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Abstract

The linearized ideal MHD equations are cast into a set of global differential equations from
which the field line resonance equations of the shear Alfvén waves and slow magnetosonic waves
are naturally obtained for finite pressure plasmas in general magnetic field geometries with flux
surfaces. The coupling between the shear Alfvén waves and the magnetosonic waves is through
the geodesic magnetic field curvature. For axisymmetric magnetospheric equilibria, there is no
coupling between the shear Alfvén waves and slow magnetosonic waves because the geodesic
magnetic field curvature vanishes. The asymptotic singular solutions of the MHD equations near
the field line resonant surface are derived. Numerical solutions of the field line resonance
equations are performed for the dipole magnetic field, and it is found that the shear Alfvén wave
field line resonant frequency is proportional to L'4p'1/2. The slow magnetosonic wave resonant
frequency is much smaller than the Shear Alfvén wave resonant frequency and is roughly
proportional to P/pLZ, where L is the equatorial L-shell distance, P is the plasma pressure, and p is
the plasma mass density. The results help to understand the continuous spectra observed by
AMPTE/CCE.
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1. Introduction

Observations and theories of ULF magnetic pulsations have been studied for more than two
decades since they were first reported in the 1960's [Judge and Coleman, 1962]. The magnetic
pulsations have been classified through their frequencies, waveforms, dominant magnetic
components (transverse or compressional waves), and the associated plasma and geomagnetic
conditions. These morphological features provide clues for understanding their excitation
mechanisms (internally-driven instabilities or externally-driven Alfvén waves). To understand the
physics of the magnetic pulsations, it is most important to identify their excitation mechanisms.
The internally driven plasma instabilities usually have large azimuthal mode numbers on the crder
of 100 and are mainly observed in the magnetosphere by satellites [Takahashi, 1988a]. The
externally excited Pc waves have azimuthal polarization and small azimuthal mode numbers on the
order 10 or less and is observable on the ground.

Recently, AMPTE/CCE has observed multiharmonic Alfvén resonances previously
observed near geostationary orbit [Takahashi et al., 1982; Cahill et al., 1986] and firmly
established that they are the most commonly excited Pc 3-5 waves in the dayside magnetosphere
from the plasmapause to the magnetopause [Engebretson et al., 1986]. The distinctive structures
in the azimuthal component, consisting of several frequency components, corresponds to the
fundamental and the harmonics of the local toroidal Alfvén resonances. The L-shell dependence of
the frequency and the latitudinal dependence of wave amplitude are unambiguous evidence for local
Alfvén field line resonances.

The ¢xcitation mechanism of these pulsations has also been observed to be due to external
sources. Correlating the CCE magnetic field data with simultaneous solar wind data from
AMPTE/IRM, Engebretson et al. [1987] found that both the direction of the interplanetary
magnetic ficld and the velocity of the solar wind govern the amplitude of the harmonically
structured pulsations. A comprehensive statistical study of the resonant harmonic waves
[Anderson et al., 1987] concluded that different source mechanisms can generate different
harmonic modes at different local times. The dayside source may be related to the bow-shock-
associated upstream waves, and the flankside strong fundamental waves may be driven by the
Kelvin-Helmholtz instability gencrated waves. These toroidal Alfvén resonances can also be
excited impulsively by a dayside pressure change imbedded in the solar wind [Potemra et al.,
1989]



The theory of local field-line resonances of standing shear Alfvén waves in response to the
propagation of external disturbances [Dungey et al., 1955; Radoski, 1966; Cummings et al., 1969;
Tataronis and Grossmanh, 1973; Chen and Hasegawa, 1974; Southwood, 1974] had received
earlier attentions and seemed to be able to explain the basic features of low- to mid- frequency (Pc
3-5) transverse waves. The original theory of the field line resonance was studied using cold
plasma model and assumed one-dimensional inhomogeneity perpendicular to the ambient magnetic
field. The corresponding eigenfrequencies for the transverse shear Alfvén waves standing along
the field lines also vary spatially and constitutes the so-called shear Alfvén continuum. For an
excitation frequency matching an eigenfrequency inside the shear Alfvén continuum, the the wave
resonance generates perturbations that are radially singular near the particular resonant magnetic
field surface.

