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ground state of tfre theory. Roughly two yeiu-s ago, tbcrv was soIIw progress

13- 5) towards extracting such nouperturbative iuformalion from slriug theory,

at least in some simple coutexts. The aim of these lectures is tO prwitle LIIC

crrttceptuaf background for this work, ad (o clescribe stmle of its immtwfiatc

consequences.

In string theory we wish to perform au itrtegra.1 over two dilneusiold gt-

ometri= and a sum over tww dimensional topologies,

z- x~ -s
Vg D.Y e ,

topdogla

where the spacetitue physics (in the c- of tire bosonic string) resides ill the

coufot-ma.lly intiant ~-tion

O. Canmed Dimkrik, Introduction, and Apcdogks

FoUowiBg the dkomry of s~time anomaly -cellation in 1994 [1],

str&g tbtmg k ~ooe rapid d-ebopment in rwveral &rmxions. The eariy

hope of making ditmt coat=t -ilk Coamtional p.rtick pbysia pheoomenol-

~ b b- Ioag tice dkmipfd, ad there is = yet na experimental

~-bfi~e~~~~ of underlying string degrees

d tmedcun b ~mre [2]. The question of whether string thmmy is “correct” in

tkpkysicd ~thrMrrmairM im~ble to answer for the foreseeable fnture.

String tkec-ists nonetb- ,-ontirme to be tantalized by the richness of the the-

ory ad by its natnral ability to Iwovide a comistettt microxopic underpinning

for both gauge them-y and gravity.

One of the prime o~ks to onr understanding of string theory bm beeu

an iaabilit y to penetrate beyond its petiurbat ive expansion. Our understanding

d gage them-y & enorinonsly cnhancml by having a fundamental forurulatiou

W oa the principle of local gauge invariatce from which the perturbative

rxpam&n can be dcrivml. Syrumctry breaki.ug and oonpert urbative effects such

aS Ihta.ntorm adulit a dean and intuitive prneutatiou. lu string theory. our

k-k ,,f a fuu~lamrntal fonuulaliou k compuutrtled by our ignorance oft he t rur

Here p, v run from 1,..., D where D is the trutul-wr of spacetilu(’ dilncnsionsl

GP”(.Y) is the spacetime metric, and the integral Dg is over worhhheet metrics.

Typically we write tbe worldsbeet metric gab = t+’bd, w~~r~ # is ku~w[l u tll~

Liouvifle mode. Following the formulation of string theory iu this forln (and

in particular foUowirrg the appearance of [6]), there was Iuuch work to &vt lop

the quantum Liouville theory (some of which is reviewed iu secliou 4 here), a.ml

conformal field theory itself has been cluw~tertized = ‘au unsuuc-e~sful atteml)t

to solve Liouville theory” [7]. Evaluation of the partition function Z abovr

without taking into account the integral over geometry, however, rlocs not SOIYV

the problem of iuterest, an 1 moreover does no: provide a systenlat ic basis fur

a perturlmtion series in any knowrr parameter.

Tbe basic idea of [3-5] relied ou a discretization of tile string wurlds!levt (o

provide a method of taking the cotrtitmurn Iitrlit wbirir incorporated simullant.

ously the contribution ~f 2d surfaces with amy uumber of Imndlm. At out, LMI

swoop, it Was thus possible not only to inteerate over all powdble dvformatimh

of a given genus surface (the analog of [he intrgral over Feynulan lmram{”tcrs for

a aven IOOP dla.grul), but AU to sum ovvr all gcIJus. This WOU1(Iin I)rlllt.ildc

free us from the rudlhelua[ically fas(.i[k+ting but pllysi(.dily irr(h-vimt I)rol)h.llh
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~~f . mi-nIaI IIIF ~-t.nfl~rlual IWd t h-r-y ~“nrrrlatinrr [unctions on surfac- of fixml

renn~ m-ii h fiICWl nmlnli (ol)jw-ts mhirh wr nrvrr know how to integratr rmrr

nw~-lnli lw .Ilrn lwrr grrtus anyway). ThP progrt=s. howm-rr. is limited in thr

=n~ Ihat Ih- mrt hd~ mly apply mr-rrntly for non-critical strings emkh-lml

In ~limrn=ion= D < 1 {or rritical strings rmbm-h!rd in D < 2), and the ❑onper-

t Ilrtmtive information rvmi in this rmtricted contrxt has provrm incomplete.

ih- In familiar pr.t~ms tit h Iattti rdizatiotts of supersymmet ry and chi-

ral frrmionc. Ihe mrt hods have a,k r%strd cxt~nsion to the srtpwsyntmetric

f x-r.

The ~lrwinpments UP shall d-~ h-i-e nonetheless provide at Imst a

half- CIrp in t hr .nrr-trliv=ction. if only to organize the pert nrbative expamion

in a m-l con- wav. They ham & prompted mnch useful evolution of

r.iatr-tl c(~ntinllrim methdq. Our point Of view here is that string th~ti~

rnlkl~lcwi in E < I dim~rtsions provide a simple context for t~ting ideas and

rn.thml< of ratcrllatinn. -Iwti ~ we wotdd encounter much ditlkulty calculating

in ftnit~ ilimen<inna! frrnctiwml integrals without some prior e~riencc with

rhrir finir. dim-nsk.nal anal~ [8]. p~ in string theo~ shotdd b aidd

lDy ●xprt-irt,-ntation with syst~ _ng a rdricted number of d- of

frmwlom.

The rmtm ham been confitwd in content essentially to the Iectnrws acttl-

atly fiwn- in ord.r 10 k-p them masotrahly short and accessible. (other review

rrfrr~rtr- on Ihe u,rttP gerwtal subject are [9,1OI). This means that = stop d]

Khnrt of wme of th- mow int mestirtg remnt developments in t hc field (some of

=hidt mre rnwrmi hy Iatrr Iectnrem at this school). including the application

d th. rritical D = 2 riimpmw mal models to addr~ issu~ of principle such as

In+ rbangp in ?d qnant nm ~tity. and their relation a- well to recent wrmk

m fl = 2 Mark hrk in <tring th~~. We shall prewnt no formal conclttsiors

h-v othrr than to note that thp snhjwt remains in artivc development. and we

ha}-r rriwl al sarim,s points in thr trxt to draw attention to Lwues in need of

I ~rrtwr rrnilemran~ling.

1. Discretized surfaces, matrix models, and the continullm limit

1.1. Dt.srrrttzrd .mrjmrs

wo begin by ronsiderin~ a “D = O dimensional string thco~-, i.e a pure

theory of surface-s with no coupling to additional “matt~r” degr- of freednm

on the string worhlsheet. This is equivalent to the propagation of strings in a

non-existent embedding space. For partition function we take

Z=~/Dge-oA+7x ,
h

(1.1)

where the sum over topologies is reprvxwnted by the summation over h, the

number of handlm of the sntface, and the action consists of couplings to the

area A = J Jj, and to the Euler character x = &J/3R= 2- Zh.

The integd ~ Vg over the metric on the surface in (1.1) is difficnlt to

calculate in general. The most progress in the continuum has been made via

the LiouviUe approach which we briefly review in section 4. If we discretize the

surface, on the other hand, it turns out that (1.1 ) is much easier to calculate,

ev-m before removing the finite cutoff. We consider in particular a “r~dom

triangulation” of the surface [1 1], in which the surface is constmcted from

trianglm, as in fig. I. The triangles are designated to be equilaterd,t so that

there is positive (negative) curvature at verticm i where the number Ni of

incident tnangl= is more (1-) than @ and zero cumaturc when N1 = 6. The

summation over all such random triangulations is thus the discrete analog to

the intc-gral ~ Dg over all possible geometries,

(1.2)

random
trimngulmtions

‘ #Vc point ont that ibis constitute n basic difference from tbe RrggP calculus, in

which thr link Irngths are gromctrir degr~ of freedom. Hrre tbe gromctry is encodd

c=rrtirrl.vinto the rnordination ❑umb-s of thr wrtim=s

3 4



1.2. Maim rnodcls

Tbe discrete coa.nterpart to he infinitesimal vdttme element ~ is o, .

