p -1/2. If we assume that the plasma density is

proportional to L-k, then co -_ Lk/2--4. Since k is usually near 4 [Chappell, 1974; Poulter et al.,

,,, 1984], we have co o, L-2. At L=6 resonant surface the field-aligned shear Alfvdn wave

eigenfunctions of three lowest symmetric modes (n - 0, 2, 4) and three lowest antisymmetric

15



modes (n - 1, 3, 5) versus 0 are shown in Fig. 1. Fig. l(a) shows the toroidal fluid displacement

_s,Fig.l(b)showsthecorrespondingtoroidalperturbedmagneticfieldb_ beVc_/IV_I,and Fig.

l(c)showsthecorrespondingradialelectricfieldi8E¥= iSEeV_V_/i. Incalculatingb0and8EV

we havemade useoftherelationsEqs.(2.I0)and(2.6)bynotingthatthelocalmagneticshearS

vanishesforaxisymmetricmagnetosphericequilibrium. •

Table2 showstheeigenvaluesfln2oftheslowmagnetosonicresonancesversusL values

rangingfrom3 to10REforthreesymmetricandthreeantisymmctricmodes,wheren representsthe

numberofpointsthecorrespondingeigenfunctiongoesthroughzeroexcludingtheboundary

points.The equatorialbetavalues[3versusL arechosentorepresentrealisticmagnetospheric

condition,ltisclearthattheeigenvaluesf_n2areroughlyproportionalto_,andwe concludethat

for[3< I theslowmagnetosonicwave resonantfrequencycoisroughlyproportionaltoP/pL2.

Notethattheslowmagnetosonicwaveeigenfrcquenciesaremuch smallerthanthecorresponding

shearAlfvdnwaveeigenfrcquencies.The dominanteigenfunctionV,_ oftheslowmagnetosonic

wave attheL=6 resonantsurfaceforthreelowestsymmetricmodes (n= 0,2,4)andthreelowest

antisymmelric modes (n = 1, 3, 5) versus 0 are shown in Fig. 2.

6. Summary and Discussions

In the paper we have shown analytically that in the frame work of ideal MHD model field

line resonances of standing shear Alfvdn and slow magnetosonic waves exist in a general magnetic

• field geometries with flux surfaces, These two branches of continuous spectra couple through the

geodesic magnetic field curvature. The theoretically predicted wave properties near the resonant

surfaces are similar to those of the previous one-dimensional model, but the field-aligned wave

structures are given by the field line resonance eigenfunctions {_s_°_; (V*_)I,_} with corresponding

eigenfrequencics {tOn}. The continuous spectra (eigenfrequencies and corresponding

eigenfunctions) of the shear Alfvdn waves and the slow magnetosonic waves are numerically

obtained in a dipole magnetic field. We find that the shear Alfvdn resonant frequency cois

proportional to L"40 -t/'2 and the slow magnetosonic wave resonant frequency co is roughly

proportional to P/pL 2. Typically, the slow magnetosonic wave frequencies are smaller than those

of shear Alfvdn waves with similar nodal structures even for equatorial beta value in the order of

unity. The harmonically structured continuous spectrum of the azimuthal magnetic field ,_,

oscillations as a function of L shell observed by AMFFF,TCCE [Engebretson et al., 1986] can be



reasonablyinterpretedby theshearAlfvdnresonantfrequencyscalingof L-4p-I/2.No

observationalevidencehasbeenestablishedfortheslowmagnetosoniccontinuous_ctrum inthe

magnetosphere.Thismay berelatedtothefactthattheslowmagnetosonicresonantfrequencies
#

aremuch smallerthantheshearAlfvdnresonantfrequenciesandthuslesslikelytobcobservedby

thefastflyingsatellite.Anotherpossibilitymay bebecausetheslowmagnetosonicwaves are

easilyLandaudamped ifiontemperatureisroughlyequalorlargerthanelectrontemperatureasis

usuallythecaseinthemagnetosphere,ltisusuallydifficulttoextractsmallamplitudeoscillations.