In realistic plasmas, such as the magnetospheres, besides being nonuniform in the radial
direction the Alfvén velocity is also nonuniform in the azimuthal direction as well as in the direction
along the ambient magnetic field, the plasma pressure is finite, and the particles are trapped in the
low magnetic field region. Based on the cold plasma model, Southwood and Kivelson [1986]
employed the rectangular box model to investigate the effects of parallel inhomogeneity. Chen and
Cowley [1689] studied the field line resonance theory in the dipole magnetic field geometry with
the cold plasma model. Lee and Lysak [1990] studied the field line resonance phenomena by
soIving the MHD cold plasma equations as an initial value problem. By employing the ideal MHD
model with finite plasma pressure, the theory of continuous and discrete shear Alfvén spectra in
toroidal plasmas has been studied [Cheng and Chance, 1986].

In the paper, we first formulate in Section 2 the ideal MHD eigenmode equations in a form
to provide for a better physical representation of the MHD continuous spectra for finite pressure
plasmas in general magnetic field geometries with magneﬁc flux surfaces. In Section 3 the field
line resonances that correspond to two branches (shear Alfvén waves and slow magnetosonic‘
waves) of the MHD continuous spectra are naturally defined [Cheng and Chance, 1986]. These
two branches couple through the geodesic magnetic field curvature. In Section 4 we present
asymptotic singular solutions of the MHD equations near the field line resonant surface. In Section
5 the shear Alfvén and slow magnetosonic continuous spectra are numerically studied for a dipole
field geometry, and the corresponding eigenfunctions are given. The shear Alfvén wave field line
resonant frequency is proportional to L‘4p"1/2, and the slow magnetosonic wave resonant
frequency is roughly proportional to P/pLz, where L is the equatorial L-shell distance, P is the
plasma pressure, and p is the plasma mass density. The results help to understand the continuous

spectra observed by AMFPTE/CCE. Finally, in Section 6 a summary of the major results is given,



and the implications of physical effects that are absent in the MHD model and the future efforts
involving global computation of wave propagation are discussed.

2. MHD Eigenmsode Equations
We consider static magnetospheric equilibria described by the system of equations
jxﬁ:VP,Vx§=j,andVo§=0, (2.1)

where J, B, and P are the equilibrium current, magnetic field, and plasma pressure, respectively.
For a general three dimensional magnetospheric equilibrium with nested flux surfaces, the
magnetic field can be expressed as

B = Vy x Vo, (2.2)

where  is chosen as the magnetic flux function . Both w and o are constant along magnetic field
lines. The lines where surfaces of constant y and constant a intersect represent magnetic field
lines. Note that y must be a periodic function of toroidal angle ¢ in cylindrical (R, ¢, Z) coordinate
to ensure periodicity constraint. In terms of a flux coordinate system (y,0,x) with ¥ is a
generalized poloidal angle varying between 0 and 27, o can be expressed as o = o -q(y) x -
3(w,0,x) without loss of generality, where 8(y,¢,x) is periodic in both x and ¢. Note that since
BeVP = 0, P is a function of w only.

With the time dependence &(x,t)= &(x) exp(~iot) and applying the Laplace transform, the
linearized ideal MHD equations governing the asymptotic behaviors of the perturbed quantities are
“given by

g

wp & = Vép + Ex(Vx§)+§x(VxB) . (2.3)
S + EeVP+ IsPVe& = 0, (2.4)
b=Vx(&xB), (2.5)



E = iw & x B, (2.6)

where & is the usual fluid displacement vector, b is the perturbed magnetic field, 8p is the

perturbed plasma pressure, and p is the total plasma mass density, SE is the perturbed electric
field, and I’y = 5/3 is the ratio of specific heat.