.V,/~ so that the ti area IS[ = ~, u, jnst counts the total number of trian-

~ carb dc+at.d to ham unit area (The fxtor of 1/3 in the de6ttition of

u,is~attigkk three vcctkes aad is connted three times.) Tbe

cikrvtrcnam~ti&Ricci* Rtivertex iis R,=x(6-N,)/N,, so

Herv we have used the simplkial Minition dticlt giva the Euler character I

ia tm-ms d the W mombcr of verti-. edges, and faces V, E, and F of the

trhgdann (A - have d the refi 3F = 2E Obeyd by trian@ations

d~ siace cd face b thm edges each 0[ dtkb is shared by two faces).

la the above. triaagk do not play att -ttlkf rde and may be repfaced by

aay XI 1A @ygons CencraJ random pdygortifications of su- with appre

z k~ Lufig Of ~o~~ga maY, = we shall see, have tttore geueraf critical

Lrha\-tor . but rM in pa-rtKtdar afways reproduie the pure gravity behavior Of

Crungutatmm m llm I-oulrnuutu Iuuit.

We now demonstrate how the iutegral over geometry in (1.1) may be pvr-

fcmmed in its discretizd form ~ a sum over raudom triaugulaticms. The trick

is to M a certain matrix iutegrd ~ a getterating functional for raudom tri-

angulations. The essmtiaf idea goes bacK to work [12] ou the large Ik limit of

QCD, followed by work on the saddle point approxiroatiou [13].

We first recall the (Feynmau) diagraruniaticexpausiou of the (0-if imeusioual)

field theory integral’

(1.3)

where w is an ordiuary real uumber .s In a formal perturbation series iu A, W!”

would need to evaluate iutegrals such aa

(1A)

Up to overalf normalization we car write

.9 Jz/2 = JeJ’f2
~~=e me 9 applications of I?/ilJ iu the above need to be paired

so that any factors of J we removed before finafly setting J = 0. Tlmeforr if

we reprewnt each ‘vertex” @4 diagrammatically as a point with four vmerg-

iug Iiufi (* fig. 2b), then (1.4) simply couuts the number of ways to groul)

such oL@.s iu pairs. Diagrammatically we reprewllt t !Ie possible pairings l~y

cottnecting lines between paired vertices. The coutmctiug line is kttowu as IIII.

propagator (p p) (see lig. 2a) and the diagraruruatic rule wti have tlt-scribed h

connmting vertices in pairs is kuown in field theory as the Wick expausion.

2 We aplogir.e for this recapitulation of bLau&rd Feyuruau dIagraru t{.(,huul,gy.

but prder LO keep these uot~ at Ivat marginally accessible (u the Iua[LcuatI(s

cUIUnunity.

3 The integral is umfrrsluud to k. rh,tiu(d by aoaly tit. I. UULIUIIa LIt IU tu III giIIIVt. A
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(a) (b)

Fig. 2: {a) tlw udas prnpagatti. (b) thr scalar fore-point vrrtex-

l\hq the nnml,m of wrt~ n k—ostm large, thealhme’d Ckgtamx begin

1. form a m=h rrmin”-ent of a 2-dimeasiooaf suk. Such diagrams do not .Yet

ha.. rnrmgh SIt-nrtnm to spwify a Rkxmn xwfacc. The additional stcucture is

<lw-n hy tii~rting [tIr prqmgatom to ribbons (to giw SO-CM tihick” gntph..).

Fri,nl t h. standpoint of ( 1.3). tb~ wqnird extra stnsctut-e is given by replacing

Ihr scalar ~- l)Y an .\- x .\” hrrmitian matrix ,lfij. The analog of (1.5) ti given

!,\- ad,iin~ inOli,-m and t~:

I –tr.\fz/?
.11”’1, --- .If’-,m =

a a –trM2J2 + trJM
. -. ..—

II ~JJ1 ;, ~Jj. i- e IJ=0
a a trJ2)21

=— . ..—
~~JI ;, ~Jj.,- e - l,=. “

!1.6)

=hrr- [he wmrr~ ~’, L% as mll now ● matriz The m?asure in (1.6) i.. the

in~~”ant d.tf = ~, d.V’, fli<j dReMij dImMij, and the normalization is WI(4L

that ~w F“ru’i? = 1. To (almlate a Wantity sttch as

,x”

J

–trAf2/2
e

2 ,“
(tr4\f4)” , (1.7)

=F again lay d-n n vertices (mow of the type dcpictcd in fig- 3b), and connect

fh- ~ tith propagators (.lf’j .Ifkf) = $:6; (fig. 3a). The presence of upper

and b-r matrix indicm is mp~nted in fig- 3 by the doable linm’ and it is

nndrmtood that tlw wn~ of th~ arrows u to be pmrved when finking together

that each extrrnal line has an awwi-iatrd ink i, and each intrrnal CIOSWI line

rorres~onds to a snmmation over an index j = 1, . . . , N. The “thi~kenrd -

structure is now sufficient to axsociate a Riemann surfam to each diagram,

berause the C1OMWIinternal loops u niqucly specify locations and orientations Of

face%

(a)

Fig. 3: (a) thr hermitian matrix propagator. (b) the hmtnitian mrdrix four-point vertex.

To make contact with the random triangulations discus..ed earlier, we con-

sider the diagrammatic expansion of the matrix integd

z I
–~trM2 + ~trM’

e = dMe
.

(1.8)

(with M an N x N hermitian matrix, and the integral again understood to

be defined by analytic continuation in the coupling g.) The term of order g“

its a power st lies expansion counts the number of diagrams construckl with

n 3pt vertices. The dual to such a diagram (in which each face, edge, and

vertex is associated respectively to a dttal vertex, edge, and face) is identically

a random triangulation inscribed on some onentable Riemann surface (fig, 1).

We see that the matrix integd (1.8) automatically generatm all such random

triangulations. s Since each triangle h- unit are% the area of the surface is

just n. We can thus make formal identification with (1.1) by setting g =

e–d. Actually the matrix integral generatm both connected and discotrneded

s Had wc d red symmetric matri- rather thrm the lwrmitian matncca M, the

two indicm would be indistinguishable and there wouhf be no arrows in the propaga-

tors and vcrtim=s of fig. 3. SUrh orientntiosks verticm and propagator generate an

cnsernhle of both orientabh= and non-m-ientabk surfaces.

i 8



suIkm. so we hawe writ~~tt ez ott [he Mt hard side of ( 1.8). AS familiar from

64 theory, the exponential of the cuttrtmted diagrams genmatm all diagrams,

rn Z * deticmd above rep~n~ contn-butions ody from connecttwl surfaces.

“sYe ~ Chax Lhc * cacgy fmxn the ma2rix nmdd P&K d wiiw is actually the

~ ~fto= Z from the ?d gravity point of view.

‘Wf’@ S Ulditiold ‘hlfO~tiiOft COnbtA ti N, the * of the ttlatfi.

f.f w change n.tia.bks M ~ Mm in (1.8), the matrix action becomes

N tr(- #trM * +gcrM3 ), with an overall ktor of N.’ This normakation tuakes

iL~toc4xttttthe power o[4Wasso6aA to any diagrun. Each vertex cotk

tributa a ktor of 4V, each propq@r (edge) coatnbutea ● factor of N”

(becawu the propqyuor & the ittverae of the q~ic term), and each cbed

Loop (face) comtr&aL= a factor of .4 due to the -ted index summtiion.

~hw= ~ 4@pM has an overall *r

+ere i is the Euler charader of the sur?ke asmciated to the diagram. We

okrve that the due .V = ●’ rttakcs corttm with the coupling 7 iu (1.1).

JB cottdusicur, if we take g = e-d and N = e~, we can firmally identify the

con”5nuum hit oftheprtition functkm Z in (1.8) with the Z delitted in (1.1).

The me:ric fix {he dscmtizeei formulation is not sutooth, but one catt imagitte

how a ekctive rmuic m lug-r xak could fi after averagiug over Iocaf

icregubtities In the next sulwxxion, -we shall see explicitly how this works.

( ktuauy ( 1.9) antomat.ically cakb ( 1.1) with the measure factor in

(1.2) 1corrected M X5 ~, witre IG(S)I is the order of ~he (discrete) group

of sytttmetti of k triangdat.b 5. This is kd.iar from tield theory where

diagriuusx’m symmer. ry rdt in an incomplete cancellation of l/n!’s >uch -

iIO(I- ~) =d (I-~)- The ~>m~~t~ IVUP c(s) iS the di-~~e -bz of ‘he

~etry gruup of ● routiuuuu. manifold. )

The graphicaf expausiott 0[ (1.8) enumerates graphs as slwwIt iu tig 1,

where the triangular facej that constitute the random triangulation are dual to

the 3-puiut vertices. Had we instead used 4-poiut vertices u iu fig. 30, tku the

dual surface wouhl have square laces (a “raudoln squarificatiott” d the sudace),

and higher poiut verticti (g&/Nk/2– J)trM& in the matrix mode] wou]d result

in more geueral ‘ramhu polygottiticatious” of surfaces. (TIIe powers of N

asociated with the coupliugs are chosen so that the resealing ~~ ~ ~f @

resuk in an overall factor of N multiplying the actiou, so tftat tht argullheul

Ieadiug to (1.9) remains valid, and the power of N coutiuues to nwasure tlw

Euler character of a surke constructed from arbitrary polygous. ) The ditfereut

posibiliti~ for generating vertices constitute adtiitioua.1 degrees of frvedoul that

cao be realized as the cortpliug of 2d graviry to differeut varktim of nmttrr iu

the continuum limit.

