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0. Canned Diatribe, Introduction, and Apologies

Following the discovery of spacetime unomnaly cancellation in 1984 [1],
strieg theory has undergone rapid development in several directions. The early
hope of making direct coatact with coaventional particle physics phenomenol-
ogy has however long since disupated, and there 13 as yet no expenmental
program for finding even indirect manifestations of underlying string degrees
of freedom in mature [2]. The question of whether string theory is “correct” in
the pkysicai sense thus remains impossible to answer for the foreseeable future.
String thec 15ts nonetheless continue to be tantalized by the nchness of the the-
ory and by its natural ability to provide a consistent microscopic underpinning
for botk gauge theory and gravity.

One of the prime obstacles to our understanding of string theory has been
an imability to penetrate beyond its perturbative expansion. Qur understanding
of gauge theory is enoninously enhanced by having a fundamental formulation
based o= the principle of local gauge invanance from which the perturbative
expansion can be derived. Symmetry breaking and nonperturbative effects such
as wstantons admit a clean and intuitive presentation. In stnng theory, our

“lack of a fundamental formulation is compounded by our ignorance of the true

1

ground state of the theory. Roughly two years ago, there was some progress
[3- 5] towards extracting such nouperturbative informsation from string theory,
at least in some simple contexts. Tle aim of these lectures is to provide the
couceptual backgrouud for this work, and to describe some of its immediate
consequences.

In string theory we wish to perform an integral over two dinensional ge-

ometries and a sum over two di-censional topologies,
-S
Z~ z / DyDXe

where the spacetime physics (in the case of the bosonic string) resides in the

conformally invariant zction
Sx /d’{ VI 0. X" X" Gu(X; .

Here g, v run from 1,..., D where D is the number of spacetime dimensions,
G,.(X) is the spacetime metric, and the integral Dg is over worldsheet metrics.
Typically we write the worldsheet metric g,, = e®84, where p is known as the
Liouville mode. Following the formulation of string theory in this form (and
in particular following the appearance of [6]), there was much work to devdop
the quantum Liouville theory (some of which is reviewed in section 4 here}, and
conformal field theory itself has been characterized as “an unsuccessful attempt
to solve Liouville theory” [7]. Evaluation of the partition function Z above
without taking into account the integral over geometry, however, does not solve
the problem of iuterest, an.l moreover does not provide a systematic basis for
a perturbation senies in any known parameter.

The basic idea of [3-5] relied on a discretization of the string worldsheet to
provide a method of taking the continuum limit which incorporated simultane-
ously the contnibution of 2d surfaces with any number of handles. At one fowl
swoop, it was thus possible not only to integrate over all possible deformations
of a given genus surface (the analog of the integral over Feynman parameters for
a given loop diagram), but also to sum over all genus. This would in principle

free us from the mathematically fascinating but physically irrelevant problems
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of calenlatine conformal field theory correlation [unctions on surfaces of fixed
genns with fivesl modnli (objects which we never knew how to integrate over
modnli or sum over genns anyway). The progress, however, is limited in the
srnse 1hat the<e methods only apply currently for non-critical strings embedded
i dimensions D < 1 {or eritical strings embedded in D < 2), and the nonper-
turbative information even in this restnicted context has proven incomplete.
Pne to familiar problems with lattice realizations of supersymmetry and chi-
ral feriions. these methads have also resisted extension to the supersymmetric
case,

The developments we shall describe here nonetheless provide at least a
half-step in the correct direction. if only to organize the pertarbative expaiision
in a most conrice way. They have also prompted much useful evolution of
related continuim methods. Our point of view here is that string theories
rmbedided in I < 1 dimensions provide a simple context for testing ideas and
methods of cabrulation. Just as we would encounter much difficulty calculating
infinits dimensiona! fanctional integrals without some prior experience with
their finite dimensi-nal analogs [8]. progress in string theory should be aided
by experinientation with <vstems possessing a restricted number of degr=es of
freeddom,

These potes have been confined in content essentially to the lectures actu-
ally given. in order to keep them reasonably short and accessible. (Other review
tr{erences on the <ame general subject are [9,10]). This means that we stop well
<hort of <ome of the more interesting recent developments in the field (some of
which were covered by later lectaress at this school). including the application
of the cnitical D = 2 dimensi ;nal models to address issues of principle such as
tnpology change in 2d quantnm graviry. aad their relation as well to recent work
on [} = 2 blark holes in string theory. We shall present no formal conclusiors
here other than to note that the subjert remains in active development. and we
have tned at vanous points in the text to draw attention to issues in need of

1irther nnder<randing.

1. Discretized surfaces, matrix models, and the continuum limit

1.1. Discretazed surfaces

We begin by considering a “D = 0 dimensional string theory™, i.e. a pure
theory of surfaces with no coupling to additional “matter” degrees of freedom
on the string worldsheet. This is equivalent to the propagation of strings in a

non-existent embedding space. For partition function we take
-gA+
Z=E/‘Dgeﬂ LA (1.1)
h

where the sum over topologies is represented by the summation over h, the
number of handles of the surface, and the action consists of couplings to the
area A = [ /g. and to the Euler character x = ~fysR=2-2h

The integzal [ Dg over the metric on the surface in (1.1) is difficult to
calculate in general. The most progress in the continuum has been made via
the Liouville approach which we briefly review in section 4. If we discretize the
surface, on the other hand, it turns out that {1.1) is much easier to calculate,
evep before removing the finite cutofl. We consider in particular a “random
triangulation™ of the surface [11], in which the surface is constructed from
triangles, as in fig. 1. The triangles are designated to be equilateral,! so that
there is positive (negative) curvature at vertices i where the number N; of
incident triangles is more (less) than six, and zero curvature when N; = 6. The
summation over all such random triangulations is thus the discrete analog to

the integral [ Dg over all possible geometries,

Z /Dg — z . {1.2)

genus A . random
trisngulations

1 We point out that this constitutes a basic difference from the Regge calculns, in
which the link lengths are geometric degrees of freedom. Here the grometry is encoded

entirely into the coordination numbers of the vertices,

1



Fig. 1: A piece of a random tnangulation of a surface. Each of
the unaaguiar faces is deal to a three point vertex of a quastum
mechasical matnx model

The discrete counterpart to the infinitesimal volume element /g is 0, =
N./3, so that the total area |S| = ¥, o, just counts the total number of trian-
gles, each designated to have unit area {The factor of 1/3 in the definition of
0, is because each triangle has three vertices and is counted three times.) The
discrete counterpart to the Rica scalar R at vertex i is R, = r(6 — N,)/N;, so
that

/ﬁn ~ Y (- N/6)=2(V - JF)=2x(V - E+ F) =21y .

Here we have used the simplicial definition which gives the Euler character y
im terms of the toial number of vertices. edges, and faces V', E, and F of the
traagulation (and we have used the relation 3F = 2E obeyed by tnangulations
of surfaces, since cach [ace has three edges each of which is shared by two faces).

In the above, tnangles do not play an essential role and may be replaced by
any sct of pulygons. General random polygonifications of surfaces with appro-
priale fine tuning of couplings may, as we shall see, have more general cntical
bebavior . but can in particular always reproduce the pure gravity behavior of

trangulations 1o the coutinuum bmit.

1.2. Matriz models

We now demounstrate how the integral over geometry in (1.1) may be per-
formed in its discretized form as a sum over raudom triangulations. The tnck
15 to use a certain matrix integral as a generating functional for random tri-
angulations. The essential idea goes back to work [12] on the large N limit of
QCD, followed by work on the saddle point approximation (13].

We first recall the (Feynman ) diagrarumatic expausion of the (0-dimensional)

field theory integral®

(1.3)

/°° de —9*/2+ 20 /4!
r— 1 4
—oo V2K

where ¢ is an ordinary real number.® In a formal perturbation series in A, we

would need to evaluate integrals such as

An —.a2 2 a4\
- e v / (ﬁ—) . (1.4)
n! J, 4!
Up to overall normalization we can write
-9*[2 2k ** -9*2+Jy a* J*/2
e ") = a.’T e = m— ¢ (15)
' w J=0 J=o0

Since %e"z/z = Je’’/2, applications of 8/8J in the above need to be paired
so that any factors of J are removed before finally setting J = 0. Therefore if
we represent each “vertex” Ap! diagramunatically as a point with four emerg-
ing lines (see fig. 2b), then (1.4) simply counts the number of ways to group
such objects in pairs. Diagrammatically we represent the possible pairings by
counecting lines between paired vertices. The counecting line is known as the
propagator (p p) (see fig. 2a) and the diagrammatic rule we have described for

connecting vertices in pairs is kuown in field theory as the Wick expansion.