The questionofthecouplingbetweentheglobalcompressionalpulsationswiththelocal

standingAlfvdnresonance[KivelsonandSouthwood,1985]hasbeenexaminedbyEngcbmtsonct

al.[1986]andTakahashictal.[1988b].Engebretsonctal.[1986]concludedthattherewas no

evidenceoftheglobalmode withfrequencyremainingconstantacrossL shellsinthedynamic

spectraoftheCCE magneticfielddata.Takahashictal.[1988b]reporteda coexistenceofa

compressionalmagneticpulsationanda toroidalAlfvdnresonance.However,theyconcludedthat

thesetwo wavesdo notcouplebecauseoffrequencymismatch,andsuggestedthatthetoroidal

resonancesrcprcscnttransientoscillationscausedbyexternalpressurevariations.Inordertohave

a bettertheoreticalunderstandingofthisissue,we havetosolvetheglobalMHD equations,Eqs.

(2.22-23),toobtaintheglobalwavepropagationproperty.By imposinga sourcedi.sturbanceat

themagnetopauseboundaryasaboundarycondition,onecanobtaintheL-shelldependenceofthe

fieldlineresonancepower spectrum.Thus,a globalMHD solutionwillnotonlyprovidethe

information of radial wave structures, but also improve our understanding of the azimuthal

asymmetry of the field line resonan'ces.

The field line resonances and the global radial wave structures can be studied by employing

a self-consistent magnetospheric equilibrium with anisotropic pressure [Cheng, 1991a] to

understand the finite plasma pressure and pressure anisotropy effects. A proper formulation for

anisotropic pressure is under development. Furthermore, implications due to particle trapping and

other kinetic effects [Cheng, 1991b] will be studied in the future.

4
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Figure Captions

Fig. I. The field-aligned structures of shear Alfv6n wave eigenfunctions, (a) the toroidal fluid

displacement _, (b) the corresponding toroidal perturbed magnetic field be = boVC_/lV

_I, and (c) the corresponding radial electric field i5E¥ = i_E.Vv/_VVI, of three lowest

symmetric modes (n=0, 2, 4) and three lowest antisymmetric modes (n=1, 3, 5). The

eigenfunctions are evaluated at L=6.

Fig. 2. The field-aligned structures of slow magnetosonic wave eigenfunctions, V._, of three

lowest symmet_.c modes (n--0, 2, 4) and three lowest antisymme_c modes (n= I, 3, 5).

The eigenfunctions are evaluated at I.,---6. "
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• TABLE i. Eigenfrequencies of Shear Alfv_n Waves

1 1 I
9 2 2 2 _ 2 2

L _ (n--O) o (_=i) o (n:2) o (11:3) o (n=4) _ (_:5)

3 5 0 I 33.1 t 8_.5- 181.9 Z82.Z 3,38.4

, 4 , 3_.2 I 83., 159.o I 258.0 3s0., I

I I5 4 8 32.0 83,3 158,5 257.5 380.3

I6 4 5 21.5 82.3 158.9 255.1 376.9

7 4 4 I 31.3 81 9, 158.3 254.2 I] 375.8

8 4 4 1 31.i i 81.8 155.8 253.8 1 37_,0

9 4 4 1 31.2 8!.9 L5(_.3 25, = 1 373.4

10 4 3 I q, 1 1 81 7 i=8 0 254' I [ 375 _

w

TABLE 2. Eigenfrequencies of Slow Magnetosonic Waves

i Z 2 ._ _ Z Z" 'L _ O, (n:O) e (n:t) _ (n:Z) O. (n=_) ,0. (n:4) c) (n:S)

3 O,l._S 0 OZl t,! 2.4 4,2 8,S _.,5

4 O.Z_.I 0,020 t.7 :.5 _.2 9,5 !_,_
, ,

5 (].315 0.018 2.3 4.7 ,:3.3 l_.._ tS.Z

S O. iS_. 0 . OIS Z.a 5.7 ].0 . 0 tS. 3 2!. S

7 O._gO (1.016 _.9 ' 8, t 14.0 1!.5 30.._

'ii. ' ' " '"

S O.:t O.Oil 3,4 S,] tt.9 la,3 Z_.S

a 0 ..4,50 O.OOa 3.0 8." tO._ L8.5 2_._

10 0.398 0.008 Z.7 , c._ 9,8 9.8 ,' 20.7

..
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Fig. 2 SLOW MAGNETOSONIC, WAVES (:L=6)
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