1.$. The wntinuum ltmtf

Frotu (1.9), it follows that we may expaud Z in powers of N,

z(g) = Wzo(y) + z,(g) + N-zzz(g) + . . . = ~ N2-2hzh(Y), (1.10)

Where zh giv- the coutributiou froLU srtrf~ti of geIIus h. III L]W CL)]lVCUlioUd

large N Lirmit, we ti&e N - cm and only 2., the phutar surface (gvIuIs zero]

contribution, survives. 20 itself may be expanded in a pcrturbatiul) svrirs iu

the coupling g, aud for large order n behaves as (see [14] for a review)

z.(g) - ~rl’-’(gcJ”J” - (gc – g)?-’ (1.11)

n

These seri~ thus have the property that tlrey diverge as g iip]mack, muw

criticaf coupling gc. We Cu extrart the contiuuutu iituit 0( these surfacrs by

tuning g z g=. This is because the expectation value of tbti area of a sur[ai”t’ i>

givett by

(A) = (11)= ~y
1L z“(rJ) - —

Y–Y.

(recall that the area is proportional to the rtulnlwr of vertices n, wlii,l, a,qwrrh

10



t - -I.. =,- -r- ~hal .4 - x w that P may rr-=ale thr arra O( the individual

t nanek :.. m-n). tbrr~ civing a cnntinrtum sllrfacr with finite area- Intuitive-iv.

i-t ~~lrlln< Ihr I-nupfing tI, ‘ 4P point whrrr the pert urbatinn series rlivm-g= the

Inr-ral imwllfi ,Lmrinaled hy dmgram.. =il b infinitr numbers of vm-ti-. and

: iii. I. lorm-iu.ly mhat w ❑eerl tO drfin? ~on~lnuum ~rfmm.

Ihrrr i% no dirert proof z% y~t that this procedure for defining continuum

f.Icr al.- i< -Vw-rer[-. i.~. Ihat it coincick with the continnnm definition ( 1.1).

\\”c. arr a})ir, fr;mrw-r. to romp propertk of the partition frtnction and COrre-

l.~11.wr f::m t>)ns rah-nlatmi hy matrix model rnetlrods =ith th- (few) properties

rilat ,-an b.r r-af_-IIIatmI ,Iirwtly in the continrtttm (for a review, see 115]). This

<Iv- intidi,i? mwfim~ation that the matrix model approach is smtsiblc and gives

r~aum to Iwiir%-r nth?r rewdts d~ri+ by matrix model techniqu= (e.g. for

I,,<hi-r Krnus ) rhat are ncrt chainabk at atl by continuum methods.

(h. .nf Ih. prnpert k of th~ models derivable via ~he continuum fkuville

mpprmwh is a ‘crit iral exponent- ~. ddinml in terms of the are?. dependence of

!h. Partili(>n fli~. tiorr fnr sucfkc= of fixed kgw arra .4 as

2(.4) - A~’-2)~/2-’ . (1.12)

T~Iantiripalr u-r:,IP rrkutt i~l~. we al that the unitary discrete serim Of

,-,~nf(trrllaf firl~l thrnn~ is labefied by an integer m ~ 2 and has central charge

D = 1 – G/m(m + I ) [for a review. w e.g. [16]), where the centraf charge is

nnr~.?rdizml snrh that D = 1 corrqxmds to a tingle free bccson. If we couple

~-~)i~fornl~ fir!d therrrk wiih ibeu fractional vdu= or D to 2d gravity. the

{-,mti?;t:um L.tiwrilh- theory prediction for ttm exponent 7 is (see sertion 4)

-.=+( D- I-% ’, D- I)(D-25)) =-:. (1.13)

Th~ czw nr = Z. for psampl~. co~ponds to D = O and hence ~ = - \ for

p~lr= ~ravity. Thr next rasr m = 3 corresponds to D = [/2, i.e. to a 1/2- boson

rw frrmion. This ix I h- ronforrrral fidd theory of the cvitical fsing model, and

=- barn from ( I 11: t hat the king mo+l coupled to 2d gravity k -J=–:-
~-otirr that ( 1. 13) (--a- to t-w sensible for D > 1. This is the first indication

II( a ‘harnrr- aI D = 1 mhirh will rrappear in varinus gui.x in what follows.

In scctirrn 2 we shall present t ho snllltiorr to the matrix mmlrl [formulation

of thp problem, and t hr vafur- of the rxponmtt 7 provirfrs a cnarsr means of

determining which specific continuum model results from taking the continuum

limit of a particular matrix model. Inrired the coincident of ~ and other scaling

exponents (to be defined in Section 4) ralcri~,ited from the two points of view

were originally the only evidence that the continuum limit of matrix models was

a snitable definition for the continuum problem of interest. In the past year, the

simplicity of matrix model results for correlation functions has spurred a rapid

fivoluticm of continuum Liouvifle trchnol~ so that as well many correlation

functions can be computed in both approaches and are found to coincide.’

1.4. The double scaling kmit

Thus far we have discussed the naive N ~ cm fimit which retains only

planar surfacm. It turns out that the successive coetlicient functions Zh(g)

7 By way of very superficial ovem-i~: following the confirmation that the matrix

modrl approm+ rcprodaccwl the scafing rcmlts of 117], some 3-point couplings for

order parameters at gmm.. rmo were crdculnted in [181 from the standpoint of ADE

fsce modeis on floctnating lattices. The connection to KdV (reviewed in section 3

here) was made in [191, and then gem-d correlatiotm of order pPJameters (not yet

known in the continuum) were cdcnlatd in [20]. Tlw first ntep in the calculation of

continuum corrclatom wax providd in [21], where the free field formulation by zero

mode integration of the Liouvitle field was ~tablinhd. This was employed in [22]

togetfrr tith a n~ analytic continuation of the scaling parameter to mhmlate

some continuum correlation frmctions: the incoqmration of the Liouville mode WM

drown to cancef the ghastly assemblage of r-tkmctions familiar from the confotmd

ticld thmry result and reproduce the relatively simple matrix model result. Additiond

gmnz zero corrrfation funr-tions for D < 1 were thrn computmf in 123]. The genus

onc partition function for the AD sevhm ~ calculated via KdV methods in [20],

~d - confirmed from the continrmm Liouvillc approach in [24]. For f) = 1, the

matrix model approarh of [25,26] WM used in 127] (also 128,29]) to calculate n mciety

of correlation [unctions. Th~ wrrr also catr-nlated in the ro!lectivc firld approach

13(~ wherr np 10 6-point amplitudes wmr derived, and f.nnrf to be in ag-rmr=nt with

thr Li,,uville rmnlts uf [23].
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h (i-lo)as WCUdiverge at the same criticat value of tlte cotrpliug y = yc. (this

sbuakl not b surprising siucc the divergence of the perturbation series is a local

-u- -d *OUM ttot de~ttd ott global properties such as ~he etitctive

geus of a diagram). As we sbd sme iu the next section, for the higher geuus

coatribotiom (1.11) is gencralix.mi to

ZA(g) z ~ n[7-2)xi2-’(g/g=)” - (g= - g)(’-7)x/2 . (1.14)
m

We ~ Lhat the contributions from higher genus are enhanced aa g ~ g=. This

SSS66@S t~ if we * the ~UI N ~ ~ ad g ~ gc not independently,

M together in ● corrda.ted manner, we may compensate the large N high

geaas Suppression with a g -. g= enhancement. This would result in a coherent

contribution from all genus wmface9 [3- 5J.

To see how this worb exp4icit1y, we write the kading singular piece of the

z,(g) u

24(9) - Jh(g - gc)(2-?)l/2 .

