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1.0 INTRODUCTION

It is well know in the “‘control community” that a good feedback controller design is deeply rooted in
the physics of the system. For example, when accelerating the beam we must keep several parameters
under control so that the beam travels within the confined space. Important parameters include the
frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these
parameters will progressively mislead the beam from its projected path in the tube, feedback loops are
used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall
behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the
feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze
the beam behavior. This will not only guarantee optimal performance but will also significantly enhance
the ability of the beam control engineer to deal effectively with the interaction of various feedback loops.
Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior
with feedback controllers.

In order to achieve our fundamental objective, we can ask some key questions: What are the input and
output parameters? How can they be applied to the practical machine? How can one interface the rf sys-
tem dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities?
Answers to these questions can be found by considering a simple case of a single cavity with one particle,
tracking it tum-by-turn with appropriate initial conditions, then introducing constraints on crucial para-
meters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given.
These are arranged in the tracking code so that we can interface the feedback system controlling them.
Detailed simulation with the associated rf feedback loops affecting the beam is not shown in this report
due mainly to the sheer volume of technology involved in this task. However, at the end of this report, a
conceptual diagram of the loops is shown with one rf cavity. This would become the basis for modeling
and simulating the beam behavior when integrated with the system.

2.0 ONE-PARTICLE TRACKING MODEL

Consider a circular accelerator whose real orbit, whatever its shape, is replaced by circles with circum-
ferences equal to the actual path lengths, as shown in Figure 1. For mathematical considerations lct us use
a simple case of a single accelerating cavity with an infinitesimally small gap length inserted in the beam
line, as shown in Figure 2. The particle travelling in the beam line will see accelerating field only at the
pointlike gap and will see no field elsewhere. Analogous to the accelerating case we also consider thin
magnetic lenses such that the magnetic field will be maintained constant for one complete traversal across
the gap. The magnetic field will be changed each time at the exit from the gap along the particle orbit.
Later we will see that the representations devised are considerably accurate for modeling the Low Energy
Booster (LEB) global rf feedback.

Equivaient
circular orbit
Actual orbit
v . /
Accelerating Gap e
Figure 1. Schematic Representation Figure 2. Schematic Representation of
of the Actual Orbit and the the Circular Orbit with One

Equivalent Circular Orbit. Accelerating Gap.



Now, if the particle with initial energy of Eo is injected at the gap location at a phase ¢gwith respect to
the zero crossover of the alternating gap voltage of peak amplitude Vj , then the acceleration takes place

when it travels out of the gap. For a pointlike cavity, the phase ¢y is the same before entering the gap as it

is just after leaving the gap, @x. Hence the particle would have acquired an additional energy of AE equal
to

AEy = Visingy . m

The suffix &k in Eq. (1) represents the parameter updates while the particles are travelling in the kth tum.
With this convention Eq can be replaced by Ex_;. Thus the total energy after passing through the gap is

Eg=Eg, +AE; @

It is recalled at this stage that while determining the energy gain in the kth traversal through the gap, the
peak value of the amplitude-modulated gap voltage is changed only at the gap location and remains
unchanged elsewhere.

The actual momentum P, after acquiring energy AE, is calculated from the following equation:

Pk=%'Ef—m2 c* (3)

where m is the rest mass of the proton and c is the speed of light.

So far, we have not introduced the synchronous particle into the model. The concept of the
synchronous particle is very useful in describing the particle motion during acceleration, although there is
no such particle in practice. As is well known about accelerators, the synchronous particle is always at the
phase-stable position at every pass through the gap. The phase-stable position of the accelerating particle
is chosen on the rising side of the sinusoidal gap voltage below transition energy. A particle which has too
much energy travels in a circle with greater radius, but faster hence takes a shorter time to return to the
gap than the synchronous particle. Since the momentum of the synchronous particle is known, we first
find the traversal time required for such a particle having a synchronous energy of B in the kth pass and
later work out the deviations in arrival time of the non-synchronous particle. To determine the time taken
by the synchronous particle to complete the first tum, we must know its correct energy. This is given by