We decompose the displacement vector and perturbed magnetic field as

Db, e BxVy) g8
2 2 2 |
| vy B B 2.7)
and | '
- Qy, Yy . Qs(éxV\y) N QB

2 2 2
|Vl | vy B 2.8)

so that &y = EeVy, &g = Eo(BxVy/| Vy |2), &y = EoB, Qy = EOVW, Qs = be(BxVy/B2),
and Qp = b * B. The three components of the induction equation, Eq. (2.5), obtained after taking
the scalar products with Vi, (B x Vi), and B, can be written as

Qy=BeViy. 2.9)
2
os=|V—“’2|_(§-vgs+sgw),
B (2.10)
. |
Q= - B'VeE - E e V(P+B), 211

where S = —(B x Vy/| Vy|2)e V(B x Vy/| Vy|2) is the local magnetic shear. Similarly, the
three components of the momentum equation, Eq. (2.3), can be rewritten as '
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- (]V\ylzs +3’-'B') m‘EL (Beve, +88,) + 2xeVy Qp
B | (2.12) -

- 2 2 o o
(Bx Vy)s Vép, = 0 p|Vy[ g, + (BeT)Beve,

R R
+BZ§0V ]—V-\%l—(ﬁovgs+sgw) -V BXZV\V Qb,
| B B (2.13)
- 2 g
BeVip,=w pE, -~ beVP, (2.14)

where X = (B/B) ¢ V (B/B) is the magnetic field curvature, and 8p; is the total perturbed
pressure given by dpy = dp + Qp.

Ve & can ve explicitly expressed as

- Vye V -
Vet = Wf“’ VW2§+BV—§—Z
|y Vvl B
B><V\y.‘7&s + Ve B x Vy E, .
2 2
B B 2.15)

Now Ep, Q\,,, Qs, and Qp can be eliminated by using Egs. (2.9), (2.10), and (2.14). Then after
some algebra, we obtain from Egs. (2.3) and (2.4) the following set of two-dimensional
eigenmode equations [Cheng and Char.ce, 1986]:
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where P' = dP/dvy, Ky=xe Vy is the radial magxetic field curvature, and K¢ = (KOﬁXV\U)/B2
is the geodesic magnetic field curvature. Note that from Eq.(2.4) Qp can be expressed as

-

Qp=08p1 + P& + TP Ve & . (2.20)



Egs. (2.16)-(2.19) represent the set of eigenmode equations describing the MHD wave
propagation and MHD instabilities ir a general plasma system with magnetic flux surfaces. Egs.
(2.16)-(2.19) can be written symbolically in the following form

8 /5 £,
R AR _ C{ Py +D an
WS\ Ves) (2.22)
and
3
E gs—.\\ = F pl , |
Ve Sy (2.23)

where C, D, E, F are 2x2 matrix operators involviﬁg only surface derivatives ﬁo‘V and (ﬁ x V)
o V.

3. The Continuous Spectrum

* For a given magnetospheric equilibrium, we first solve & and Ve in terms of 8p, and &,

from Eq. (2.23) by inverting the surface matrix operator E. Eq.(2.22) then reduces to an equation
for 8py and &, i.e.,

8 5
911 ¢ +DE'E)| !

Admissible regular solutions of Eq.(3.1) must satisfy the proper boundary conditions. This
procedure fails if the inverse of the surface operator E does not exists (i.e., detlEl = 0) for a given
®, at certain flux surface y,. Then Eq.(3.1) has a radial singularity at y_, and non-square-

integrable solutions of &, and dp, with logarithmic singularity along the w-direction at the singular
surface y_ are possible.