2 We apologize for this recapitulation of standard Feynman diagram techuology,
but prefer to keep these notes at least warginally accessible to the mathewatios
community.

3 The integral is understood to be defined by analytic contivnation to negative A
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(a) (b)
Fig- 2: {a) the smalar propagator. (b) the scalar foni-point vertex.

When the numb.cr of vertices n becomes large, the allowed diagrams begin
1o form a me<h reminscent of 2 2-dimensional surface. Such diagrams do not yet
have vnongh structure to specify a R'emann surface. The additional structare is
given by wiicning the propagators to ribbons (to give so-called “thick™ graphs).
From the standpoint of (1.3). the required extra structure is given by replacing
the scalar = by an V x V' hermitian matrix M*;. The analog of (1.5) is given

Ly adding inices and traces:

/P-n_\l’/?"_‘ e =03 -uM24uIM
Tu o - ¥ 77 a1, J=0
_ 9 a3 trJ2/2
= an;, oy, ¢ L,
(16)

where the sonree J*; is as well now a matrix. The measure in (1.6) is the

invariant d A = [[,4M"; [], . dReM’;dImM"*;, and the normalization is such

that f, e~"*M'i2 — | To calculate a qcantity such as

an —trM? /2
e

(tr M), (1.7)

wr again lay down n vertices (now of the type depicted in fig. 3b), and connect
the legs with propagators (M*; M*,) = §] 6} (fig. 3a). The presence of upper
and lower matrix indices is represented in fig. 3 by the doable lines® and it is
nnderstood that the sense of the arrows is to be preserved when linking together

vertices. The resulting diagrams are similar to those of the scalar theory, except

! This is the <ame notation emploved in the large N expansion of QCD [12).

that each external line has an associated index i, and each internal closed line
corresponds to a summation over an index j = 1,...,N. The “thickened”
structure is now sufficient to associate a Riemann surface to each diagram,

because the <losed internal loops uniquely specify locations and orientations of

b,
i

faces.

(a)

Fig. 3: (a) the hermitian matrix propagator. (b) the hermitian matrix four-point vertex.

To make contact with the random triangulations discussed earlier, we con-

sider the diagrammatic expansion of the matrix integral

~luM? 4 LteMP
d /dMe z & (1.8)

(with M an N x N hermitian matrix, and the integral again understood to
be defined by analytic continuation in the coupling ¢g.) The term of order ¢"
in a power scies expansion counts the number of diagrams constructed with
n 3pt vertices. The dual to such a diagram (in which each face, edge, and
vertex is associated respectively to a dual vertex, edge, and face) is identically
a random triangulation inscribed on some orientable Riemann surface (fig. 1).
We see that the matrix integral (1.8) automatically generates all such random
triangulations.® Since each triangle has unit area, the area of the surface is
just n. We can thus make formal identification with (1.1) by setting ¢ =
e~?. Actually the matrix integral generates both connected and disconnected

5 Had we used real symmetric matrices rather than the hermitian matrices M, the
two indices would be indistinguishable and there would be no arrows in the propaga-
tors and vertices of fig. 3. Such orientationless vertices and propagators generate an

ensemble of both orientable and non-onientable surfaces.
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surfaces. so we have wntten ¢4 on the left hand side of (1.8} As familiar from
fizkd theory. the exponential of the conuected diagramus generates all diagrams,
50 Z a3 defined above represents contributions ouly from: connected surfaces.
We see that the free cnergy from the matrix model point of view is actually the
partition function Z from tke 2d gravity point of view.

There & addivonal information contained in N, the size of the matnx.
If we change vasiables 3 — AfVN in (1.8), the matrix action becomes
N (- 3?4 gurM?), with an overall factor of ¥.* This normalization makes
it easy Lo count the power of N assocated to any diagram. Each vertex con-
tributes a factor of N, each propagator {edge) coatributes a factor of N !
(because the propagator is the inverse of the quadratic term), and each closed
loop (face) contritbutes a factor of .V due to the associated index summation.
Thus each diagram has an overall factor

.\rl'—E+F = MY = ‘V2~‘.Ih s (1_9)

where 1 is the Euler character of the surface associated to the diagram. We
obsierve that the value V = e” makes contact with the coupling 7 in (1.1).
In conclusion, if we take ¢ = e™? and N = ¢7, we can formally identify the
continuum limit of the partition function Z in (1.8) with the 7 defined in (1.1).
The mein< for (he discretized formulation is not sizooth, but one can unagine
how ai effective metric on larger scales could arise after averag.ng over local
uregulanities. In tke next subsection, we shall see explicitly how this works.
(Actually (1.8} antomatically calculates (1.1) with the measure factor in
(1.2} correcied w0 ¥ pls;p- wiere |G(S)] is the order of the (discrete) greup
of symmetries of the iriangulation 5. This is familiar from field theory where
diagramis x ' ° symmeiry result in an igcomplete cancellation of 1/a!s such as
ir (1.:) and (1.7). The symaetry group G(S) is the discrete analog of *he

nometry group of a continuun: manifold. )

$ Note that NV remains distzugusshed from the couphiug ¢ in the model, since 1t

ruters a> well wto the traces s1a the ¥ x % size of the watnx.

v

The graphical expansion of (1.8) enuinerates graphs as shown in tig. 1,
where the triaugular faces that constitute the randoru triangulation are dual to
the 3-point vertices. Had we instead used 4-point vertices as w fig. 3b, then the
dual surface would have square faces {a “random syuarnfication” of the surface),
and higher poiut vertices (gx/N*/27?)trM* in the matrix model would result
in more general “random polygouifications” of surfaces. (The powers of N
associated with the couplings are chosen so that the rescaling M — MVN
results in an overall factor of N multiplying the action, so that the argument
leading to (1.9) remains valid, and the power of N continues to measure the
Euler character of a surface constructed from arbitrary polygons.) The different
possibilities for generating vertices constitute additional degrees of freedom that
can be realized as the coupling of 2d gravi'y to different varieties of watter in

the continuum Llimit.

1.3. The continuum lmit

From (1.9), it follows that we may expand Z in powers of N,
Z(9) = N'Zo(9) + Zi(9) + N2 Za(9) + ... = Z N7 Zug) . (L10)

where Z, gives the coutribution from surfaces of genus h. In the conventional
large N limit, we take N — oo and only Zj, the planar surface (genus zero]
contribution, survives. Z, itself may be expanded in a perturbation series in

the coupling ¢, and for large order n behaves as (see [14] for a review)

Zo(g) ~ Y _n " gl9 )" ~ (9. - 9)* 7. (1.11)

n
These senies thus have the property that they diverge as g approaches some
critical coupling g.. We can extract the continuum limit of these surfaces by
tuning ¢ — g.. This is because the expectation value of the area of a surface is

given by

bi
()= () = 5w Zulg) ~

(recall that the area is proportional to the nuniber of vertices 2, which appears

as the power of the coupling in the factor ¢" associated o each graph). As
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4 —= q.. %r ~ee thal 4 — ~ so that w= may rescale the area of the individual
tnangi~ 1 sero. thus @iving a continnum surface with finite area. [ntuitively,
i~ tnming the coupling t *he point where the perturbation series diverges the
mtegral ircomes dominated by diagrams with infinite numbers of vertices, and
this 15 previsely what we need to define continuum surfaces.

There is no direet proof as yet that this procedure for defining continuum
~urfacr is “carrect™, Le. that it coincides with the continuum definition (1.1).
Wi are abie. however, to compare properties of the partition function and corre-
fatiin fzre tons caleulated by matrix model methods with thase (few) properties
that van be cal-ulated directiy in the continuam (for a review, see {15]). This
gives implicit corfirmation that the matrix model approach is sensible and gives
reason to believe other results derivable by matrix model techniques (e.g. for
Ingher genns) that are nat obtainable at all by continuum methods.

One of 1he properties of these models derivable via the continuum Liouville
appraach is a “cntical exponent™ 9. defined in terms of the arez dependence of
the partition fiin: tion for surfaces of fixed large area A as

Z(A) ~ A2t (1.12)

To anticipate soze relevant ;~<ults, we recall that the unitary discrete series of
conformal field throries is labelled by an integer m > 2 and has central charge
D =1-6/m(m+ 1) (for a review, see e.g. [16]), where the central charge is
noraalized such that D = 1 corresponds to a single free boson. If we couple
couformal field theories wiith these fractional values of D to 2d gravity, the

contisizam Lioaville theory prediction for the exponent 7 is (see section 4)

l L4
-,:E(n-l-hD-l)(D-%)):—%. (1.13)

The case m = 2. for example, corresponds to D = 0 and hence v = -1 for
pur= zravicy. The next case m = 3 correspondsto D = 12, ie. to a 1/2-boson
ot fermion. This is the conformal field theory of the critical Ising model, and
¢ learn from (1.13] that the Ising model coupled to 2d gravity kas 4 = — %
Notice that (1.13) cerases to be sensible for D > 1. This is the first indication

of a “harner™ at D = | which will reappear in various gnises in what follows.