Then in ierms of

6 “ = N(g - 9.)(2 -’)/2 s (1.15)

the expxuion ( 1.10) can be rewnttend

z=u-*f. +j, +&2 fz+... =~K2*fhfh . (1.16)
h

The ckrircd result is thus obtained by taking the limits N 4 cm, g - gc while

holding tixed the ‘rettorutalized” string coupling x of (1. 15). This is ktmwu as

the ‘doubk sraling tiruit”.

0 Strwtly +J.cakIug the hrst t-. tt-rr.ushere have Alitloual uou-univrrsal t.necti

IIM1 rrcl-11I*, k. >Ublraanl A

13

2. AU genus partition functions

t. 1. OrLhOgmud pdywormu.k

ltI order to justify the claims uwde at the cnd of the previous section, wv

introduce some formalism to solve tlte ❑atrix models. Wt begin by rewritit%

the partition function (1.8) in the form

where we now allow a geueral polynomial potential V(M). In (2. 1), the A,’s

are ihe N eigenvalues of the bermitiau matrix Af, aud

A(A) = ~(.Aj – .41)
i<j

is the %ndermottde determimut.e Due to antisyumwtry in intrr(hangv of any

two eigenvahws, (2.2) can be written A(A) =

is determined tIy comparing leading terms).

have

(A, -A, )(,4* -A, )(A, -A,)=

‘ (2.1) may be derived via the umral Fadecv-Popov rnetkd: Let LJUk. thi, ~lui(aly

matrix mrch that M = U: AUO, where A is tt diagwml uatrix widr r-igvuduvs A,. TII,,

right hand bide of (2.1) follows by substituting the ddiaition 1 = ~ dU A(U ,If U 1 –

A) AX(A) (where ~dU s 1). We first perform the iutegratiort over .if, UId lIIVII1’

decouples due to the cyclic iuvarirmce of tLte trace so the iutr-gratiou over [’ IS [rlt I.1,

I-Bvlngouly lhe inte@ over the eigem~uti ,\, of A. T’ deteruriue 3(A), we uutc thil[

t.rtdy the iufiui Leaiural ueigbtmrhoud U = (I + T)!IO contributes to the U intcgralmu,

so mat

1=
I

riUb(UJf U1 –A) 32(A) =
I

rlT b(lT, A])3’(A)

Now [T, Al,, = T,, (AJ – A,), SD(2.2) follows (up trJa sigo) siucr-wt. IiIt(gIaI{. ov,r lJIJIII

red aud hrmgim.ry pwls d lk off diaguud T,, ‘s.

14



l-ho nim- %tamlanl rnrt hod for solving (2.1) makm use of an infinite set of

p~dymmllals f., (.1 ). orthogonal =rith wsprrt to the nlrz~ure

!

x
dA e-’’~~’ P“(A) I-’m(A) = hnfinm . (2.3)

-T

Tlw /’.”= arr km-m-n as orth~onal polynomials and arr= functions of a single

rral .ariahl. ,4. Thrir normalization is given by having leading term ~.(~) =

A“+. . . . hrrrrr the rrmstant h“ on the r.h.s. of (2.3). Due to the relation

.3(A) = det A{-’ = d~t Fj_l(Ai) (2.4)

Ir~all [hat arbit rav polynomial may be built up by adding linear combi-

nations of prccrding ralnm.w. a pr~edum that leaves the rleterminmt un-

dlangml ). t hc polynomials pm ran be employed to solve (2.1). We suhtitrrte

lhr ,Irtrrrninant [Irt ~j_l(.lC) = ~[–l)p~k Pi&_l (AL) for each of the A(A)’s

III [?, 1). The intrgrals over individual Ai’s factorize, and due to m-thogonafity

1!Ir nulv cnntrifmtions are from terms with all ~i(Aj)”s paired. There are N!

<Iv-h trrrrl.s so (?. i) reducfi to

N–1 N–I

(2.5)
,=0 k= 1

where m-P haw defined /~ ~ hk/h&_l.

In thr naive iarge N limit (the planaz Limit), the resealed index k/N be-

romfi a continuous variable < that runs from O to 1, and jk/N becomes a

continuous fllnctinn J(<). [n this limit, the partition function (up to an irrel~

vant a[lditivr ronstant) reduws to a simple one-dimensional integral:

+z=; ~(l

k

To +riw tht= functional

—k/N)ln ~k x
/“

d<(l – ~)ln~(<) . (2.6)
o

form for ~[~). we =wrme for simplicity that the

potentiaf I-(J) in (2.3) is evrn. Since the Pi’s from a complete set of ba-

sis vertors in the spare of polynomial. it is clear that ,4P.(A) must be ex-

:~rmsildr as a linear combination of lower P,-S, APn(.\) = ~~=+o’ ai Pi(A) (with

al = h;! Jc-’” Apn pi). In fact. tllc orl hogrmat polynomials satisfy I hr silllplr

recursion rrlation.

APn=Pn+l+rn Pn-l , (2.7)

with rn a scalar coefficient indeprndemt of A. This is because any term propor-

tional to Pm in the above vanishm due to the -wmmption that the potential is

even, J e-v~ P“ P. = O. Terms proportional to Pi for : < n - 1 afSO vanish

since J e- ~’~n A Pi = O (recall APi is a polynomial of order at most Pi+ I which

is orthogonal to Pn for i + 1 < n).

By considering the quantity P. AP._, with A paired alternately with the

preceding or succeeding polynomial, we derive

\
e ‘v PnAPn-l =rnhn_l =h. .

This shows that the ratio tn = h./h. _ I for this simple c-l” is identictily the

coefficient defined by (2.7), ~n = r“. Similarly if we pair the J in P; A P“ before

and afterwards, integration by parts gives

/
nhn = e-v

\ 1
P~AP. = e-v P~rn Pn_l = r. e-v\ ’’P. Pn-l . (2.8)

This is the key relation that will allow us to determine r“.

2.2. The genw! zero partition jinction

Our intent now is to find an expression for j. = r“ and substitute into

(2.6) to calculate a partition function. For definiten=s, we take as example the

notentiaf

V(A)= &2+#+b$),

with derivative gv’(A) = ‘1 +2; + 3b$ .

(2.9)

The right hand side of (2.8) involves terms of the form ~ e- ~’ ~zr’-i P“ P.-I.

According to (2.7). these may be visualized aa “walks” of 2P – 1 steps (p – 1

10 ]n ~thrr mo~rIs, e.g. ~nl[immtrix morfrls, j“ = h-/h. - I h~- a more cOmP1iratw’

dcprmdrnv- on rrcursion corfficirnts.

.-
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steps up awl p steps dowlt) slarting at n dud curling at n – 1, where each step

down from m to m – 1 receives a factor of r ,. am! each step up receives ii factor

of unit,v. The total number of such walks is given by (2PP-‘), aud each results

in a lin~ factor of h.– I (from the integral J e- v P.–l P,i. , ) wh!h combines

with the rn to cancel tb e h. on the left hand side of (2.8). For the poteutiaf

(2.9), (2.8) thus giVeS

2
gn= rm+ ~r.(r.+1 +rn +rn-l)+ :(1O rrr terms) . (2.10)

(The 10 rrr terms start with r.(r~ + r~+l + r~_k +.. .) and may be found e.g.

ill 131].)

As mentioned before (2.6), in the large .V limit the index n becomes a

continuous variable (, and we have m/N -, r(~) and rnxl/N ~ r(.f + E),

where E s l/N. To leading order in l/N, (2.10) reducei to

g< = r +6r2 + 30br3 = W(r)
(2.11)

= g= + ~W_’’lr=r= (r(() - ?C)z + . . . .

In the second tine, we have expalded J} ’(.-) for r uear a critical point r, at whictr

W’jzrc = O (which always exists without auy line tuuing of tk pmameter b),

and g= s W(rc). We see front (2.11) that

r - r= - (g= –g~)112 .

