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ABSTRACT 

A simple mixing-length estimate of diffusion of alpha particles by toroidicity-

induced shear Alfve"n eigenmodes (TAE) is used, in zero and one-dimensional models, to 

evaluate the importance of diffusion on meeting ignition requirements for ITER and other 

next-generation burning plasma experiments. It is found that, depending on a number of 

assumptions, diffusion could reduce the effectiveness of alpha heating in the core as much 

as an order of magnitude. However, the effect would be less if only alphas resonant with 

the Alfven waves diffuse. Also, in the Appendix it is argued that the mixing length 

diffusion formula, though qualitatively reasonable, may be an over estimate. 
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1. INTRODUCTION 

Theory has long suggested that energetic alphas may cause new classes of 

instabilities that could impact requirements to achieve ignition.1'2 However, despite 

strenuous recent efforts3-4, there is as yet no theoretical model of alpha transport by 

instabilities in a form suitable to be incorporated in systems design codes, such as those 

being used to design ITER and other next-generation machines. 

The purpose of this paper is to assess what if anything van be said, based on the 

present state of knowledge, about the effect of alpha-driven instabilities on the design of 

ignition experiments. As a specific example, we focus on the toroidicity-induced shear 

Alfvfn eigenmode fTAE) discussed by Fu and Van Dam5. While they emphasized long-

wavelength modes (m = 1) that might transport alpha particles to the walls in a coherent 

manner, we suggest a different scenario. Namely, we note mat instability occurs fist for 

shorter wavelength (higher m) modes. We estimate that incoherent, diffusive transport by 

these short wavelength modes could be sufficient to prevent the build-up of the alpha 

density to the threshold for the coherent m = 1 mode to become unstable. Thus diffusive 

transport by short wavelength modes, which spreads the alphas away from the plasma core 

where they are created, would be the dominant process. However, spreading the alphas in 

this way greatly reduces their effectiveness in heating the core plasma to ignition 

temperatures, so alpha instabilities would still have a deleterious effect. 

Qualitative arguments in support of the diffusion scenario are given in Section 2. 

Sensitivity to theoretical uncertainties is explored by means of an ad hoc diffusion model in 

Sections 3 and 4. Section 5 discusses the potential consequences of alpha diffusion on 

machine design. 

2. QUALITATIVE CONSIDERATIONS 

/ j J f ' < The" TAE growth constant calculated by Fu and Van Dam can be written in the fonn 
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where P and R are functions of order unity for alpha velocities near the Alfvin speed VA, 

C0o is the real frequency (o\> - k|| v^), Pe is the beta for the bulk plasma electron and v e is 

their thermal speed, (5a is the beta of the alphas alone, and 

where n a and T a are the density and temperature of the energetic alpha population, and B 

is the toroidal field. Instability occurs at specific values of q given by 

2m + 1 , , . 
1 : S T - ( 3 ) 

where m and n are integers, kj.= m/a and k ^ ^ = (n - m/q)/R, a and R being the minor and 

major radii of the tokamak plasma. Equation (3) follows from the so-called "gap" 

condition, k||m î = - k||m + 1, m = (2qR)"' and coo=k||VA = (v/J2qR).5 

Note that, since <o. is proportional to kx, Eq. (1) yields instability (y > 0) for 

sufficiently large ki for any value of pa(~no) however small, limited only by effects such 

as the finite Larrnor radius of the alphas that were not included in the calculation. Thus, as 

the alpha density builds up by fusion reactions, instability occurs first at large kx (large m 

values). 

Suppose that these short-wavelength modes cause the alpha particles to diffuse with 

a coefficient D 0 . Then the density of energetic alphas near the plasma core would reach a 

steady-state value given by 

n a = x a (I n2av) = ( J + v 1 J 1 ( i n 2av) . (4) 
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Here n is the density of DT plasma undergoing fusion reactions at a rate ov, and T a is the 

lifetime of energetic alphas with respect to spreading away from the core by diffusion; or 

by slowing down by collisions with electrons in a time i s , after which they no longer 

contribute to instability and therefore they no longer count as energetic alphas for our 

purposes. 

Qualitatively, the effect of alpha transport on ignition is already apparent in Eq. (4). 