I

In section 2 we shall present the solution to the matrix model formulation
of the problem, and the value of the exponent v provides a coarse means of
determining which specific continuum model results from taking the continuum
limit of a particular matrix model. Indeed the coincidence of y and other scaling
exponents (to he defined in section 4) calcu’ated from the two paoints of view
were originally the only evidence that the continuum limit of matrix models was
a suitable definition for the continuum problem of interest. In the past year, the
simplicity of matrix model results for correlation functions has spusrred a rapid
evolution of continuum Liouville technology so that as well many correlation

functions can be computed in both approaches and are found to coincide.’

1.4{. The double scaling timit

Thus far we have discussed the naive N — oo limit which retains only

planar surfaces. It turns out that the successive coefficient functions Z,(g)

1 By way of very superficial overview: following the confirmation that the matrix
model approach reproduced the scaling results of [17], some }-point couplings for
otder parameters at genus zero were calculated in (18] from the standpoint of ADE
face models on fluctnating lattices. The connection to KdV (reviewed in section 3
here) was made in [19], and then general correlations of order perameters (not yet
known in the continuum) were calculated in [20]. The first step in the calculation of
continuum correlators was provided in {21], where the free field formulation by zero
mode integration of the Liouville field was established. This was employed in [22]
together with a necessary analytic continuation of the scaling parameter to calculate
some continnum correlation functions: the incorporation of the Liouville mode was
shown to cancel the ghastly assemblage of I'-functions familiar from the conformal
field theory result and reproduce the relatively simple matrix model result. Additional
genus zero correlation functions for D < 1 were then computed in [23). The genus
one partition function for the AD series was calculated via KdV methods in [20],
and was confirmed from the continnum Liouville approach in {24]. For D = 1, the
matrix model approach of [25,26] was used in [27] (also [28,29]) to calculate a variety
of correlation functions. These were also calculated in the collective field approach
[30§ ~here np to 6-point amplitudes were derived, and found to be in ngreement with
the Liouville results of [23].



im (1.10) as well Jiverge at the same cnitical value of the coupling ¢ = ¢, (Lhis
should not be surprising since the divergence of the perturbation series is a local
phenomenon and should not depend on global properties such as the effective
gemus of a diagram). As we shall see in the next section, for the higher genus

coutributions (1.11) s generalized to
Zu(g) ~ Y _n TN (glg )" (g, — g)tm TN (1.14)

We see that the contributions from higher genus are enhanced as g — g,. This
suggests that if we take the limits N — oc and ¢ — g, not independently,
but together in a correlated manner, we may compensate the large N high
geaus suppression with a ¢ — g enhancement. This would result in a coherent
coatribution from all genus surfaces [3-5).

To see how this works explicitly, we write the leading singular piece of the
Za(g) as

Za(g) ~ Ialg — g.) 272

Then in ierms of

x'=N(g-g)2 "7, (1.15)

the expansion (1.10) can be rewntten®

Z=xotf 4w fat...=) &*Ef (1.16)
A

The desired result is thus obtained by taking the Limits ¥ — oo, ¢ — g, while
holding fixed the “renormalized”™ stnng coupling & of (1.13). This is known as
the “double scaling Linnit”.

® Suxtly spcaking the Brst two terums here have additional won-universal pieces

that werd (o be subtracial off.

13

2. Al genus partition functions
2.1. Orthogonal polynomaals

In order to justify the claiins made at the end of the previous section, we
introduce some formalisin to solve the matrix models. We begin by rewriting

the partition function (1.8) in the form
N .
- . - V A,
2 =/dMe V(M) =/HdA. A%(A) e MY R
=1

where we now allow a general polynomial poteniial V(Af). In (2.1), the A,'s

are the N eigenvalues of the hermitian matrix M, aud
A() =[] -2 (2.2)
i<y

is the Vandermounde determinaut.® Due to antisymmetry in interchange of any
wo eigenvalues, (2.2) can be written A(A) = det A ™! (where the normalization

is determined by comparing leading terms). In the case N = 3 for example we

have .
1 A A

(A3 = A2)(Az =M )(Ag—A)=det | I Ay A3

Ay A3

® (2.1) may be derived via the usual Fadeev-Popov method: Let Uy be the unitary
watrix such that M = UlAU;, where A is a diagonal matrix with cigenvalues A, The
right band side of (2.1) follows by substituting the definition 1 = de S(UMUY -
A) A?(A) (where de = 1). We first perform the integration over M, and then U
decouples due to the cyclic invariance of the trace so the integration over U is trivial,
loaving ouly the integral over the eigenvalues \, of A. To determine A(A), we uote that
only the infinitesimal neighborbood U = (1 + T)J, contributes to the U integration,
s0 that

1= /dU S(UMU' — A) A*(N) =/dT s(IT. Al) AT () .

Now [T, Al., = T.,(A, = X,), 50 (2.2) follows (up to a sign) since we nategrate over both

real and imaginary pasts of the off diagonal T,,'s.
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The now-stapdard method for solving (2.1) makes use of an infinite set of

polrnomals P (). orthogonal with tespect to the measure

/‘ dr e N P (A Pa(A) = hnbom - (2.3)

~x

The I’,'s are known as orthogonal polynomials and are functions of a single
real varable A, Their normalization is given by having leading term P,(A) =

A" + .. hence the constant b, on the r.h.s. of (2.3). Due to the relation
A(A) = det M7 =det P;_()) (2.4)

{recall that arbitrary polynomials may be built up by adding linear combi-
nations of preceding eolumas, a procedure that leaves the determinant un-
changed). the polynomials P, can be employed to solve (2.1). We substitute
the determinant det Pj_ (X)) = T{(=1)P[1, Pi.—1(As) for each of the A(\)’s
i (2.1). The integrals over individual A;'s factorize, and due to orthogonality
the only contributions are from terms with all Pi(A;)’s paired. There are N!
snch terms so (2.1) reduces to

7 N-1 N-1
e =N ri=Nnd [T 1. (2.5)
=0 k=1
where we have defined fi = hefhe .
In the naive iarge N limit (the planar limit), the rescaled index k/N be-
comes a continuous variable £ that runs from 0 to 1, and fi/N becomes a
continuous function f(£). In this limit, the partition function (up to an irrele-

vant additive constant) reduces Lo a simple one-dimensional integral:
1 1 !
vZ= ;2"2(1 ~k/N)infu~ | dE(1-€)Ing(©). (2.6)

To derive the functional form for f(£). we assume for simplicity that the
potential V(1) in {2.3) is even. Since the P;’s from a complete set of ba-
sis vectors in the space of polynomials, it is clear that AP,(A) must be ex-

nressible as a linear combination of lower Pi’s, AP,(}A) = 2:‘:0' a; Pi(X) (with
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a, =h’ fo"'AP,, ). In fact, the orthogonal polynomials satisfy the simple

recursion relation,

'\Pn=Pn+I+rnPn—|~ (27)

with r, a scalar coefficient independent of A. This is because any term propor-
tional to P, in the above vanishes due to the assumption that the potential is
even, fe"",\ P, P, = 0. Terms proportional to P; fori < n -1 also vanish
since [e~"' P A P; = 0 (recall AP is a polynomial of order at most P;;; which
is orthogonal to P, fori + 1 < r).

By considering the quantity P.AP._; with X paired alternatcly with the

preceding or succeeding polynomial, we derive
/e-" PoAPo v =rohay =ha.

This shows that the ratio f, = h,/h,_; for this simple case!? is identically the
coeficient defined by (2.7), fn = rn. Similarly if we pair the A in P! A P, before

and afterwards, integration by parts gives
nh, = /e°" P.AP, = /e-" PiraPay = r,,/e-V vV'P.P._y. (28)
This is the key relation that will allow us to determine r,.

2.2. The genus zero partition function

Our intent now is to find an expression for f, = rn and substitute into

(2.6) to calculate a partition function. For definiteness, we take as example the

potential .
1 by A
=—(Ny 34—},
V() 2g( + 5 +sz) 29)
ST '
with denivative gV'(A) =2+ 27v- + 361—\,? .