(For a general potential V(A) = &~, a, .12~ k (2.9), we would have H’(r) =

To make contact wiLh the 2d gravity idea of the precediug section, let us

suppas.e more geuerally that the leading singular behavior of j(() (= r(f)) for

large N is

/(() - /. - (~c – 90-” (? 12)

for g near wIue gC (and ( uear 1). (U’e shall see that 7 iu lhr alrove ( ..citlrs

with I he {.ri[i(.al C.X[)UIII.IJ[ -f d(.tiud in ( 1 .12).) Thr Iwhaviur of (2.6) for g near

r,

(2.13)

Comparison with (1.12) shows that ttre huge area (large n) behavior idcutitics

the tixponeut ~ iu (2.12) with tire criticaf expcuwnt ddincd (,arlivr. We also UOLV

that the second derivative of Z with respect to ~ = gC – g lIas lradiug siugular

behavior

z“- (9. -9)-’ - /(1) . (?.1-t)

From (2.12) and (2.13) we see that the lmhavior in (2.11) iluplic’s ii (ri[i(al

exponent T = -1/2. From ( 1.13), we see that this corresponds to the uaw

D = 0, i.e. to pure graviLy. It is natural that pure gravity should bc Imrsrn[ for

a geueric poteutial. With fine tuning of the piuameter b in (2,9), w~ tan aclli~,vr

a higher order criticaf poiut, with W’l~c~C = W“l,=rc = ~, MNI l~~ll~e lIw’ r.h.~.

of (2. 11) would iustead begiu with an (r — rc)3 terlu. lly the same argumcul

starting front (2.12), this would rewdt iu a criticid rxpoIIr’IIL ~ = – 1/3. \\ ’illl

a geuera.f poteutial V(M) in (2. 1), we have enough paramrtvrs to at.hicvt, illl

111‘border criticaf point [32] at which the first vi – 1 deriva[ivvs of 1}’(r) val)i>l~

at r = rc. The behavior is then r – r= x (g= – g,f)lj’n with assotialcci crilit’id

expofieut ~ = -1/IIL. As anticipated at the end of suhscction f,.?, w,’ sw tll~l

more general polyuorniaf matrix interactions pruvirlr llw mwx,ssarv d~,grccs of

freedom to result iu matter coupled to 2d gravity in the colltil~uun) limit.

2..3. The all genu partttion function

We now search for another solutiou to (2.10) and its gcncridization> I II;II

describes the contribution of afl genus surfaces to the parti~ioll functi(,lt (2.6).

We shall retain higher order terms iu l/N in (2.10) so thate.g.(2.11) illsl,,ri,l

reads

g( = }*’(r) +2r(()(r(t+E) + r(<– :) - 2r(t))

= g=+ ~H’’’l,=rL (r(<)- rc.)~ +?r(()(r(t+:)+r(( –:) - ~r(<)) +--

(! l:, )
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v - v. in a i~artil”lllar way. Sinre g — gr has (Iimrwsion [length]2, it is wwcnicnt

I(I ill! ro,~lwr a lmranlrtrr a with dimrnsion Irmgth an{] Ict g–gc = K-4/5a2, with

{l - I). (),lr all+atz for a coht,rrnt Iargr ,%- limit wilt br to tr& E s l/N = aslz

.II that Ihr rlllantity K-l = (g – g~)Si4N remains ftnitv m g 4 g, and N d m.

Jlcm-wm-r sinm- thr inlrgral (2.6) is dominated by ( near 1 in this limit, it is

r~mvcnietlt to ,.hmge wuiahles from f to :, defind by gr -g< = azz. our scaling

allsatz in this rrgiou is r(<) = rr +au(z). If we substitute these definitions into

(2. 11). the lra~ling rrrms are of order a2 and result in the relation U2 * z. To

in,lmlr thr highr-r {lcri~ative terms. we note that

32r
r(<+:)+r(< – E)–2r(t)-F2~ =a~au(:)+r22u” ,

:

m-brrr mr haw IIWI =(~/~<) = —ga: 12(~/dz) (which follows from the above

t han~r of varial~lm from ( to :), !% bstituting into (2.15), the vanishing of the

c,~rffirirnt O( (1: illll~lirs the different iid equation

2 1 II:= U--u
3

(2.16)

[nftrr a sllitaldr riw-ahng of u and z). In (2.14), we saw that the the second

IIrrii-at i~-r tjf t iw llar~ it ion funrtion (I he “sprcific heat”) has leading singular

l,cllavior~ivcn IIY f(() with ( = 1, and thus by u(z) for z = (g–gC)/a2 = K–415.

Thr WIUI i{,:] t,, (?. 16) rhararterizes t h? behavior 0[ the partition function of

Ililrc gravity tn all nrriers in the genus expansion. (Notice that the leading

!mln is u - :’;2 so after two integrations the hading term in Z is zst2 = K–2,

{Insistent with (1.16 ).)

Ill. (?. 16) i.s known in thr mathematical literature as the l’ainhwd I equa-

ll~~n. Thr pertllrl~ativ~ soluiion in powem of Z-512 = K* takes the form

II = ,l’z(l –~&_l !l&: ‘$ L/2). where the UL are atl positive.ll For Iarg? k, the

‘ ‘ The first Irr,,]. i c the contrilmtinn from the sphrre. is dominatrd by a regular

I,art whirh h-s npp,wite si~ This is rrmovrd by taking an additional derintivc or u,

K~wirrga w-rim all IIf =how tr-rms have the samr sign — nrgdive in the convrntiorrs of

I /2 hw _ ~xp~sion with aftmnming(? 16) Th-llthrr-,l,limn. w!th Iemiinglrrm —z .

.Ign whit-b IS l~r,allrlinl,lv B{wrl snrnmahlr. 1)111not physically rrlewmt.

ut go .3-Sylllldtllically as (2k)!, so thr sollltion for u(:) is not llorl’1 Sllnlnlal)lr

(for a rcvimv of thrsr issuw In the cc,nlcxt of 2d gravity, srr r-g. [33]). our ar-

gumrnts in srction 1 show only that thr matrix modr-1 rrwults shonld agree with

2d gravity nrrfcr I)y ordrr in perturbation theory. How tn insure that wc arc

st uriying nonperturbative gravity as opposed to nonprrturbativr matrix models

is still an open question. Some of the constraints that the solution to (2.16)

should satisfy are reviewed in [34]. In particular it is known that real solutions

to (2.16) cannot satisfy the %hwinger-t)yson (IOOp) equations for the tht=ory.

In the case of the next higher multicntical point, with b in (2.11) adjusted

so that \l” = W“ = O at r = rc, we have W(r) - gc + ~W’’’~~r(r(r – r,)s + ..-

and criticat exponent y = – 1/3. In gem-ral, we take g – gc = ~zf(’-z)az, and

E = l/N = az–y so that the combinatic. ,~ - g,)
1–Tt2N = ~-1 is fixed in the

limit a + O. The wdue < = 1 now corresponds to z = x2i(T-2), so the string

coupling K2 = 27 ‘2. The general scafing scaling ansatz is r(~) = r. + a–27u(z),

and the change of variables from f to z gives ~(tl/~~) = –ga-~(~/~z).

For the case ~ = -1/3, this means in particular !hat r(() = r,+ a2/su(z),

S2 = Z-713, and c(L7/d~) = –ga’13&. substituting into the large N limit of

(2. 10) gives (again after suitable rescafing of u and z)

Z=U3 - Uu” - +(U’)2 + c u“” , (2.17)

withrr= ~. The solution to (2.17) takes the form u = Z’fa(l + ~k UL Z-’k/3)-

lt turns out that the coefficients u& in the perturbative expansion of t he solution

to (2. I 7) are positive definite only for a < ~, so the 31h order multicritical point

does nnt rf~cnbe a unitary theory of matter coupled to gravity. Although from

( 1.13) we see that the critical exponent ~ = - 1/3 coincides with that predicted

fnr thr=(unitary) Ising model coupled to gravity, it turns out [31,35! that (2.17)

with a = & instead describes the con formal field theory of the Yang Lee edge

singularity (a critical point obtained by coupling the Ising model to a particular

vafue of imaginary magnetic ticld) couplmi to gravity. The specific heat of the

r-rmvrntionat critical lsing model mmplrd to gravity turns out (SW the next

section hrre) to he M WCII determined by the diKcrcnt.ial twplaticm (2.17), but

instra(l with rt = +,



Fur the general Jntb order cnlical poiut 4 lhe poteutiaf M’(r), we have seetr

th.aI the ~ ted model of matter coupled 10 gravity has critical expotreut

? = -l/m. W-ith scafing aztsatz r(() = rc + Uzlmu(z), we find Ieadiug behavior

m-z Iirn \md z- ~2+1/ m = N- 2 as expected). The differe) tial equatiou that

dts from substituting the double xaling behatiors given before (2.17) iuto

the generalized version of (2.10) turns out to be tbe rn’h rnetnber of the KrlV

hieram%y of dtierential equa&ns (of which Painlev& I results for m = 2). Iu

the next satin, we shall ~rovide ~me marginal insight iuto why this structure

emerg=

Lri thr nomenclature of 136], -alkd ‘&imtuzd COtlfOtltld fidd theoties”

(t- with a bite number of primary lldds) are speded by a pair of relatively

prime in~em (P, q). [The unitary discrete seti is the suket specified by

(P, ~) = (m + 1, m).) After Coupbng to gratity, thew have critical exponent

7=–2/(p+q - 1). h general, the m[b order mtdticriticaf poiut of the one-

ntatrix modd turns out Lo destibe the (2rK - 1,2) rrmdel (in general non-

uni~) cou~ to gravity, so its criticalexponent 1 = -l/m happens to

cnincide with thaI of the m* member of the unitary discrete series coupled to

gtavity. The reruainin < (p, q) rtrodels coupled LOgravity can be realiml in terms

of nmki-mam-ix models (to be debecf in the next section).