Therefore, the MHD continuous spectrum is determined by the eigenvalues  of the
equation



&
=0,

E -] =
Ve

(3.2)

on each flux surface y with non-trivial single-valued eigenfunctions &s and V& satisfying
appropriate boundary conditions along the field line. Since Eq.(3.2) can be reduced to a fourth
order ordinary differential equation along the field line with the coefficients being all non-singuiar,
the eigenvalues ® must be discrete. Thus, at‘g each flux surface v, a discrete set of eigenvalues
o, (W), where n is an integer, can be found \J;ith the corresponding eigenfunctions &g, and (V

&), satisfying appropriate boundary conditions along the field line. Both the eigenvalues w (V)
and eigenfunctions &g, and (Ve§), are smooth functions of  and form the discrete continuous

spectra for the equilibrium. Note that &g, and (VOE',)(,,, are linearly dependent through Eq;(3.2).

Eq.(3.2) represents the coupling of two branches ot MHD field line resonances - the shear

Alfvén branch and the slow magnetosonic branch - through the geodesic magnetic field curvature
K. We also note that in the cold plasma limit (P=0), Eq. (3.2) reduces to a second order ordinary

differential equation, and the tlow magnetosonic wave does not exist with corresponding

-

eigenfunctions (Ve&),, becoming trivial. As will be shown in Section 3, near the resonant surface

V., Ey and 8p, diverge logarithmically, while &s and Vog diverge as (y—vy,)~!. Thus, the
dominant eigenfunctions of the shear Alfvén branch at the resonant surface are mainly in terms of
€s and correspondingly in the components of the ra_ds'\al electric field 8§0Vw and shear magnetic
field Qs = 50(§wa/B2) as seen from Eqgs.(2.6) and (2.10). The dominant eigenfunctions of the

slow magnetosonic branch at the resonant surface are given by the compressibility Ve& and are

hence from Eq.(2.20) by the compressional magnetic field Qp. The perpendicular electromagnetic
ficld co;nponents are smaller.

-

Operating on Eq.(3.2) with the matrix [ s —(Ve£)], and integrating along the field line with
ds/B, a Lagrangian functional L can be obtained and is given by

So 2
) 2 2 2
L =f %;{mpl_vl";LIasulezl
$ B

1
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where s denotes the distance along the field line so that BeV = B(d/ds), Z = ['sP BeV(Veb) /
pw?B2, and s, and s, are the two end points of the field line. In deriving Eq.(3.3) we have

employed the standfng wave boundary conditions with &g and Ve€ vanishing at the two end points

of the field line. Itis straight forward to verify that Eq. (3.2) is a consequence of the requirement
that the functional L be stationary. Since L = 0, it is clear that the eigenvalues ®, and the

corresponding eigenfunctions must be real. The determination of the continuous spectrum reduces
to that of finding the eigenvalues wand eigenfunctions so that the Lagrangian functional L is

stationary with respect to variatios of &s and Ve&. The admissible variational functions must be
square-integrable and satisfy the standing wave boundary condition.

One can also show that the di‘screte set of eigenfunctions | Esm : (V&) ) are complete and
orthogonal with the orthogonality condition given by

§2 2

ds IV\VI , 2

f B Pl S bsm T B ZawZay | = B
S 8

(3.4)
where 8, is the Kronecker delta. It can be straight forwardly shown that
Sy 2
2 2 ds VW 2
O 7O )f B P l_ngsm)&s(n')*B ZwZm| =0,
1 . B | (3.5)

from which the orthogonality condition Eq.(3.4) follows.
Thus, we have established that there are only two branches of continuous spectra in the ideal

MHD theory for finite pressure plasmas in general magnetic field geometries with flux surfaces. In
general there are three branches of MHD waves. The third branch of MHD waves, the fast

10
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magnetosonic wave, represents a regular global solution of Eq.(3.1), which is influenced by the
local magnetic shear, the magnetic field curvature, and the field-aligned current.