The right hand side of (2.8) involves terms of the form Je VA 1P, P,y
According to (2.7). these may be visualized as “walks” of 2p — 1 steps (p — 1

1% 1n other models, e.g. multimatrix models, fo = ha/ha_y has a more complicated

dependence on recursion coefficients.
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steps up andd p steps down) starting at n and ending at n — 1, where each step
down from: m to ;n — 1 receives a factor of r,,, and each step up receives a factor
of unitv. The total number of such walks is given by (2’:]), and each results
in a fina. factor of h,_; (from the integral [e™Y P,_, P._;) whici combines
with the r,, to cancel the h, on the left hand side of (2.8). Tor the poteutial
(2.9), (2.8) thus gives

2 k1)
gn=rn.+ ﬁr,.(r,.ﬂ +rat+ra )+ ﬁ‘z_(m rrr terms) . {2.10)

(The 10 rrr terms start with ro(r2 + 72, +r2_, +...) and may be found e.g.
in [31).)

As mentioned before (2.6), in the large N Lmit the index n becomes a
continuous variable £, and we have r,/N — r(£) and 7,5 /N — r(€ x ¢),
where = = 1/N. To leading order in 1/N, (2.10) reduces to

g€ =1 4 6r% +306r° = W(r)

(2.11)
= ge + PWle=r (r(E) - 7) #

In the second line, we have expaided W {-) for r near a cntical point r. at which
W'),=,. = 0 (which always exisis without any fine tuning of the parameter b),

and g. = W(r.). We see from (2.11) that

r—re~ (g — 9€)'/?.
(For a general potential V(A) = & 30 a, A? i (2.9), we would have W(r) =
EP aP:—;z:{_l_;?"! r2p-|_)

To make contact with the 2d gravity ideas of the preceding section, let us
suppose more generally that the leading singular behavior of f(£) (= r(€)) for
large N is

&) — fe ~ (9. — 9€)7" (712)

for g near some g, (and § near 1}. (We shall see that v in the above . audes

with the critical exponent 5 defined i (1.12).) The behavior of (2.6) for ¢ near
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g. is then

1 ! 1 1
72~ [ a6 - 907 ~ -0 - 907+ [ deto - 907

~ (yc - g)-7+2 ~ Z "7_:’(g/yc)" .
(2.13)
Comparison with (1.12) shows that the large area (large u) behavior identifies
the exponent 7 in (2.12) with the critical exponent defined carlier. We also note
that the second derivative of Z with respect to r = g. — ¢ Las leading singular

behavior
2" ~(9.-9) "~ f(1). (2.14)

From (2.12) and (2.13) we see that the behavior in (2.11) implies a critical
exponent ¥ = ~1/2. From (1.13), we see that this corresponds to the case
D = 0, i.e. to pure gravity. It is natural that pure gravity should be present for
a generic potential. With fine tuning of the parameter b in (2.9), we can achieve
a higher order critical point, with W'|,=,, = W"|,=,, = 0, and hence the this.
of (2.11) would instead begin with an (r — r.)? term. By the same argumen
starting from (2.12), this would result in a critical exponent 7 = —1/3. With
a general potential V(M) in (2.1), we have enough parameters to achieve an
m'? order critical point [32] at which the first m — 1 derivatives of W(r) vanish
at r = r.. The behavior is then r — r. ~ (g, — ¢£)'/™ with associated critical
exporent 7 = —1/m. As anticipated at the end of subsection 1.2, we sce that
more general polynowmial matrix interactions provide the necessary degrees of

freedom to result in matter coupled to 2d gravity in the continuum hmit.

2.3. The all genus partition function

We now search for another solution to (2.10) and its generalizations thit
descnibes the coutribution of all genus surfaces to the partition function {2.6).
We shall retain higher order terms in 1/N in (2.10) so that e.g. {2.11) instead
reads

gE =W(r)+2r(§)(r({ +e) +7(§ — =) - 2r(¢))
= ge + I ar (FO) = ) + 200 (1€ + ) Hr(E - ) - 20(E) -
(2.15)
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As snggested at the end of section 1, we shall simultanecously let N — o0 and

¢ — 4. in a particular way. Since g— g, has dimension {length]?, it is convenient

1o introduee a parameter a with dimension length and let g— g, = k~*/%a?, with

@ — . Our ansatz for a coherent large N limit will be to take ¢ = 1/N = a%/2
<o that the quantity ' = (g — ¢.)*/* N remains finite as g—g.and N — oo.

Moreover since the integral (2.6) is dominated by £ near | in this limit, it is
convenient to change vanables from £ to z, defined by g.— g€ = a?z. Our scaling
ausatz in this region is r(€) = r. + au(z). If we substitute these definitions into

2

{2.11). the leading terms are of order a2 and result in the relation u? ~ z. To

inclnde the higher denvative terms. we note that

02 32
rlE+<)+r(E—<)=2r(€) ~ fza—E: = aa—zz—au(:) ~a

1un ,
where we have nsed <(3/0€) = —ga /2(3/0z) (which follows from the above
¢hange of variables from £ to :). Substituting into (2.15), the vanishing of the

coeflicient of o7 implies the differential equation
s=u? - tu” (2.16)
3 :

(after a smtable rescaing of w and ). In {2.14), we saw that the the second
denvative of the partition function (the “specific heat™) has leading singular
Lehavior given by f(£) with £ = 1, and thus by u(z) for : = (9—g.)/a? = /5,
The solution 1o (2.16) characterizes the behavior of the partition function of
pure gravity ta all orders in the genus expansion. (Notice that the leading
term is w ~ :'/? so after two integrations the leading term in Z is 2%/2 = g2,
consistent with (1.16).)

Eq. (2.16) is known in the mathematical literature as the lainlevé | equa-
tion.  The perturbative solution in powers of 27%2 = x? takes the form

w=z:""21 =%, me:""?) where the uy are all positive.'! For large k, the

"' The first term. i e the contribution from the sphere. is dominated by a regular
rart which has opposite sign. This is removed by taking an additional derivative of u,
giving a seties all of whoar terms have the same sign — negative in the conventions of
1216) The othee solution. with leading term —z'/? has an expansion with alternating

sign which 1s pr~umably Borel summable, but not physically relevant.
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ug go asymptotically as (2k), so the solution for u(z) is not Borel summable
(for a review of these issues in the context of 2d gravity, see e.g. {33]). Our ar-
guments in section 1 show only that the matrix model results should agree with
2d gravity order by order in perturbation theory. How to insure that we are
studying nonperturbative gravity as opposed to nonperturbative matrix models
is still an open question. Some of the constraints that the solution to (2.16)
should satisfy are reviewed in [34]. In particular it is known that real solutions
to (2.16) cannot satisfy the Schwinger-Dyson (loop) equations for the theory.

In the case of the next higher multicritical point, with & in (2.11) adjusted
so that W' =W" =0atr = r,, we have W(r)~ g + %W’"'!,:,.’(r —r ) +...
and critical exponent ¥ = —1/3. In genrial, we take g — g. = k¥ (1=-2g2 and
£ = 1/N = a?~7 so that the combinatic. g —g.)'""/?N = &7} is fixed in the
limit @ — 0. The value £ = 1 now corresponds to z = x?/(7~2), so the string
coupling &2 = 2772 The general scaling scaling ansatz is r(§) = rc + a~27u(z),
and the change of variables from £ to z gives £(3/9¢) = —ga~7(3/0z).

For the case v = —1/3, this means in particular that r(€) = r. + a?/7u(2),
x? = z77/3 and €(3/3€) = —ga'/ §. Substituting into the large N limit of

(2.10) gives (again after suitable rescaling of u and z)
z=u - uu” - %(u')2 +cu", (2.17)

with @ = 5. The solution to (2.17) takes the form u = z'/*(1+ 3, ue z77*/3).
It turns out that the coefficients uy in the perturbative expansion of the solution
to (2.17) are positive definite only for a < i’iv so the 3" order multicritical point
does not describe a unitary theory of matter coupled to gravity. Although from
(1.13) we see that the critical exponent ¥ = —1/3 coincides with that predicted
for the (unitary) Ising model coupled to gravity, it turns out {31,35] that (2.17)
with @ = 1]_0 instead describes the conformal field theory of the Yang Lee edge
singularity (a critical point obtained by coupling the Ising model to a particular
value of imaginary magnetic field) coupled to gravity. The specific heat of the
conventional critical Ising model coupled to gravity turns out (sce the next
section here) to be as well determined by the differential equation (2.17), but

- itha=2
instead with a = 37



For the general m'* order critical point of the potential W (r), we have seen
that the associated model of matter coupled to gravity has cnitical expon=ut
7 = —1/m. With scaling ansatz r(£) = r. + a*/™u(z), we find leading behavior
w~zmand Z ~ 22Y™ = k72 a5 expected). The differe tial equation that
results from substituting the double scaling behaviors given before (2.17) into
the generalized version of (2.10) turns out to be the m'* member of the KdV
hierarchy of diflerential equacions (of which Painlevé I results for m = 2). Iu
the next section, we shall provide some marginal insight into why this structure
emerges.