3. KdV eqttatioxra ad other mdela

.I1. KdVeqmatwu

W-e now wish to describe super6ciaUy why the KdV hierarchy of ditfereutial

equations plays a rok in 2d gravity. To this end it is convenient to switch from

tkc ti of orthogonal polynoruiafs P. moployd in the previous section to a

basis of orthonorutal polynomials IIm(A) = P.[, A)/ & that satisfy

r
dAe-” Ilm ffs = b.m .

-x

[n terms of [he ff.. q. (2.7) becotu=

r— rhm.l

A[[’’=k%n”+’” T
fI,, _l = \mfl. +1 +./z flri.l

= Q.,. n“,

21

(3.1)

Iu matrix notation, we write this as All = Qli, where the matrtx Q has cwu.

ponents

Q“m= ~bm,n+, + fib., +,,,,. (3.2)

Due to the orthouormality propmty (3.1), we see that ~ t - ‘Afl,, fI,n = Q,,,,, =

Qmn7 and Q is a symmetric matrix. ILI the continuum linlit, Q will ttmrcforr

become a berrnitian operator.

To see how ~bis works explicitly [19,37], we substitute the tia!iug ausa[z

r(() = rc + azfm u(z) for the IIILk rnulticritical model into (3.2),

Q + (r. + az/mx(z))’/2e
% +e-’$

(r, + Uzi’’’u(:)iziz .

Wilh the substitution C+ ~ – galtm &, we fi.d the leading terms

Q=*r:”+a;:@+“’’d:)‘
(3.3)

cif which the 6rst is a non-universal constant and the second is a bvnniiian ?’d

order differential operator.

The other matrix that naturalfy arises is detined by ditfcrr-n(iation,

:ffn=Anmnm , (3.4)

and automalicdy satisfies [A, ~] = 1. The matrix A does Ml have imy ll’irLic-

Uk Syuln.retry or antisymtnetry properties so it is conveoivnl 10 corrert il 10

a tuatnx P that satisfies the same commutator as .4. From ~~urdctilliticms, i[

follows that

o=
\

:( ff.nme -”) = A + .41’ = I“(Q) ,

where we have differentiated ternr by term aurl used ~ e–v A( fI,, fl,,, = (Q{),,,,,.

The matrix P s A – ~V’(Q) = $(.4 – .4=) is therefore anti-synllllctrir aIId

~t~fi=

[P,Qj =1 . (3.3)

~~



Tn ,Ictmnl]nn Ihr order of Ihe difimmti~ nprrator Q in the continuuru

Itui;l. lrf II. zs.,lmr for rxampb that the potrnti~ 1- & nf order zf. i.e. t’ =

y: l-h F,, r,n > “. lhrint%r~-4_- =*,1* Je-l-~m~nm=Je-~”l-’~m~m

Tim\- IW n,~~mnishing for m — n < ?? — 1. That means that ~~. # O for

rn - n~ < ~f — ]. anf~ thns fIaS rnollgh paramrtpm to rmllt in a (~t — 1)”1 or&r

!lltTrrrniia.f oyratnr in the rntttirmurn. The sin~le conditinn 11-’ = (1 msnits in P

~IIIIml rn a 3~ ,>rdrr op-ntnr. and th~ f — 1 conrfitio~ 1}-’ = . . . = I\”(t–’) = O

.lII.,w r to h- rralizrd as a (?f — 1 )“’ order diffrrentid operato~. In (3.3).

X. e r6al Ihr unit-pal Imrt nr Q after suitable rmcaling takes the form

() n II: - z. For !h- simpk rritiraf point 11-’ = i), the contjnuum limit of P is

!!,,. ~ntihrrnlitian qwramr I’ = d’ - ~{..d). anti the commutator

1 = [I-’. (J]= 4R!2 = (:=2- :.”)’ (3.6)

~. r>+lv lnt~ratml uith rrs~ to : to give an rquation quident to (2.16).

Ihe Ctn-n= qua I inn for puw gravity. [n (3.6), thr❑otation R2 i.. conventional

f.w rhr firer mrmh r of th- nrdinzq KdV hieram&- T& cmergencc of the KdV

hiqx,dty in thk .mttrxt k due to the natnral occmrrenct of :he fundamental

.-nmmntatnr relation (3.5). which ab ocmm in the lax rep~ntation of tfw

Kd\” rqrtatinns. (llm tqmbgicat gravity approach has as well been shown at

bm~h 10 k rqniralr.nt to KdV. for a re+w ~ @3].)

Jn grrwral th- diflrwo:iaf equations

[P.Q] = 1 (3.7)

That fnlh frnm 13.-JI mar he d~trrminmj directly in [h< cnntinuum. Giwn

an nfwratm Q. the dit%mntial operator P that can satisfy tfti.. ~ommutator h

~-nn<tmrt+ zs a ‘fmrtiond pnwvr- of the o~mtor Q.

kfnrr shn=-ing how this romstt-octian wrks. ~ first expand slightly the

class n[ mrml-ls frnm sirtgte matrix to multi-matrix modrls. Thr frrr energy of

a parl iclllar (q – 1)-niatt-ix nloilcl. grnrralizing (2,1). Illay iw writ ten [39]

1- .-, N

(3.8)

wherrtht= Mi (fori = l,....~- 1) are N x N hermitian matric~, the A~”)

(~ = 1,..., N) are their rigemvafues, and A(Ai) = ~~<fl(J~fi) - A~fl)) is the

Vanderntonde determinant. The result in the second line of (3.8) depends on

having ~i-s that couple matric= along a line (with no closed loops so that the

integrations over the rrlative angular variables irr the Afi’s can be performed. )

Via a tliagrammatic expansion, the matrix integrals in (3.8) can be interpreted

to generate a sum over discretized surfaces, where the different matrices A{i

represent q – 1 dit7erent matter states that can exist at the verticm The

quantity Z in (3.8) thereby admits an interpretation as the partition function

of 2d gravity couplrd to matter.

Following [39], we can introduce operatota Q, and P, that represent the

insertions of Al and d/a Ai rqmctively in the integnd (3.8). Thew operators

tt~ly ntisfy [Pi, Q~] = 1. In the N + aI limit, we have seen (following

[19]) that P and Q bmmme ditlerential operators of finite order, say p, q respec-

tively (where we assume p > q), and these continue to satisfy (3.7). In the

continunm limit of the matrix problem (it. the ‘double” scafing fimit, which

hrre means coupfings in (3.8) tuned to crit-hf dues), Q becomes a differential

operator of the form

(3.9)

whine d = (-f/d:. (By a rhange of ba~is of the form Q - J-l(:) Qj(:), the

coeficit=nt of d~–’ may always be set to Tero. ) Thr continuum scaling limit

of the multi-matrix models is thus abxt ratted to the mathematical prohh-m of

finding xnhttions tn (3.7).



W ddfcn-ntial cq~ions (3.7) w.}- k COIIStrutted as fdbws Fur p. q

mlalivrly prime. a p“ order Werential operator that can sakfy (3.7) is con-

stcuctmi - a kti power of the operator Q of (3.9). Formally, a q’h root

Uny bc ~wd wilhin an algdmi 0( focmd pud~crcnld qmmi.tors

Q’/’ =d+~ {e,,d-’} , [3.10)

q- ~ be (p, q) minimal model coupled to 2d gravity are given

(3.11)

*p=@+/*” -~ &pm d ~f~ with oaly non-negative powers of d,

adixap* omb&lTerwat.d~.