The steady-state heating rate P a at the core is just 

P a = nanEdV1 (5) 

where Ea= 3.5 MeV is the alpha energy at birth. Thus the reduction in heating as a 

consequence of diffusion is just proportional to the reduction in n« relative to the steady-

state value noc without diffusion, given by Eq. (4) with D t t = 0; or 

' - • ^ " - ^ - i ( 6 ) 

"ac D ax s+a 2 

where f0 is the fraction of the actual heating power relative to what it would be without 

diffusion (fa being unity if D a were zero). 

Whether diffusion matters depends on the magnitudes of D a jnd xs. As was noted 

in the Introduction, as yet there is no theoretical formula for D a available to the designer. 

For want of a better value, for estimating purposes we shall adopt a mixing length estimate, 

where v is given by Eq. (1). Here "max" denotes the maximum value for any ki, which 

occurs at 
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k,aa = 2 { | + VI" ^tifc (8) 

where a = (to.a/kj.aoio). Then 

^ W i + V F ^ } » 
with kx given by Eq. (8). For a Maxwellian distribution of alphas, the functions P and R 

are given by Fu and Van Dam to be5: 

(10) 

Rmax = ' \ / f X(l+2x2 + 2x4)e-x2 (11) 

where x = v/Jva, v 0 being the speed of the energetic alphas6. 

Accepting this estimate of D a for the moment, we may calculate the heating fraction 

fa from Eq. (6), with ntj = 10 1 8 Te 3 ' 2 in M.K.S. units, T e being the electron temperature 

in KeV. To do so, since D a depends on n a through Pa, we must first solve Eq. (4) to 

obtain a self-consistent value. As an example, we take input parameters representative of 

ITER to obtain the results shown in Table I. Note that we find ka = 7, consistent with our 

hypothesis that short wavelength modes dominate. At the resultant density of alphas, 

longer wavelengths have lower growth rates and modes with ka < 4_would be stable, by 

Eq. (1). Though not necessarily corresponding to TAE modes, wavelengths in the range 

ka - 5 or so are typical of experiments in which neutral beams may be exciting Alfven 

waves in various experiments.7 
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Taken literally, the results in Table I say that diffusion could reduce core heating by 

alphas by an order of magnitude and prompt us to further analysis in the next section. 

3. AD HOC DIFFUSION MODEL 

In this section we extend the zero dimensional model of Section 2 to a 1-D diffusion 

model for circular cross-section, given by 

where as before slowing down (the last term on the right) is treated as a loss of energetic 

alphas. (The factor K in this term is unity to represent alpha-electron collisions only. We 

shall make other uses of K later on.) Such an equation, coupled to the Supercede8, would 

form a closed set o; equations sufficient to determine whether ignition would occur, with 

heating P a given by Eq. (5). However, as noted above no formula for D a is yet available. 

Despite the lack of information about Dw we shall proceed using an ad hoc model 

with the aim of finding out what really matters for design. To this end, we shall again 

adopt the mixing length formula given by Eq. (9), now treating D a as a local quantity 

varying continuously with radius through its dependence on P, R and so on. In this, we 

assume localization on the grounds of short wavelengths, and we neglect the quantization 

of m and n in Eq. (3) and instead treat q and D a as continuous functions of r, on the 

grounds of spatial overlap of the resonant eigenmodes. Most questionable is the 

underlying mixing length formulation, Eq. (7). Alsc, in the absence of finite Larmor 

radius corrections, Ydoes not have a maximum (since Y=ki). This prompted us to take 

instead the maximum of (y/ki 2) itself, which gives a maximum in the range k i p a of a few 

tenths, p a being the alpha Larmor radius. 

For our purposes, the virtue of choosing the mixing length estimate for D a is its 

simplicity and the fact that, independent of its magnitude, the dependence of D a on y 

incorporates the main qualitative feature anticipated from theory; namely, instability and 

6 



transport by Alfven waves should be greatest at the core where VA is small and least at the 

edge where VA increases as the fuel density decreases. Such a diffusion coefficient would 

flatten the alpha heating profile, as anticipated in the original work on kinetic Alfven 

instabilities by Rosenbluth and Rutherford.2 

Moreover, at least crudely the mixing length formula may be appropriate for the 

gradient-driven TAE mode as it appears to be for electrostatic gradient-driven modes. For 

such modes we might expect saturation when k x ^ - y (flattening of the profile), which 

leads to Eq. (7).' This topic is discussed further in the Appendix. 