In the nomenclature of {36], so-called “minumal conformal field theories”
(those with a finite pumber of primary Relds) are specified by a pair of relatively
prime integers (p,q). (The unitary discrete series is the subset specified by
(P,g) = (m + 1,m).) After coupling to gravity, these have critical exponent
v = -2/(p+q-1). In general, the m** order multicritical poiut of the one-
matrix model turns out to describe the (2 - 1,2) model (in general non-
unitary) coupled to gravity, so its critical exponent ; = —1/m happens to
coincide with that of the m*® member of the unitary discrete series coapled to
gravity. The remaining (p, q) models coupled Lo gravity can be realized in terms
of multi-matnx modeks (to be defised in the next section).

3. KdV equations aad other models

3. 1. KdV eguations

We pow wish to descnbe seperficially why the KdV hierarchy of differential
equations plays a role in 2d gravity. To this end it is convenient to switch from
the baus of orthogonal polynomials P, employed in the previous sectior to a
basis of orthonornnal polynomials I, (A) = P,(A)/ vha that satisfy

f e N Nn =b,m - (3.1)

In terms of the I, eq. (2.7) becomes

h, h,_ R
lll,.‘—‘ y h?lun“"rn h ! nu—I:\,ru+lnnfl+'./r—unn—l
= inn nnl -

In matnx notation, we write this as Al = @I, where the matnx Q has com-

ponents

Qnm = Jf_mém.n-'-l + \/7'_1:6nl+l,rl - (32)

Due to the orthonormality property (3.1), we see that f1,‘VAH,. M, = Quwn =
Qmn, and Q is a symmetric matrix. In the continuum hmit, Q will therefore
become a hermitian operator.

Tc see how this works explicitly {19,37], we substitute the scaling ansatz

r(€) = ro + a¥*’™u(z) for the m'® multicritical model into (3.2),

-] 8
£ —cZ
8

Q@ — (rc +a¥/™u(2))'?e e (re +a*/™u(z))'7?.

With the substitution E% — —ga'/"'f;, we fiud the leading terms

al/m

Q= 2r:/z + (v + res?0?) 3-3)

Ve
of which the first is a pon-universal constant and the second is a hermitian 2"
order differential operator.

The other matrix that naturally arises is detined by differentiation,

3
=M, = Apelln , 3.4
aA"n Anmll (34)

and automatically satisfies [A,Q] = 1. The matrix A does not have any partic-
uiar symmetry or antisyminetry properties so it is convenient to correct it to
a matnix P that satisfies the same commutator as A. From sur definitions, 1t

10“0!!3 tha.t
0— —(“,. nme_v) = -‘l+.‘l’r - ",(Q) R
aA

where we have differentiated term by term and used fe‘VA‘ 0.0, = (QYm-
The matrix P = A - %V'(Q) = %(.—l — AT) is therefore anti-symmetric and
satisfies

[PQ]=1. (3.5)
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Tn determune the order of the differentiai operator @ in the continuum
bt let ns assume for example that the potential vV is of order 27, je. V7 =
Tl ame A7 Form > ntheintegral Amn = fe "ML 20, = fe V171,11,
mav he nonvanishing for m —n < 22 - 1. Taat means that P,,, # 0 for
m —ni <27 - 1_and thns has enough parameters to result in a (2¢ — 1)™ order
Aiflerential operatorin the continnum. The single condition W’ = 0 resuits in P
rnnevd 1o a 3™ order ap-rator. and the ¢ — 1 conditions W/ = ... = -V =
Alow P to be realized as a (27 — 1)* order differential operator. In (3.3).
wr <= that the umiversal vart of Q after suitable rescaling takes the form
1} = d° = x. For the simple critical point 1" = 0, the continuum limit of P is
the antihermitian operator I = 47 — 3{n.d}. and the commutator

1=[P.Q)= 1R, = (g.?- %u) (3.6)

iv #2s1ly intrgrated with respect to = to give an equation equivalent to (2.16).
ke stning ~quation for pure gravity. In (3.6). the notation R, is conventional
for the first memb rof the ordinary KAV hierarchy. The emergence of the KdV
hierarchy in this context is due to the natoral occurrence of the fundamental
~ommntator relation (3.5). which also occurs in the Lax representation of the
KA\ equations. | The topological gravity approach has as well been shown at
lrngth to be eqnivalent to KAV for a review see |38].)

In general the dlifferential equations
[P.Q)=1 (3.7)

tkat foliow from (3.5) may bhe determined directly in the continuum. Given
an operator Q. the differrntial operator P that can satisfy this commutator is
ronstructed as a “fractional power™ of the operator Q.

Before showing how this construction works. we first expand shghtly the

rlass of masdels from single matrix to multi-matrix models. The free energy of
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a particular (q — 1)-matrix model, generalizing (2.1). may be written [39)

! —t ' V(M) e MM,
Z=1n /H.m e d =

_ A('" + G Sn) fn)
i=1l.q-1
e N

A(Ag-1) s

(3.8)
where the M; (fort = 1,....¢ — 1) are N x N hermitian matrices, the Af"’
(x = 1,...,N) are their eigenvalues, and A();) = naq,(,\f-"' - A i the
Vandermonde determinant. The result in the second line of (3.8) depends on
having r;’s that couple matnices along a line (with no closed loops so that the
integrations over the relative anguiar variables in the M;’s can be performed.)
Via a diagrammatic expansion, the matrix integrals in (3.8) can be interpreted
to gencrate a sum over discretized surfaces, where the diffcrent matrices M;
represent ¢ — 1 different matter states that can exist at the vertices. The
quantity Z in (3.8) thereby admits an interpretation as the partition furction
of 2d gravity coupled to matter.

Following [39]. we can introduce operators @Q; and P, that represent the
insertions of A; and d/a); respectively in the integral (3.8). These operators
necessarily satisfy [P;,Qi] = 1. In the N — oo limit, we have seen (following
(19]) that P and Q become differential operators of finite order, say p.q respec-
tively (where we assume p > ¢), and these continue to satisfy (3.7). In the
continunm limit of the matrix problem (i.e. the “double™ scaling limit, which
here means couplings in (3.8) tuned to critical values), @ becomes a differential

operator of the form

Q=d%+ {vg_2(z).d" 2} + - 4 209(2), (3.9)

where d = d/d:. (By a change of basis of the form Q@ - f!'(:)Qf(z), the
coefficient of d*~' may always be set to zero.) The continaumn scaling limit
of the multi-matrix models is thus abstracted to the mathematical problem of

finding solutions to (3.7).



The difervatial eyuations (3.7) may be constructed as follows. For p.g
relatively pnme. a p'* order differential operator that can satisfy (3.7) is con-
structed as a fractional power of the operator @ of (3.9). Formally, a ¢** root
may be represented within an algebra of formal pseudo-differential operators
(see. e.g- [40) as

Qll':d+2{¢..d-'} , (3.10)
=10
where d7! is defined o satsfy d ™' f = Z;";.(—l){[‘”d"". The differential

equatioas descnbung the (p, ¢) minimal model coupled to 2d gravity are given
by
[@/%, Ql =1, (3.11)

where P = ’/? indicates the part of Q#/ with only ron-negative powers of d,
and is a p'* order differential operator.

To illustrate the procedure we reproduce now the results for the cne-matnx
models. which can be used o generate (p, ) of the form (21 - 1,2). From (3.3),
these models are obtained by taking Q to be the hermitian operator

Q=AK=d*-4u(z). (3.12)

The formal expansion of 7 ''% = K*~ '/ (ag aoti-hermitian operator) in pow-
et> ol d s given by
2y —
KW = g¥-t # {e.d¥ )+ ... (3.13)
(where oaly symme:nied odd powers of d appear 1n this case). We now de-

compase K* ' 2= K1Y 4 K'Y where KU'VP =g 4

»os-negalive powers of d. and the remainder S

contans ouly

bas the expansioa

K =Z {rzl_l_d—.z.-nl ={Ri.d") +Od )+ ... (3.14)
=1

Here we have wlentiied Ry = ¢, as the Bt term o the expansion of K277
For A' 2. for example. we bBnd l\", f=dand B, = -a/d
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The prescription (3.11) with p = 21 - 1 corresponds here 1o calculating the

commutator [l\':,' 1z

,K]. Since K’ commutes with K'~'/*, we Lave

(&' K) = (A, K517 (3.15)

But since A begius at d?, and siuce from the Lh.s. above the commutator can
have only positive powers of d, ouly the leading (d ') tern from the r.hs. can

contribute, which results in
(K3 ' K] = leading piece of [A,2R,d ") = 41; . (3.16)
After integration, the equation [K‘;'/z. R} =1 thus takes the simple form
cRifu) ==, (3.17)

where the coustant ¢ may be fixed by suitable rescaling of = and « (enabled by
the property that all terms in R; bave fixed grade, namely 20).