For a simplified axisymmetric magnetosphere with nested magnetic flux surfaces, the
magnetic field can be expressed as

B = Vy x V. (3.6)

where V is a function of R and Z only. Since BeVy = BeV¢ = 0, the lines of the magnetic fisld
and the lines of constant y coincide. The local magr.ctic shear S and the field-aligned current JoB
vanish. We also note that the geodesic magnetic field curvature K vanishes, and the shear Alfvén
waves and the slow magnetosonic waves decouple as shown in Eq.(3.2). In the decoupled liinit
the Shear Alfvén field line resonance equation given by Eq. (3.2) corresponds to the toroidal
magnetic field equation previously studied numerically by Cummings et al. [1969] by employing a
model field-aligned density profile. The finite pressure effect enters through the change in the
equilibrium magneti¢ field. In addition, to be consistent with the ideal MHD model the density
should be constant along the field line. The effect of the field-aligned density variation will be
considered in the future with a consistent anisotropic MHD model.

4. Singular Solutions Near Field Line Resonant Surface

To obtain the radial field structure near the field line resonant surface, we will follow the
approach of Pao [1975] in his investigations of the continuous spectrum in axisymmetric
tokamaks. By first assuming the existence of singular solutions of Egs.(2.22-23) near the
resonant surface, the necessary compatibility conditions are then derived. We also note that Chen
and Cowley [1989] has used the similar approach to obtain the singular solutions near field line
resonant surface for a cold plasma model.

Let y, label the field line resonant surface of an external disturbance with the excitation
frequency w?= mnz(wo), and we define a smallness parameter € = I(y—y )/y,| << 1. Therefore,

there are two spatial scales; the slow equilibrium scale and the fast radial perturbation scale. We
note the following orderings: Iy (d/0y)l ~ O(1/€) >> 1, the operator E ~ O(¢), and the operators C,
D, F ~ O(1). Then, the solutions of Eq.(2.22-23) near the resonant surface y, can be expanded

asymptotically as

11
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© (1
op,= 8p; + dp; +....

© M
Sy=8y + &y +....

(-1) 0) (1
E,=&, + §, + €, +....

- - (=1) - (0) -
VeE= (Ve&) + (Ve&) + (VeE) +.... , 4.1

where the superscripts denote orderings in €. Then, from Eq.(2.22) we have in the lowest order |

0) (-1)
d 8pl E-'s
v | @ =D ~ (0
e
g\y (V’S) (4.2)
and from Eq.(2.23) we have
[ (1) (0)
as L 5p1
E ~0]=Fl (g
(Vet) Sy 43)

To proceed further we express E,s('” and (V 0&,)('1) in termns of the field line resonance

e d

eigenfunctions &g, and (Ve&),, as

-1

gs (S,W) gs n (S’\V)
~ (D =Yrpw| W
(V.g) (SvW) n (V.E.') (n)(S9W)

(4.4)
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where y = \y—y ) and y represent the fast and slow radial variations in v, respectively.

Substituting Eq.(¢ 4) into Eq.(4.3), operating on Eq.(4.3) with the matrix [ &gy —(VeE), 1,
integrating Eq.(4.3) along the field line with ds/B, and applying the orthogonality condition
Eq.(3.4), we then have

2 2
(@ —o, W] AW =AW,

(4.5)
where
0
7 ds Py %,
Ay = T [ és(n) —(Veg Jmy| F (0)
s v 4.6)

Note that we have demanded Ap(W) to be finite and dependent on Wy but not on y. Then, Eq.(4.5)
readily shows the singular nature of A,(y,¥) near the resonant surface y_ where w? = mnz(\uo);

i.e.,

AW W)
Ayw) = P =
[0 -0y )
Integrating Eq.(4.2) over y by making use of Eq.(4.4) and noting that D ~ O(1), we have
o, & mfS:¥)
pl s(n S’W C (‘V)
| o]= X farowd| 77 ’
Sy n (Vo&) mfs,w) | | Celw)
Esm(S¥) C(s,¥)
= Iyt D| W POV
(V'g)(n)(s’\v) Cé(s,\ll) (4.8)

where Cp(s,w) and Cg(s,\y) are integration constants that depend on the slow equilibrium scale.
By substituting Eq.(4.8) into Er.(4.6), the constraint that A depends only on y but not on y can
be met if the compatibility condition,

13



52 g { g (S’W)
f 3 [ &sm) "(V'g)m)} FD| 0
s - : (V‘g)(n)(s,\l’)

.