To ~ the procedure w reprodue 00W the ~uhs CM the cII!--ruatti.x

mod+ which caa he d LOgeamaIc (p, g) dthc form (2/- 1,2). From (3.3).

timmdcls-obtai.adbdhg Qto!)cthc hmmittioperalor

(3.12)

-rkf4xcdexW Of(y-’”z = Ii-’ -’!z (aa anti-berm.itian opertior) in pow-

~addisgmm~

(3.13)

h-:-’ ~=~ {r,, -,.d-’’’-”] = {R,.d-’] +O,d”’,+ . . . {3.14)
,=1

Tbe prewriptiou (3.11) with p = 2/ - 1 c.mmponds hdrc 10 ca.kuliiliug Ilw

commutator [h;-’ ‘z , K]. Since K commulm wilh A-’- ‘iz, we have

[K;-VZ, ~] = ~K,K~--l/2j . (3.12)

But since K IM-@s at dz, ad since from ttte I.lt.s. above thr commutator uan

have ordy pmiitive powers 0[ d, ouly the Ieadiug (d -‘ ) Lrrm [rout tlw r.h.s. tall

contribute, which resu!ts in

[K;-’”, K] = leading piece of (K,?/i’id-’~ = 4ffi (3.16)

After integration, the equation ~K~-’ /2, K] = 1 thus takth lhe simlde form

Cfl#[u] = : , (3.li)

where the cm.staul c may be fixed by suitable ra-idiug of = MId u (rIIahkw~ [I}

the property that all trrmx in RI have fixed gradv, rmmrly ?1 ).

The quantities RI in [3. 14) are easily smm to satisfy a mIIIpIe rvturswu

re~lon. From ~J+112 = ~~~-112 = ~i” 112K. We 611(1

1+1/2h+ =!
(

~;-’fzh- + ~A-\-’fz) + {~,. d}
2

Commuting both sid= with h- ad wing (3.16), MI.Iplr algvl~ra givr- [41]

R’ !q’- 1
1+1 = , Util – ~u’Rl

\VMe this rrcursmu furtmda only delrru. ium RI I)Y ‘l~!ll~lllllllg

Hi [1 # 0) vamsh at m = 0, we obtaiu



.4s a cp+tic *xampk of a tmmatrix modci. wr cartsider

z J
–rrf[-z + 17- 2ct-1-+ +(e~[”’ +r-~1-’)

.= ,Ir-dl” ● (3.21)

h~r ul,filual <I,ins. [’I} t,, an rrvrrall atl,iitivo cr~n%larll IIJ llIr friv rllr-rgy. Illr

diagrammatic rxi~an~i-m of (3.21 ! rrsults in thr- 2d Itart it ion fum! inn

wh~rr H k I he magnrtir fi~ld. Th- w+h~~ for rqual and umqrtal nrighbwing

spins am e●“. so fixing the mtio Cze = I/c relatm the paratretrr c in (3.21) t~

the trmperatutr 3. It turns out that the Ising model is murh easirr to SOIW

mrmnwd ovrr random Iatticm than on a regular lattice, and in Wirnlar is

SOJvabk rveo in the p~ncr of ● magrwtic firld. This is becao= t her? is muc?r

mom syrnmrt ~ after coupling to gravh j.sinc~ the complicating dct ails of aIIY

particular Ia!tice (e.g. ~nam) - ?fiKtivrly integrated out.

we brirtiy outline tltt method for solving (3.21) (WC [45,31,35] for mom

Mails). By mrthods similar to th- U4 to derivr (2.1), we can wntr (3.21)

in termsof the rigrnvaln= x, aml g, of U and I‘.

WhtWl?14-(~1.yi) S I: + ~f - 2CZiyi + f(c”rf + e ‘Hy~ ). The pulynomiab -

drfioe for this problem am orthogonal with rmprct to the bilocaf mrasurc

/
dxdy e

–W(8LF) p“(~)Qm(y) = ~n ~n-

(whmr pm # Qn for H # O). Thc redt for the partition funrtion is i~~nt~~

tO (2.5),

i m

and the mmmsion relations for this CMWgmwalim (2.7),

YQm(Y)= Qm+l +~mrQmm-1 +trnQwr-s

\VF still havr \n s hm/hn _ r. and j“ cart Iw M rrminrd in terms of the almvr

rtw-uminrr rrwt%rimrts (although thr formulae are more rmnpliratd than in thp



wlItdI kavex the four d~tiu(-t rotated versions of tig. 4a, and [he two rlis[iu(.1

rotated teraions of fig. 41r.

+

(a)

+

(1,)

Fig. 4: [a) vertex with wqht a. (b) vertex WIIIIm-I@ i

The coupliug to gravity is given by sutunriug over rauilom Iii[ticm tlm[

mahtain four hrrks at each verLex, but can have arbitrary polygouid (acre. II

is simple to write down a matrix model that generates 6-verlex cotrliguratiuus

on random lattices. Rather than ● hcrmitian ma:nx, wr employ au arl~itrary

complex N x N m~rix @ = .4 + iB, where .4 a.ucl B am hermi[ian. TiiI”

propgator (ptp) now has an overall oricrrtatiou, which we idruti[y I)y au arruw

on tire propagator. (ln what follows wc supprcs the umlerlyiug drmldr-limd

notation 0[ fig. 3.) The graphs of intcrmt are geueratvd by LLICnlatris illlc~r.d

(3.?2)

wtrcre the vertices shown in 6gs. 4a and .lb are ~igtwd wrigtl[s II anti c rcq){,(

tivdy. “

The model h- ❑ot yet been solved in this forruulatiou VMept at [hi” anabg

of the I&tcrlitz-Thou& puinL, a = c. At that poiut we t“a.uU* the deutil!

tr[pzp’z +(#t #)z] = ~[(~+#’)z - (p– #t)z]z= 21r(.42 + D2)2

:!J 34)



whrrr S,, is WIIM-crmfnrnl~ly in~ariant art ion for matter fir-l~lsm-rllplr(l to a tw(j

dimrnsinnal snrfarr S with met rir g. p. is a hare rostrrnlrrgicd ronsl ant, and Wr

have synlbo!imlly dividd the mea~urr hy th~ “voiumr- of the riilhmnrphisrn

Kroop (whirh arts aq a Inral symm~trv) of ~ . For the frer bosonir string, we

tak s~ = ~ /dz[ fig”’ ~a.f ~~.f whrm the .~(() spm-ify the embedding of

~ into Oat D-dimrn*n~ ~~time.

To detk (4.1). we need to sfkfy tbp mrasum for t lw integrations over

-1 anti g (w. ●.g. 153]). The mm.mtre D-Y k detmtnined by rr-quiring that

~D,t$.Y e-16’1~ = 1. whine the norm in the gmmsiart functional integral is

gi~n % f16-Yll~ = ~ dz< fi6.r - 6.~. Simikuly, th~ rneawrre Dg is detrw-

ll+fl: = 1 whrm f16gll~ = ~ dz( W (9”c& +mined hy normalizing ~ D,6g e-~ .

2~’gr’) figd hgcd. and IJg mpti~-n!~ a m~ tric flurt uation at some poict gi j in

the spa-e of metrics on ● genus h surface.

The mmmrms V.Y and Pg are invariant unrlm the group of diffeomor-

pbisvns of tlw sttrfare. but not n~ Iy trndrr ronfomtal tmnsformations

gd ~ ~“ gd- MA ritt~to th~ mrtric dqwnd<nc~ in the norm llr$.Yllj, it turns

out that
~:= SL (u)

2?e.,.Y = ● D,X , (4.2)

Wbtw

sL(@) =
/

d’( & (:g”baauobo + Ru + p“) (4.3)

is kncmn as the Lmttvdk tiion. (T’him~ult may b drrivrd diagrammatically,

via t bc Fujikawa method, or via an index thmrem; for a review see 154], )

Th~ metric measure Dg as well bas an aoomalous variation undm ronfor-

mal transformations. To <xpr~ it in ● form analogom~ to (4.2), w- first rtd

to rm-all some bask farts about the domain of integration. Th~ spar? of mrtrirs

on a rompart topological surfare E mm-iulo riifimmorphisms and Weyl t rarts-

mrrrtatirms is a finite dimmwional rompart qxwr .Vf,, known aq rnoduli span.

(It is o-dimensional

dimensional for h ~

m-t rir @,J. then thr

for genus h = O: 2-dimmtsional for h = 2; ●nd (cA - 6)-

2). If for retch point r E .M9, we choose a rrprwaentative

orbits gmrratrd by the ditTrmnrnrphi~m and W’eyl groups

~~



(4.4)

wkn ~gb) E DbDc DbDc ii aa a.bbrcviaiioa kc the mcasrue~ Led 10

tbcgh#s L.c. b.~b=. &a khmrpbc qodral.k d&rcntial, ad C’ (CJ) is ●

~ (4-bokmWp& ) TCctor.