The quantities R; in (3.14) are easily seen to satisfy a simple recursion
relation. From A'*'/2 = KR'-V/2 = K1"V/2K we find

R | . g A1/
R - i(Ai K+ KKV 4 Rea)

Commuting both sides with A" and using (3.16), suaple algebra gives [41]
1 1, )
R, = B - wR - SR (3.1%)

While this recursion formula only determines K. by demanding thao the

R; (1 #0) vauish at ¥ = 0, we obtain

1 1 J 1,
Re=3 == fa= 56" 16" 3
3 ? " 7 | R o
H;:—s—'ju‘+:—ﬁ(u. +%u )_6—4.‘ !
We summanze as well the tirut few l\"{ '/2,
1z 3/7 s :_’
KN, =d, K, =d 4|u.1||.

(320

+

‘\‘s/: = ds - :—;(u,-l"l + TJG {(3“2 + u”'_lli

20



\fter 1~ aling. wv preognize By in 13190 as eq. (2.17) with n = |I_o Le.

thie ~vmation for the (25) model. In 2eneral. the aquations determuied by
37t for general poq charactenze the partition function of the (p. ¢} mimmal
memlel tmentinned at the enil of section 2) roupled to gravity. To realize these
cquatons< in the continanm himit tarns ont [42.43] to require only a two-mainix
meuld of the type {3.8). The argnment given after (3.5) for the one-matnix
raswr s easily generalized to the rermr<ion relations for the two-matnx case and
~hoes that for high enongh order potentials, there are enough couplings to tune
he matric~ I* and Q to become p'® and ¢'* order differential operators. In
<nimertion T 2. we chall show how t« ccalize a D = 1 theory coupled to gravity
in terms of a two-matrix model. In [44]. it is argued that one can as well realize
A wwle canery of D < | theones by means of a one-matrix model coupled to an

~xternal porential.

T (MArr moddrls

As a speeific example of a two-matrix model. we consider

z U2+ V22UV + L(eF LY 4PV
i -/'ll'dl'r “ ‘ S e (3.21)

wherr 7 ind V7 >re hermitian 'V x ¥V matrices and H is a constant. In the dia-
erammatic exparsion of the right nand side. we now have two different quartic
verticr< of the tspe depicted in fig. 3b. corresponding to insertions of {'* and
V"', The propagator is determined by the inverse of the quadratic term.

(L 7)==

W+ <re that donble linex ronnecting vertices of the same type (either generated
br 17 or V') reveive a factor of 1/(1 — ). while those connecting U* vertices
to 1* certices reerive a fartor of /(1 — 7).

This is identicalls the «trmrtnre pecessary to realize the Ising mo+del on a
ramdom latties. Recall that the Ising model is defined to have a spin 5 = 11
ar rarh ate of a lathiee. with an interactior 7,7, between nearest neighbor

s-*e< 713}, This interastion 1akes one valne for eqnal spins and another value
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for upequal spims. Up to an overall additive constant (o the free cnergy. the

diagrammatic expansion of (3.21) results in the 2d partition {unction

5 Z z P‘,Z('J)”'”,+”Z'n'
spin

lattires
roafiguratine

where H is the magnetic field. The weights for equal and unequal neighboring
spins are e*”_ so fixing the ratio ¢2? = 1/c relates the parameter c in (3.21) to
the temperature 3. It turns out that the Ising model is much easier to solve
saummed over random lattices than on a regular lattice, and in particular is
solvable even in the presence of a magnetic field. This is because there is much
more symmetry after coupling to gravity, since the complicating details of any
particular la‘tice (e.g. square) are eflectively integrated out.

We briefly outline the method for solving (3.21) (see [45.31,35] for more
details). By methods similar to those used to derive (2.1), we can write (3.21)

in terms of the eigenvalues r; and y; of U and V',
-W(z;.y
ez = /Hd:.-d';e (i) A(r) A(y) .

where W(z;.5,) = 22 + 9! - 2cxiyi + &(eP 1! + e Hy!). The pulynomials we
define for this problem are or:hogonal with respect to the bilocal measure

/dzdy e WP P (1)Qum(y) = hnbam

(where P, # Q. for H # 0). The result for the partition function is identical

to (2.3),
eZ o:Hh.-fxnf..N" .
and the recursion relations for this case generalize (2.7),

TP = Pas1 +taPa i+ 80 Pacs .
,Qu(,) = Qm+| + qm Qm-l +tm Qm-l .

We still have f, = h,/h,_;. and f. can be determined in terms of the above

recursion coefficients (althongh the formulae are more complicated than in the
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oRe-MALNX cave). After we subntitute the scaling ansatze described in subsec-
uoa 2.3, the formula for the scaling part of f 15 denved via straightforward
algebra. The result is that the specific heat ¥ x Z” is given by (2.17) with
a= 5.

Other coaventional statbtical mechanical models can be formulated on ran-
dom laitices and solved in the contimaum limit. The ADE face models (with
D < 1), foc example, bave been considered in [18]. One way of formulating
D = 1 n o gemeralize (3.8) 10 an infinite line of matnces. In dual form,
this s equivaleat Lo sinags propagating oa a arcle of finite radius (see e.g.
[25.46]). Another formulation involves letting the index s specifying the matrix
A, become a coatinuous index ¢t € (—oc,oc). In this limit we trade off matnx
quastun mechauics for a field theory of matrices theory A(t). This is a prob-
lem that was origisally solved in [13], and was used to amalyze 2d gravity at
geans zero ia [15] and was then applied to higher genus startiag iu [25,26]. A
coasectioa to Licarville theory was poiated out in [17], and carried further by
the free fermioa and collective Seld formulations of [3C

Yet another means of lormulating 2d gravity coupled to D = | matteris viz
the 8- vertex model. which remormalizes at cniticality (the 6-vertex model) onto a
single bosoan at fimite radius '? Since this has ot been treated in the literature,
we give a quick descriptioa of the formulation. The simplest vertex models are
those for which the degrees of freedom are (two-state) arrows that Live oun hnks,
and are defined oa lattices which have four hnks meeting at each vertex. Each
possible arrow coafiguration at a vertex is given a statistical weight, and the
parution function is given by samming over all arrow configurations, with each
asugeed an overall weight equal to the product of the statistical weights over
the vertuces. [n the 8- vertex model, the vertices are restricted to the set of eight
with an even aumkb ~r of arrows both incoming and outgoing. In the 6-vertex
model. the soorce and sunk (all boar arrows catgoing or incoming) are excluded.

12 Fur am vverview gearad towards stnog/partale physiosts, see c.g. 48] Un a
regular lattce. the radims r of the busva (13 coaventions 1a whuh r = 1v2 1> the
wif-dmal st} and the conrentional waghts ¢ b ¢ of the 6 vettex modd asc relatad
by cim Zorf = ta’ ¢ b - ) 2ub

which leaves the four distinct rotated versions of fig. 4a, and the 1wo distinet

rotated versions of fig. 4b.

(a) (b)

Fig. 4: (a) vertex with weight a.  (b) vertex with weight o

The coupling to gravity 1s given by sumiming over random lattices that
maintain four links at each vertex, but can have arbitrary polygonal faces. It
is simple to write down a matrix model that generates 6-vertex contigurations
on random lattices. Rather than a hermitian matrix, we employ an arbitrary
complex N x N matrix ¢ = A + ¢B, where A aud B are hermitian. The
propagator (,>',7) now has an overall orientation, which we identifly by an arrow
on the propagator. (In what follows we suppress the underlying double-hned

notation of fig. 3.) The graphs of interest are generated by the matrnix mtegral

1.t 2 12 t -2
tr(-2v' v e’ + (')
/c (-2 (P'v)) 3.22)

v
where the vertices shown in figs. 4a and 4b are assigned weights a and ¢ respec-
tively.”?
The model has not yet been solved in this formulation except at the analug

of the Kosterlitz-Thouless point, a = ¢. At that puint we can use the ideatity

te[p* 0" + (' 0] = %[(,v +91) = (v - "] = 2u(4* + BY)?