4. MODEL CALCULATIONS 

We first calculate the model as defined thus far and later add other features 

including loss of alphas due to banana excursions, cut off of D a within the confinement 

volume where kiPa becomes large, and a slowing-down alpha distribution rather than a 

Maxwellian. In the absence of the latter effects, the proper boundary condition is that there 

be no net loss of alpha particles, or equivalently, 

a . 
j r d r r i n ^ o v - ^ ^ O . (13) 

To see this, note the rapid decrease of D 0 approaching r = a where the fuel density n is 

vanishing or negligible and VA becomes very large in the exponential factor in Eq. (11). It 

can be shown that, widiout the slowing-down term, Eq. (12) has no solutions with die 

usual boundary conditions that D t t (diio/dr) vanish at the origin and n a vanish at r = a. 

Physically, the rapidly vanishing diffusion coefficient could not push panicles across the 

r = a boundary and hence there is no steady state (for the time-dependent problem, n a 

would grow indefinitely). 

With the boundary condition in Eq. (13), the solution flattens out as expected. This 

is shown in Figure 1, which plots the solution of Eq. (12) versus radius (x = r/a). The 
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resulting profile depends on the fuel density and temperature profile shapes, characterized 

by ocn and <XT, 

n = no (1 - x 2) an (14) 

T = T 0 ( l - x 2 ) a T , (15) 

where a n = ax= 1 in Figure 1. The figure also plots TIOC, which is the solution without 

diffusion (D a = 0). 

As in Section 2, we take the ratio fa = na/nac, which is also the ratio of local alpha 

heating with and without diffusion, to be a measure of the effect of diffusion on achieving 

ignition. That is, given a design that achieves ignition for given n and T profiles, ignition 

would presumably not occur for that design if fa « 1 at the core (small x) where the fuel 

density and temperature are concentrated. Figure 2 shows fa versus radius for different 

profiles (different a's), all for On = aj. As we might expect, fa at the core is least for 

large a's (steep profiles) and fa approaches unity for flat profiles (a = 0) since alpha 

heating without diffusion is already constant for this case. Figure 3 plots fa for fixed 

ay = 1 and various a,,. Then fa « 1 at the core for all cases. 

Figures 4 and 5 examine other aspects of the model. Since no and n appear to 

different powers in Eq. (12), n a depends on the magniiude of no. Figure 4 tests this 

dependence by plotting fa for various values of n, with a„ = a j = 1. The model also 

depends, through the P and R functions in y, on the fraction of alpha particles with velocity 

parallel to the field exceeding VA- To test this dependence, in Figure 5 we compare fa for 

the Maxwellian distribution, that might represent turbulence, with that for purely classical 

processes dominated by slowing-down by alpha-electron collisions. The slowing-down 

distribution yields different functional forms for P and R in Eq. (1). , 0 As can be seen from 

the figures, neither the magnitude of n nor details of the alpha velocity distribution affect 

our results appreciably. Therefore, in the following we take no = 102"m"3 and the slowing-

down distribution for all cases. 
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We now turn to five effects that could make a significant difference. These are: 

(1) Resonant versus non-resonant diffusion of the alphas. If only alphas 

resonant with the AlfV6n waves diffuse as rapidly as our model indicates, our 

fa applies only to this resonant portion and the overall effect on achieving 

ignition is much less (see Appendix). 

(2) Diffusion of the fuel itself by the TAE turbulence. We have neglected any 

such feedback on the n and T profiles, on the grounds that the TAE free 

energy, proportional to p5a, is much less than the fuel plasma free energy. 

(3) A significant reduction in magnitude of D a compared to our model (see 

Appendix). An increase in Do would be less important, since already fa « 1 

at the core for cases of most interest. 

(4) A cut-off of D a at larger radii where VA > VQO (birth energy) or where kipa 

becomes large, p a being the alpha Larmor radius, neglected in Eq. (1). 