(4.9)
is satisfied.

For the cold plasma model in a dipole magnetic field {Cher. and Cowley, 1989], the
compatibility condition, Eq.(4.9), is trivially satisfied by noting that the geodesic magnetic field
curvature K, field-aligned current JoB, the local magnetic shear S, and the leading order

compressibility (Ve£)(*1), i.e., (V &), are all vanished. Following the analytical procedure
presented in this section, it can be easily shown that 8p;, which reduces to the compressional

magnetic field pbeB in the cold plasma limit, is a constant in the fast y scale [Chen and Cowley,

1989]. Also from Egs. (2.19) and (4.8) that Ve& and &, have a logarithmic singularity y — /..
On the cther hand, &g diverge as (\y—\vo)“. 'This result is similar to that with one-dimensional

nonuniformity perpendicular to the field line in the cold plasma limit[Tataronis and Grossmann,
1973; Chen and Hasegawa, 1974; Southwood, 1974].

Thus, we have shown that in the ideal MHD model with finite pressure &, and 3p, have a

logarithmic singuliarity as y — y, while &g and Ve diverge as (\v-\u"o)‘l. We also note that for
a given excitation frequency in general there can be more than one resonant surfaces. The strength
of the coupling to field line resonances depends on Ap(y), which represents the projection of the

perturbations &y and p, into the field line resonance eigenfunctions &g, and (Veg),; at the local
resonant surface y,. From Eq.(2.9) &y relates to the radial magnetic field perturbation, and 3p,

corresponds to the parallel magnetic field perturbation in the cold plasma limit.

5. The Continuous Spectrum in a Dipole Magnetic Field

In the following we will present solutions of the field line resonances for the shear Alfvén
and slow magnetospheric continuum in a dipole magnetic field geometry. For the dipole magnetic
field we have y = — M cos® / r, where r and 0 are the radius and polar angle in a right-handed
spherical coordinate system (r,0,0) with -n/2 < 0 < n/2, and M is the dipole moment. The
components of the dipole magnetic field are given by B, = 2M sin6/ r,and Bg = — M cos6/

14



. In terms of the (y,0,0) flux coordinate system the Jacobian is J = (VyxV0eV¢ )™! =14/ M
cos0, and BeV = -J-! (9/09) on a flux surface, To be consistent with the ideal MHD model we
have taken both the plasma density and pressure to be constant along the field line. The shear
Alfvén waves and the slow magnetosonic waves decouple, and their governing field line resonance
equations, Eq.(3.2), are given independently. The shear Alfvén resonance equation is given in a
dimensionless form by

D - 2
_(.1_ (cos) 12§_s + Q 008136 é, =0,
de de (5.1

where Q2 = (wL/v A)z, \ A2 = BOZ/ p is the square of the Alfvén speed at the equator, B (L) =M/
L3 is the dipole magnetic field intensity at the equator, and L is the equatorial L-shell distance.
Note that numerical solutions of the shear Alfvén resonance equation with a model density profile
along the field line had been studied by Cummings et al. [1969]. Similarly, the slow magnetosonic
resonance equation is given in a dimensionless form by

5 — 2 11 -
d] Becos® —d—Vog + Q cos79|il+———-————-BCOS 0 ]VOQ =0,

d@ | (1+3sin’0) dO (1+3sin8) 52)

where B = I‘SP/BO2 is the plasma beta at the equator. Then, Eqgs.(5.1) and (5.2) are solved

numerically by a shooting method with the reflecting boundary conditions that the perturbations
vanish on the Earth's surface for each field line. Note from Eqgs. (5.1) and (5.2) that for different
L-shells the dimensionless eigenvalues € for the shear Alfvén wave depend only on the boundary
condition through the boundary 6 locations, and the dimensionless eigenvalues € for the slow
magnetosonic wave depend on both the equatorial plasma beta and the boundary 8 locations.