13 On a regular square latuce, the four rotated versions of big. 4a are further sub-
divided into two wirror reflected pairs, which can be given different weights o aud
b. On a random lattice such distiuctivos are academc, a property embodied by the
cyclicity of the trace 1o (3.22), aud we autowatically geuerate the so-called Fouod-d

witha =5
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to rewnte the actwon in terms of the hermitian matrices 4. B. By introdocing an
alditrmal intregration matnx \f. wr can revinee the action to terms ¢ ratic

in 4 and B.

Py =

21l 47 + B / er(— LM% 4 2/ A% 4 BY)Af)
= [ 4 .
1)

In thi< form. the model reduces to a standard transcription of the O(n) model
forn =2 {For general O(n). A7 + B? in replaced in the above by 37 42))
Thrs = reasonable siner S(X2) is just the circle S! normalized to a particular
rahin<. The gran 7em0 solntion (due to M. Gandin) is reproduced in [29].

4. Quick tour of Livaville theory

For compietenes. we give here a brief overview'! of how the continwum
re<alt< we have nsed here are calculated. As previously meationed. the coina-
dence of the<s re<alts< with those of the mat~~ model approach originally served
to give past-factio verification of both methods. This section may be corsidered
a< an appendix to the preceding three.

§ 1 String emerptibabsty

We ronsider the roatinnum partitioa fanction

PgDX —SulX:g) -8 [d¢ /g

= | oo “

"' In prepanag thrs wrtion. | may have shamelessly plagiarized some material from
a amilar stion s~ (Y Hrstoncally. fter the work of [6] some of the results here where
dmved m $9. whete the coaformal quastization of Liouville theory was studied (but
zwr1al corr-ation fanctions wrte not calrulated). The quantam Licaville theory was
aho stadbed 18 [3). More revently. the calculation of critical exponents in lightcone
angr was camiert ont i (17] (using SL(2.R) cerrent algebra). The results were
subuquently r~brived 1a coaformal gange ia {51]. which is the approach we follow
hete amee 1t appls alw 10 higher grams. Reviews of Licaville theory may be found
L

Nn

where Sy is some conformally invariant action for matter fields eoupled to a two
dimensional surface £ with metric g. yio is a bare cosmological constant, and we
have symbolically divided the measure by the “voitme™ of the difeomorphism
group (which acts as a local symmetry) of £ . For the free bosonic string, we
take Sy = & fdzf ﬁg“’ 3.X -5, X where the _\1(£) specify the embedding of
T into flat D-dimensional spacetime.

To define (4.1), we need to specify the measures for the integrations over
X and g (see. eg. [53]). The measure DX is determined by requiring that
[ Dy6X e VXN, = 1 where the norm in the gaussian functional integral is
given by [6X|12 = Jd% /56X - 6X. Similarly, the measure Dg is deter-
mined by normalizing [ D,bg e~ 1%1: — 1. where [|gil2 = [ d%€ /(9" g™ +
2g“g"‘)6g_. 8g_4. and bg represents a metnc fluctuation at some poirt g,; in
the space of metrics on a genus A surface.

The measures DX and Dg are invariant under the group of diffeomor-
phisms of the surface, but not necessarily under conformal transformations
9. — ¢ 9,,- Indeed due to the metric dependence in the norm ||6\||: it turns
out that

L g
Doy x =™t (12)

where

Sile) = /d’{ N7 (%g" 8,040 + Ro + pe") (4.3)

is known as the Liourville action. (This result may be derived diagrammatically,
via the Fujikawa method, or via an index theorem; for a review see [54].)

The metric measure Dg as well has an anomalous vanation under confor-
mal transformations. To express it in a form analogous to (4.2), we first need
to recall some basic facts about the domain of integration. The space of metrics
cn a compact tepological surface & modulo diffcomorphisms and Weyl trans-
iormations is a finite dimensional rompact space M, known as moduli space.
(It is O-dimensional for genus A = 0: 2-dimensional for h = 2; »nd (Gh — 6)-
dunrnsional for h > 2). If for each point 7 € My, we choose a representative

metric g,,. then the orbits generated by the difficomorphism and Weyl groups
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ating on ¢, generate the full space of metncs oo . Thus given the slice g(71),
any metnc caa be represented in the form

['g=c"g(r).

where [° represents the action of the diffeomorphism f: ¥ - €.

Since the integrand of (4.1) s diffeomorphism invariant, the functional inte-
gral would be infinite unless we formally divide out by the volume of orbit of the
diflecomorphism group. This is accomplished by gauge fixing o the slice §(r);
the Jacobian thai enters can be represeated in terms of Fadeev-Popov ghosts,
as famibiar from the analogoas prucedure in gange theory. We parametrize an
mfnitesimal change in the metric as

b’ll = vl{l » b’x) = vl(’

{where for coavenence we employ complex coordimates, and recall that the
composents ¢,, = ¢'* are parametrized by ¢”). The measure Dg at g{7) spats
mio an imtegration |dr] over moduli, an integration D,> over the conformal
factor, and as integration DE Df over Jilfcomorphisms. The change of integra-
ua variables Dég,, Dég,, = (det V, der ¥, ) D€ D€ imtroduces the Jacobian
det U, det U, for the change from &g 0 §. The determinants in turn can be
represented as

n - fd? b.. Vit - [d2 o
det ¥, dﬂT.=/DchDiDée J4¢vs Jd% s ¢
_ e
E/D(‘h)e 5‘.(5,0 ,€) -
(4.4)

where Digh) = Db Dc Db Dé s an abbreviation for the measures associated to
the ghasts b.c. 3.6 b,, b a holomorphic quadratic differential, and ¢* (¢*) is a
holumorphic (anti-holomorphic) vector.

Finally. the ghost measare D(gh) » nol invanant under the couformal
transformation g — ¢”g. instead we bave [6.53.54]

i ~
~ 335 dlo.y) ;
D..,ighy=« ** D,(gh) . (4.5)

3

where Sy is again the Liouville action (4.3). (In units in which the coutribution
of a single scalar field to the couformal anowaly is ¢ = 1, and heuce ¢ = 172
for a single Majorana-Weyl fermion, the couformal anvmaly due to a spin 4
reparametrization ghost is given by ¢ = (-=1)¥2(146;(j - 1)). The contribution
from a spi j = 2 reparametrization ghost is thus ¢ = -26.)

We have thus far succeeded to reexpress the partition function (4.1) as

—Sa — Syn — b [a?
Z=/ldr]D,p‘D,(gh)Dr\'e el O Eﬁ.

Choosing a wetric slice g = e¥§ gives
Desjp Devjlgh) Devy X = J(p.9) Dy Dylgh) Dy X

whe:e the Jacobwan J(p, g) s easily calculated for the matter and ghost sectors
((4.2) and (4.5)) but pot for the Liouville mode p. The functional iutegral over
¢ is complicated by the implicit metric dependence in the norm

Hovll; = / 4’ Vg (op) = / &6 Vge” (05) .

since only if the ¢” factor were absent above would the D, measure reduce
to that of a free field. In [51], it is simply assumed'® that the overall Jaco
bian J(y,g) takes the form of an exponential of a lucal Liouville-hke action
[d’{ V(8 §*3.o8p + iﬂp + pe?), where a, b, and ¢ are constants that will
be determined by requinng overall couformal invariance (¢ is w~erted in anti

ipation of rescaling of ). With this assumption, the pastition lugction (4.1)

takes the form

—-Su(X.g) - Sl b6 g
Z = /ldrl D,—p D!(Sll, Dj-‘- e u(X,.g) ;h( é ¢)

— J A VG a g0y ey + bR+ T
- €
(10)

where the ;> wmeasure 15 now that of a free ficld.

13 Sowc attewpts to justafy this asswwption may be found i [53)
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The path integral (4.6) was defined to be reparametnization invariant, and
~honkd depend only nn ¢“9 = ¢ (ap 1o difFomorphism). not on the specific slice
1 Dwe to diffromorpham invanance. (4.6) sh-ald thus be iavarart onder the

mhniteamal 1ransformation

9 =c<(0)g. &r=-=(€). (4.7)

and we can wsr the known conformal anomalies (4.2) and (4.5) for ¢, X, and
the gho<ts to determine the comstants a.b.¢. Substitating the variations (4.7)
n (461 wr find terms of the form

D-2%+1 . - - -
(T—+b)/d‘£v’; Rc  and (25_5)/d’{ﬁsmw.
wherr the D — 26 on the left is the contnibution from the matter and ghost
measnre I, X and Dy(gh). and the additional 1 comes from the D; ;- measure.