(5) Loss of some alphas at an inner radius XD where a (1 - XD) becomes equal to 

their banana width, so that upon reaching xp they are lost in one banana drift 

time. 

The first four points are beyond the scope of this paper, but are typical of issues 

receiving attention by the theory community.4 We shall return to these points, 

qualitatively, in the next section. In the remainder of this section, we consider the last point 

as fellows. 

To simulate banana excursions, inEq. (12) we now takeK= 1 if x <xoand 

K = K2 if x >XD- To include also a possible cut-off on D a as discussed in item (4) above, 

we also introduce another quantity XA beyond which D a vanishes abruptly. To take 

account of XA, we simply replace the upper limit of integration by XA in the boundary 

condition, Eq. (13). Here we define XA as the position where VA = v a o . For XD we take a 

range of values characteristic of high energy alphas trapped at the field minimum on the 

outboard side of the plasma profile. 
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As noted, for x > XD the parameter K is intended to represent rapid loss by banana 

orbit excursions. For this purpose, we simply choose K small enough so that results are 

independent of K but large enough to avoid numerical problems in integrating Eq. (12) 

with different K values in the two ranges x < XD and x > XD. This is shown in Figure 6, 

which plots f0 for XD = 0.6 and a range of K values. 

Finally, Figure 7 presents our main result, showing fa for a range of XD values, for-

the case On = ax = 1. Again, n = lO^Om"3, the alphas have a slowing-down distribution, 

and XA = 0.84, which has little effect on the results. 

Figure 7 confirms the concerns raised by the zero-D model in Section 2. Namely, 

with our model, diffusion of the alphas reduces their effectiveness in heating by a factor of 

3 to 10, the larger value applying to all alphas with large banana excursions widths. 

Moreover, even a "heat" pinch pumping heat from the edge to the interior would be of little 

help for the latter class of particles that escape before slowing down. Whereas all of the 

alpha heating is deposited either in the core or in the edge if XD = 1 (no excursion), if 

alphas escape at radii where D a is still large, their heating is lost completely. This is 

illustrated by the quantity called "heating" labelling each curve, meaning the ratio of heat 

deposited in 0 < x < XD to the total alpha energy produced. Even for XD = 0.8, only 11% 

of the heat is deposited. To calibrate, for ITER a typical banana width A = (qe*1/2) p a 

gives, for a 3.5 MeV alpha, q = 3 and e = 1/3, A/a = .25 and XD = 1 - A/a = .75. Since die 

diffusion time is « t s , alphas that diffuse remain near their birth energy of 3.5 Mev. 

5. DISCUSSION 

Of die various effects examined, we conclude that the most important missing 

pieces of information, in order to determine the effect of kinetic Alfve'n instabilities in the 

design of ITER and other burning plasma experiments, are: 

(1) The actual magnitude of D a . To help, D 0 must be about an order to 

magnitude less than our mixing length estimate (which is 10 times x for the 

fuel). 
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(2) Whether strong diffusion (at our rate) applies to all alphas or only to a select 

resonant class. 

Both points are discussed in the Appendix, in relation to the mixing length model. 

Other details, including the question of actual loss of the alphas (XD< 1) versus 

merely spreading their profile out to some radius where diffusion peters out (XA < 1), is 

less relevant since heating in the core is presumably of greatest importance. Specifically, to 

be effective, finite Larmor radius stabilization would have to eliminate or drasticallj reduce 

diffusion in the core itself. In this regard, note that kj.p a = .35 for the parameters in 

Table I. 

If diffusion is large only for resonant alphas, our results suggest that alpha heating 

is for practical purposes limited to alphas generated in the core with pitch angles such that 

they do not resonate with Alfveii modes (vag < VA). Such particles would not diffuse and 

would heat the fuel on the inner flux surfaces. Moreover, since classical slowing-down of 

the alphas by electrons reduces their speed without changing their pitch angles, those born 

as non-resonant panicles remain non-resonant. 

Finally, our work suggests that it would be worthwhile to incorporate an 

anomalous particle diffusion term, initially of mixing-length form, in the alpha transport 

equation incorporated in the Supercede. 
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TABLE I. Approximate steady-state values for ITER-like device according to the 

zero-dimensional model of Section n. Symbols are defined in the te. .t. 