Table 1 shows the eigenvalues Qn? of the shear Alfvén resonances versus L values ranging
from 3 to 10R, for three symmetric and three antisymmetric modes, where n represents the number
of points the corresponding eigenfunction goes through zero excluding the boundary points. It is
clear that the eigenvalues Qnlare fairly constant versus L, and we conclude that the shear Alfvén

resonant frequency @ is proportional to L"*p"l/2

. If we assume that the plasma density is
proportional to L%, then L¥2-4 Since k is usually near 4 [Chappell, 1974; Poulter et al.,
1984], we have @ o< L2, At L=6 resonant surface the field-aligned shear Alfvén wave

eigenfunctions of three lowest symmetric modes (n = 0, 2, 4) and three lowest antisymmetric

15
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modes (n=1, 3, 5) vefsus B‘are shown in Fig. 1. Fig. 1(a) shows the toroidal fluid displacement
&s, Fig. 1(b) shows the corresponding toroidal perturbed magnetic field by = Bqu)/]Vcbl, and Fig.
1(c) shows the corresponding radial electric field i8E\, = iSEOV\y/IV\VI. In calculating by and 3Ey,

we have made use of the relations Eqs. (2.10) and (2.6) by noting that the local magnetic shear S
vanishes for axisymmetric magnetospheric equilibrium.

Table 2 shows the eigenvalues Qq? of the slow magnetosonic resonances versus L values
ranging from 3 to 10R; for three symmetric and three antisymmetric modes, where n represents the
number of points the corresponding eigenfunction goes through zero excluding the boundary
points. The equatorial beta values B versus L are chosen to represent realistic magnetospheric
condition. It is clear that the eigenvalues Q2,2 are roughly proportional to B, and we conclude that
for B < 1 the slow magnetosonic wave resonant frequency w is roughly proportional to P/pLz.
Note that the slow magnetosonic wave eigenfrequencies are much smaller than the corresponding

wl

shear Alfvén wave eigenfrequencies. The dominant eigenfuncton Ve of the slow magnetosonic

wave at the L=6 resonant surface for three lowest symmetric modes (n =0, 2, 4) and three lowest
antisymmetric modes (n = 1, 3, 5) versus 0 are shown in Fig. 2.

6. Summary and Discussions

In the paper we have shown analytically that in the frame work of ideal MHD model field
line resonances of standing shear Alfvén and slow magnetosonic waves exist in a general magnetic
field geometries with flux surfaces. These two branches of continuous spectra couple through the
geodesic magncﬁc field curvature. The theoretically predicted wave properties near the resonant
surfaces are similar to those of the previous one-dimensional model, but the field-aligned wave

structures are given by the field line resonance eigenfunctions (Eg, ; (VeE),) with corresponding
eigenfrequencies {wp). The continuous spectra (eigenfrequencies and corresponding
eigenfunctions) of the shear Alfvén waves and the slow magnetosonic waves are numerically
obtained in a dipole magnetic field. We find that the shear Alfvén resonant frequency w is
proportional to L'4p'm' and the slow magnetosonic wave resonant frequency w is roughly
proportional to P/pLz. Typically, the slow magnetosonic wave frequencies are smaller than those
of shear Alfvén waves with similar nodal structures even for equatorial beta value in the order of
unity. The harmonically structured continuous spectrum of the azimuthal magnetic field
oscillations as a function of L shell observed by AMPTE/CCE [Engebretson et al., 1986] can be
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reasonably interpreted by the shear Alfvén resonant frequency scaling of L“‘p“” 2, No
observational evidence has been established for the slow magnetosonic continuous spectrum in the
magnetosphere. This may be related to the fact that the slow magnetosonic resonant frequencies
are much smaller than the shear Alfvén resonant frequencies and thus less likely to be observed by
the fast flying satellite. Another possibility may be because the slow magnetosonic waves are
easily Landau damped if ion temperature is roughly equal or larger than electron temperature as is
usually the case in the magnetosphere. It is usually difficult to extract small amplitude oscillaticns.