F--y. & gkmt me ~ ~[gh) is nti inwsrian t under [be mMAMUIal

9 - C“g. ticad =e bXC [6.s.54]

where SL b agfi (he Liuuv* ~lion (4.3). (In uuits i.u whil”h lIIC roulrilmlwu

of a single SCAM field to tbc couforud auotualy is c = 1, and km-r c = 1/?

for a figk Majorana- Wcyl fenuion, [hc ~4JufO~id U()[lldy dUC LO a Sphl J

rcparamctrization ghost is givcu by c = (-l)p2(l+6j(j - 1 )). The twutributiuu

fiottr a spitr j = ? reparametrization ghust is thus c = -:?. )

Wc have thus far succeeded to rccxpr- tbc partitiou fuuc[iou (4. I ) as

Choasin g a mclric slice g = Ceg gives

whr; c tbc Jacobian .J(p, gj is ●asily calculated for the matter and ghost .uw.101>

~(4.2) and (4.5)) but not for the LiouvilIe mode F. The fuuc[iuual iutrgral uvcr

p is compJic~mi by the imphcit ructric drpcudencc iu the uorm

sincc otdY if the ew factor were absent above wotth.1 the P$; measurr rrdu! i.

to that of a free field. In [51], it is simply -IA’5 Lhat IIW ow-rail Jm,)

bian J(p, g) tak tbc hrm of u cxponcntia.1 of a local Liouvillc-like mliol,

Jd’( fi(opd.~p + bip + *’@), Where a, i, ad r are C“uslmlts itlal Will

be dctcrmincd by requiring overall couformal invmiarwr (i is iuscrt d in ant 1(

ipm of =Slhg of ~). With this ~um~lian, the ~Liliou fuu(tmli (4. 1 )

takci the form

/

–s##(.Y. g) – S’. (b, c,b!f; y)
Z = jdr]i7;p P,(gh)D0.V e

33



Jg = S(og . 8; = –E(() , (4.7)

=% th. D – 26 on lhr frft & the contribution from the matter and ghnst

mcasn~ r,.\- an.i Pj(gh). and the additional 1 r-ormm from the P;F mcasnr-c.

lnmnaz.~ IIn,l.r (4.7) th~ rldm-mrti

T~–D
i.—

4.2X “
a=; b.

Srrk,rrr[ing tlw Au- ofab into the LiouviDc action in (4.6) gim

(4.8)

(4.9)

(4.10)

Q= J25–D

3
(4.11)

additional c = D – 26 from Lh? matttir and ghos[ wwtors. w. tirvl that the total

r-on formaf anon] alt- ran~sh- (consi~trnt with thr rrquirwf ovrratl mmforrnal

in~ariance).

1$ rrntains to deterrniw thr coeffiricrtt ~ in (4.6). Wr havr sincr resealed F,

so m wtitr instead c-w and drtm-rninr m by tbr mqnirrment that the physiral

mrtrk be g = gc”w. Ckorortrically, this mrano that the ama of thr surfarr

is rrpmntcd by ~dz< fic”~. a is thcwby dchrm~n~ by Lhr reqnircmrnt

that cOW behave x a (1,1) conforrnal Fmld (so that lkrc combination dz~roq

b conforroally in- t). For the mtrr-gy-mommrtum tenwr mrntioned after

(4.1 1). the conformal ~ght” of r-v is

h(c”w) = ii(r”w) = –+a(ri – Q) (4.12)

Rcqninng that h(c”~) = ~(e”v) = 1 d~tcrrnin~ that Q = 2/a+o. Using (4.11)

and solving for a tlwn gi-”

(4.13)

For spacrtime rmbeddirrg dimension d <1, - find from (4,11) and (4.13)

that Q and a arc both real (with 7 < Q/2). The D < 1 dorntin is thus

when the bonvW theory is wdl-c%ftnd and most raaily intrrprrtcd. For

D ~ 25, on the other hand, both a and Q - imaginary. To define a rral

physk-af metric g . c“vg, we nd to Wti ro~c v - –ip. (Thi.. change

the sign Of thr kinrtic tcrnr fOr ~. P -y at D = 25 w can intmprrt

.l_” = –ip m a frm time coordinate. In othrr words, for a string naivrly

cmkldd in 25 flat cuclidcan diromwiotrs, the Lieu\-ille mode turns out to

x



provide automatically a Augk LitLLelike&LumMion, tlytautically reahiug a s[riug

.~ia?6~ -“ LUI ruinkowski spiweiime. Finalty, iu the regime 1 <

D<2&ais com@eqad Qis~. sadly. it is not yet known how to

make ~ of the boavilk apprwdr for tbc regime of tumt physical intermit.

We me9t&m as well tht ~ non-ctiical strings (i.e. whose couforrtml

~y~com~by aLio9viik m9de)in Ddimcnsionscatr a’ways be

~~=~~-e~~+l -*. where the LiOudle mode

prcwi&9 tbe dWio9al [iatenc’thg) -~. ~Tbe cmvcrse, however, is not

tne &m it is UM alwap passibk to gange-6x a criti string and artificially

&U9tq@e tbe LiOU* made.)

It retnaiw ta ~ tbe string ~ptitility T of(l.13) in thiafotmalism.

Wewritt tbeputitkm fuacbaforhed area Aas

(4.14)

wke h Ctmveuknce weaawgroap theghostdete rminant and integration over

nsadmli iato D.Y- We ck6me a string smceptibility ? as in (1.14) by

2(.4) ~ A’T-z)X/z-’ , .4- ~ ,

aMf&krmi&e T by a tipk -g argument. (Note that for genus zero, we

kaTe Z(A) -. 47-3 as ia (1.11 ).) Under the shift p - p+p/a fbrp conslant,

tk ~ ia (4_14) dou ad change. The change in the action (4.10) corn=

btktam

sdBstitotiag iu (4.14) aad US.ag the -Bonnel formula &Sdz(&fi=\

tqgetber with tbe destity 6(A.r) = 6(x)/lAl giwes Z(.4) = e-Q~~lzO-~ Z(e-P.4).

Wemayaow ~@=.4, whiChredtS iu

2(.4) = A-Q@-’ z(1)= A~’-z)’/z -’ z(1) ,

and = coahru frotu (4.11) aod (4.13) that

(4.15)

Tk rmh rrprodu(-a ( 1.13). -hid we USA to rotnpare with the reult of LIN

- ud m UM&l rakulatiorI (recall that ? = - l/m for D = 1 – 6/111(111+ 1).

4.2. Drrurd iqrcmtors / dmmuwru UJJie&Ls

I’4ow we wish to deterruinc the efftwtive diuwnsiou of tirlr.ts aftrr coupliug

to gravity. Suppacse that 4. is some spiules primary held in a couformal tirhl

theory with conformal weight ~ = h(+e) = ~(40) before cuupl.iug LO gravity.

The gravitational ‘dre&rrg” can he viewed u a form of wave fuuctiou reuur-

tualization that akws +0 to couple to gravity. Tk tirmsvd q.wrator 4 = e’%

is required to have dimension [1,1) so that it caI be iutegratrd over t tIe surfa(.v

~ without bretiug couformd iuvaria.rrce. (TIIis is lbe s.aule argument UMVi

prior to (4.13) .ennine a). Recalling the formula (4.1?) for the couformal

weight of #@, we tind that ~ iY determined by the conultiou

b- }m-Q)=l- (4.16)

W7e may DOW~:iate a critical exponent h 10 the behavior 0( 1 hr ull(.-p,il,l

functioo of ● at fixed area ~,

F~(A) a &/Dw DX e
-s

6(Jdz~ &eaq -A) $dz( ~c~’% -.4’ “h

(4.1;)

This defin.itiou conforms LO Lhe standard convention LIMt h < 1 ,.orreslmucts 10

a rele-1 operator, h = 1 to ● marginal operator, aud h > 1 to au irrelcvalll

operator (and in puticular that relevmt operators led 10 douhimte in th~’

infrared, i.e. large are% limit).

To determine h, wc empioy the same scaling argunMUL that led LO (4. IJ).

We shift p - w + p/o with # = A on the right I.mud side of (4.17), to lid

Fc(.4) =
A- QNI’o-I+LVO

A-Qi/20-l
F*(I)= Adlafo(l) ,

3n
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{for whirh f < Q/?. am-i 3 -= Ozs D + –x). Fiially wr snhstitrrtr thr ah-n-r

rmrdt for .1 and th- salnr (4.13) for n into f4.18). and find’”
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