Input 
Parameters Bsaiiiis 
v o =10 7 ms- 1 

VA = 7 x 106ms-1 

O)o = 4xl0 5 s- 1 

a = .9 

B e = 0.025 

Te=15lceV 

n = lO^m-S 

B = 5T 

n n = =.3xl0l6m-? 

IV = 103 

t o = = 0.03s 

~s = :0.6s 

ka = = 7 

fo = = 0.05 
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Figure 1 
Alpha Density Profiles 
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Figure 2 
Effect of TAE Mode on Heating Profile 

Variation with Fuel Profile, Maxwellian Model 
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Figure 3 
Effect of TAE Mode on Heating Profile 
Variaion with Fuel Profile, Maxwellian Model 
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Figure 4 
Effect of TAE Mode on Heating Profile 

Variation with Fuel Density, Maxwellian Model 
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Figure 5 
Effect of TAE Mode on Heating Profile 
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Figure 6 
Effect of TAE Mode on Heating Profile 

Variaion with K, Slowing Down Model 
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APPENDIX 

Here we shall attempt to justify the mixing length estimate for diffusion by TAE 

modes. 

Applied to gradient-driven modes, die mixing-length conjecture assumes saturation 

when the density (or temperature) profile flattens over a wavelength kx - 1 . Roughly, 

saturation occurs (8f/6t - o) when the non-linear diffusion V • D • Vf ~ kx2Df becomes 

comparable to the linear driving term of order -yf (real part). Hence D~Y/kx2.' This is 

also consistent with a quasilinear correlation time, tc-Y/co2, and the assumption that at 

saturation the electric field perturbation can move particles a distance kx"1 in one cycle carl, 

w-iaE/B-kx-1 (Al) 

D"(t c5E/B)V 1 (A2) 

tc-Y/co2 . (A3) 

Combining again gives 

D-y/kx 2 • (A4) 

To be consistent, it is necessary that the free energy driving the modes be sufficient 

to produce electric field perturbations satisfying Eq. (Al). For electrostatic drift waves, 
with y ~ co - to,, this is the expansion energy, (kxa)"2nT, the condition on 8E being 

e8E2<(kxa)"2nT (AS) 

with E - ( IAD) - 2 . 1 1 Then 8E ~ T/e a and kx8E/B - co. - m, which does satisfy Eq. (Al). 

The free energy for the gradient-driven TAE mode is also presumably the expansion 

energy, for the alphas. In this case 8E is the inductive field associated with magnetic 

perturbations 8B, and the equation corresponding to Eq. (As) is: 
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„ m Y § § f . (8B)2 ,(SB)2 n a T a _ _ P a _ B i 

On the left we have used Maxwell's curl E equation, whereby 8E ~ (oVk||)8B, 

ra - k||VA and Eq. (Al) becomes 

o y l o E / B - ^ j ^ - k r 1 • (A7) 

Again this is an identity if there were sufficient free energy to bend the field lines a distance 

k r 1 at saturation, that is, if at saturation SB~(k||/ki)B. Using Eq. (A6), we find that 

actually 

^4wTkrl <A8) 

Hence Eq. (Al) is satisfied only if Pa is sufficiently large. By our estimate, we need 

Pa > k||2a2, a ballooning-like criterion, but one not dependent on the radius of curvature 

since it is the parallel energy of the alphas that drives the mode.12 For parameters in 

Table I, po/k^a2 -0.1 (not unity), suggesting that the mixing length formula may be an 

overestimate. 

Finally, we note that it is reasonable to assume that the correlation time would be 

even less for alphas not resonant with the Alfvfn waves. Then, since the mixing length 

estimate itself gives an alpha lifetime t a - 0.1 Ts, it would seem reasonable to neglect 

diffusion in comparison with slowing-down for the non-resonant alphas. 
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Note that tc in this discussion represents different stochastic effects for electrostatic 

modes, for which ExB is stochastic, and Alfvin waves, for which other stochastic 

processes may be involved that break field lines or cause transport when oscillating field 

lines approach each other sufficiently closely. For the latter, the physical picture is 

sometimes described as flow along displaced field lines (rather than ExB), but this is 

equivalent to Fq. (Al) through the relation of 5E and SB, by Eq. (A7). 
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