The question of the coupling between the global compressional pulsations with the local
standing Alfvén resonance [Kivelson and Southwood, 1985] has been examined by Engebretson et
al. [1986] and Takahashi et al. [1988b]. Engebretson et al. [1986] concluded that there was no
evidence of the global mode with frequency remaining constant across L shells in the dynamic
spectra of the CCE magnetic field data. Takahashi et al. [1988b] reported a coexistence of a
compressional magnetic pulsation and a toroidal Alfvén resonance. However, they concluded that .
these two waves do not couple because of frequency mismatch, and suggested that the toroidal
resonances represent transient osciliations caused by external pressure variations. In order to have
a better theoretical understanding of this issue, we have to solve the global MHD equations, Eqgs.
(2.22-23), to obtain the global wave propagation property. By imposing a source disturbance at
the magnetopause boundary as a boundary condition, one can obtain the L-shell dependence of the
field line resonance power spectrum. Thus, a global MHD solution will not only provide the
information of radial wave structures, but also improve our understanding of the azimuthal
asymmetry of the field line resonances.

The field line resonances and the global radial wave structures can be studied by employing
a self-consistent magnetospheric equilibrium with anisotropic pressure [Cheng, 1991a] to
understand the finite plasma pressure and pressure anisotropy effects. A proper formulation for
anisotropic pressure is under development. Furthermore, implications due to particle trapping and
other kinetic effects [Cheng, 1991b] will be studied in the future. ‘
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Fig. 1.

Fig. 2.

Figure Captions

The field-aligned structures of shear Alfvén wave eigenfunctions, (a) the toroidal fluid

displacement &g, (b) the corresponding toroidal perturbed magnetic field by = E-VQ/IV
¢l, and (c) the corresponding radial electric field i0E,, = iSEOV\y/qu‘Jl. of three lowest
symmetric modes (n=0, 2, 4) and three lowest antisymmetric modes (n=1, 3, 5). The
c‘igcnfunctioné are evaluated at L=6.

The field-aligned structures of slow magnetosonic wave eigenfunctions, Ve&, of three
lowest symmetric modes (n=0, 2, 4) and three lowest antisymmetric raodes (n=1, 3, 5).
The eigenfunctions are evaluated at L=6. | |
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(3

Eigenfrequencies of Shear Alfvén Waves

TABLE 1.
2 2 2 2 2 2 '

L | e (mn=0)| Q (a=1)| Q@ (n=2)| Q (2=3)| Q (n=4)]| Q@ (n=3)
3 5.0 33.1 85.5 161.9 262.2 386.4
4 4.7 32.2 83.17 159.0 258.0 180.7
5 4.5 32.0 83.3 158.3 257.5§ 380.3
6 4.3 1.3 82.3 156.38 255.1 378 .9
1 §.04 311.3 81.9 158.3 254.2 375.8
8 4.4 3l 81.8 1535.8 253.§ 375.0
9 §.4 3.2 81.9 156.3 254 .7 17354

10 4.3 111 81.1 134.0 2541 3175.¢

TABLE 2. ©Eigenfrequencies of Slow MYagnetosonic Waves

[ 2 : 2 | 2 2 2 2
‘L Y-} Q@ (n=0)]| Q@ (a=1).] @ (n=2)] Q@ <(n=3)| @ (n=4)| Q@ (n=3%)

3| 0,128 0.021 1.1 2.4 (.2 '| 6.5 S5

o 0.221 5.020 1.1 s | e | e 11,4

5| 0.318 0.018 2.3 RS I O | 12.8 13.2

5| 0.452 0.016 2.8 5.1 ‘ 10,0 1 15.3 21,3

1| 0.590 0.014 1.8 s.o0 |t i 21.5 30.3

5| 0.3 6.011 1.4 s | s | e 25.3

¢ 0.450 0.008 1.0 5.2 l 10.8 l 16.5 211

10| 0.308 0.006 2.1 s.s | e 3.4 20.1

e
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