Intanance nndder (4.7) thus determines

- 25-D . .
b= @ - &= 16 . (4.8)
Sabstitating the values of a.b into the Licuville action in (1.6) gives
1 - -r25-D o 25-D .
s—:,[d E»/;( 79 Oardir+ — Rv)- (4.9)

To ohtain a conventionally normalized kinetic term ;L [(3y)?, we rescale p —
\’l% v- (This normalization leads to the lrading short distance expansion
Sz p{w) ~ —logl(: — x).) In terms of the rescaled . we write the Liouville

arton as

1 - _
g;/d’{ Vi(i®o.: a7+ QR ;). (4.10)

_[»-D
Q= - (4.11)

The Fnergy-momentam tepsor T = -30¥07 + ?0’; denved from (4.10) has

where

lading <hon drstance expansion T(:)T(w) ~ %q_,.,..,",/(: - o) + ... where

T rmuiie = 1+ 3Q7. Note that if we sabstitute (4.11) into ipev and add an

15

addittonal ¢ = D — 26 from the matter and ghost sectors. we find that the total
conformal anomaly vanishes (consistent with the required overall conformal
invariance).

I reniains to determine the coeficient é in (4.6). We have since rescaled o,
s0 we write instead e*¥ and determine a by the requirement that the physical
metric be ¢ = ge™¥. Geometnically, this means that the area of the surface
is represented by [d?€ /ge®¥. a is thereby determined by the requirement
that ¥ hehave as a (1,1) conformal field (so that the combination d?{e®¥
s conformally invariant). For the energy-momentum tensor mentioned after

(4.11). the conformal weight!'® of "¢ is
h(e®*) = h(e"?) = —La(a - Q) . (4.12)

Requiring that h(e®*) = h(e®¥) = 1 determines that Q = 2/a+ . Using (4.11)

and solving for a then gives'’

1
a:E(ﬁS—D—\/l-D). (4.13)

For spacetime embedding dimension d < I, we find from (4.11) and (4.13)
that Q@ and a are both real (with ¥ < /2). The D < 1 domain is thus
where the Liouville theory is well-defined and most easily interpreted. For
D > 25, on the other band, both a and Q are imaginary. To define a real
physical metric ¢ = ¢°¥g, we need to Wick rotate ¢ — —ip. (This changes
the sign of the kinetic term for . Preciseiy at ) = 25 we can interpret
X% = —ip as a free time coordinate. In other words, for a string naively

embedded 1n 25 flat euclidean dimensions, the Liouville mode turns out to

'* Recall that h is givem by the leading terma in the operator product expassion
T(z)e®”(w) ~ he™/(z —w)’ 4+ ... . Recall also that for a conventional energy-
momentnm tensor T = — 13y, the conformal weight of '™ is h = h=p'/1

'7 The choice of root for a is determined by making contact with the classical limit
of the Licuville action. Note that the effective conpling in (4.9) goes as (25 — D) ! so
the classical limit is gaiven by D — —no. In thia limi‘ the above choice of root has the

classical o — 0 behavior.



provide automatically a single timelike dimension, dynamically realiziug a string
mbedded n 26 dunensional minkowski spaceiime. Finally, in the regime )} <
D < 25. a s complex, and Q is imaginary. Sadly. it is not yet known how to
make sease of the Liouville approach for the regume of most physical interest.
We meatioa as well that so-called non-criucal stnngs {i.e. whose conformal
asomaly 3 compensated by a Liouville mode) in D dimensions can a' ways be
reinterpreted as critical strings in D 4 1 dimensions, where the Liouville mode
provides the additional (interacting) dimension. (The converse, however, is not
tree since it is not always possible to gaunge-fix a criucal string and artificially
disentangie the Licaville mode.)

It remains 10 extract the string susceptibility 9 of (1.13) in this formalism.
We write the partiion fanctioa for fixed area A as

Z(A) = /D,—: DX e-s 6([d’( Ve’ - A) , (4.14)

where for convenience we now group the ghost determinant and integration over
moduli into DX. We define a stnng suscepuibility 4 as in (1.14) by

Z(A)~ A/ g oo,

and determuine 4 by a smpl: icaling argument. (Note that for genus zero, we
have Z(A) ~ A7 avim (1.11).) Under the shift o — ¢ + p/a for p constant,
the measure in (4.14) does not change. The change in the action (4.10) comes
from the term

2 [eyine- 2 [dcsinos 2L [ve i
8'/d EVaRy ar /¢ g\/in,wsm d*¢ ViR .
Substituting ie (4.14) aad using the Gauss-Bonnet formula % [ d*¢ VIR =
together with the ideatity 5(Ar) = 8(z)/|A| gives Z(A) = e~ /228 Z(e=0 4).
We may now choose ¢ = A4, which results in

Z{(A)= ANl 7y = ALV 7))

and we confrm from (4.11) and (4.13) that

7=2-9=l’—2iu-1—J(D-25)(D-|)). (4.15)

Thss result reproduces (1.13), which we used to compare with the result of the
patnx model cakulation (recall that 2 = - 1/m for D =1 — &/ + 1).
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{-2. Dressed vperators / dimensions of fields

Now we wish to determine the effective dimension of ticlds after coupling
to gravity. Suppose that ®4 is some spinless primary field in a conformal ficld
theory with conformal weight hg = h(dg) = h(®,) before coupling to gravity.
The gravitational “dressing” can be viewed as a form of wave fuuction renor-
malization that alicws &, to couple 10 gravity. The dressed operator @ = e,
is required to have dimension (1,1) so that it can be integrated over the surface
¥ without breaking couformal invariance. (This is the same argument used
prior to (4.13) .ermine a). Recalling the formula (4.12) for the conforinal
weight of ¢#?, we find that g is determined by the condition

he - 18(B-Q)=1. (4.16)

We may now asso.iate a critical exponent h to the behavior of the one-poin

function of ® at fixed area A,

1

F.(A) = Em

/'DQDX e—s O(Idzf Ve - A) Jd*¢ VTl TR L
(4.17)
This definitiou conforms to the standard convention that h < 1 corresponds to
a relevant operator, h = 1 to a marginal operator, aud & > 1 to an irrelevant
operator (and in particular that relevant operators tend to dominate in the
infrared, i.e. large area, limit).
To determine h, we employ the same scaling arguinent that led to (4.15).
We shift 2 — ¢ + p/a with e® = A on the right bhand side of (4.17), to find

A~ I/2a-1+7/a

— s Fell) = A7 Fe(l)

Fo(A)=

where the additional factor of e##/2 = A% comes from the «7 gravitational
dressing of ®¢. The gravitativnal scaliug dimensiou h defivcd in (4.17) thus
satishes

h=1-d/a. (4.18)
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Appraling 1o the semiclassical argament emplovesd before (4.13). we solve (4.16)

foor §# wirh the hranch

A=4Q- 1Q2—2+2h.=%(st—D—\/l—D+24h.)

{for which 7 < Q/2. apd J — D as D — —x). Finally we substitute the above
re<nlt for .3 and the valne (4.13) for n into {4.18). and find'*

h_/l-D+24h.—/l-D
T V255-D-JVi-D

As ap rxample. we apply these results to the minimal models [36] men-
tinned at the end of section 2. These have a set of operators labelled by two

(4.19)

mtegers p_q (<atsfying 1 <r < q-1, 1 <3 <p-1). Coupled to gravity, these
nperators turn out to have dressed conformal weights

_ptqg—lpr—qs

h, , = <r<g- -
e 1<r<g-11<s<p-1,

(4.20)

in agrerment with 1he woights determined from the (p. g) formalism discossed
in <etion 3 for the generalized KAV hierarchy (see e.g. [19.56]).

More rxplicitly. we consider the first member of the unitary discrete series,
1e. the D = 1/2 Ising model. which bhas (p.q) = (4.3). Before coupling to
gravity. cniwal exponents » a.J can be defined in terms ol the divergences of
rorrelation kength £ ~ 177, specific heat C ~ ™" and magnetization m ~ ¢7
with respect to the deviation t = (T — T,)/7, from the critical temperature T,.
In 1erms of the confor:nal weights of the encrgy and <pin operators A, and b,
thes exponents satisfy » = ﬁ? a=2(1-v). 3=(2-a)h,. According
to (4.2M1). the ronpling to gravity induces the shifis h, = % — % b, = % - 2
which imphes corre<ponding shifts in v, n, and J.

' We can alvo substitate J = of1] —h) rom {4.18) 0o (1.15) and use —%n(n—Q,\ =
I {fom hrfoge (4 131) to rederive the resalt A — he = 2(1 — h)a?/2 for the difference
brt@ren the “drecsm] weght™ h and the bare weight b (17)
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