Ei =+ (Pjc)2+(mc2)2 @)

where Pj is calculated from the synchronous momentum curve at t = 0, just before crossing the gap for
the first time. The traversal time 4 of the synchronous particle for one complete tum is determined by

the velocity in the kth mm. The velocity can be determined from the synchronous momentum and energy
of the particle. Thus,

S 2
Tk' = Qwhere vi = E&C_
v Ef - )

The particle which has a momentum other than that of the synchronous particle takes a different time to
arrive at the gap. The particle which is not at the synchronous phase of the accelerating wave will have a

position error of, say, 8Cy. The deviation is also due to errors in the bending magnetic field. If 8tis the



deviation in time with respect to the time taken by the synchronous particle, then we can write the
following equation:!

éf£=(L_ 1 ,&’k_-l_&?k
% \® B2 P 4 Bi 6)

where 8Py = Pg— A is the momentum difference and 3B, = By -B} is the field error as seen by the
particle under consideration with reference to the ideal case. The factor ¥ is obtained for the synchro-

nous particle from Eq. (5). We have used the momentum compaction factor(l/ 7%1) , which represents the
measure of the change in path length for a given fractional change in momentum. Also, in obtaining the
above equations we have decoupled the betatron oscillations. This approximation, for the purpose of rf
feedback, introduces very little error if the periods of betatron and synchrotron oscillations differ a great
deal. This treatment has been confirmed by comparing the results of the tracking code with transverse
dynamics (TEAPOT-like) for the LEB 2

From Egs. (5) and (6) the total traversal time of any given particle is

1:k='r,"+8'tk. @)

Since the gap is alternating with a frequency of f;, then the phase covered by the particle in retumning to
the cavity is given by

Gkr1 = Qe+ 2Tk T . (8)

More accurate representation of the phase is obtained by integrating the ramping frequency in small,
equal time steps (say, m) in one turn, as shown in Eq. (9):

Grs1= it 21 2 f (t)% : 9)

n=1

The new phase ¢y + | is used to compute the energy gain for thek + 1th tum and so on. The energy
Ei_1 in Eq. (2) is replaced byk to continue the calculations for the k + 1th tum. Furthermore, the radial
orbit of the beam is important for the the global rf feedback because the change in frequency, phase, or
amplitude of the gap voltage would lead to orbital errors in addition to the errors in the bending magnetic
field. The average radial orbit shift with respect to the synchronous orbit for each traversal can be
obtained by using the well-known equation

&=_1_(£P£__§_31) , 10
R* 2\ P{ B



where RS represents the radius of the circle with circumference equal to the actual path length of the
synchronous orbit, and the momentum difference is the same as that used to calculate the additional
traversal time in Eq. (6). When the magnetic field error is zero, the momentum difference should alternate
with a mean value equal to zero, meaning that the particle is always following the synchronous particle.
In our calculation we change the momentum of the particle after leaving the cavity; just before leaving,
the particle has a momentum equal to the momentum we calculated when the particle left the cavity in the
previous tum. In contrast, the synchronous particle momentum is changing continuously. Hence an
average of the momenta before entering and after leaving the cavity would be an accurate representation
by which to calculate the mean radial orbit deviation as shown by Eq. (11). The large momentum change
per tum in a machine like the LEB would add errors in the calculation of the mean orbit deviation.

‘P""'P""l)—P,f ) an

R
OPr =
Table 1 summarizes all the equations used in the tracking model. With this model, it is clear that we have
access to rf parameters such as Vi, fi, and ¢x, and we can simulate the beam oscillations with errors in
them. Also, magnetic field errors can be introduced if we know the error band in the field signal. These

topics are covered later in the section on feedback loops. But first, we will discuss validation tests
required to confirm the tracking model.

TABLE 1. ONE PARTICLE TRACKING MODEL.

Energy: AE, =V sin ¢

Er=Ei_y +AE; E; = V(Pic)? + (mc2)?
Momentum: Pi= L E‘Z: —m2c4

OPy= Py—P; PR _(Pk'*'Pk-l) P;
Traversal Time:

=T + 0

T = [0id vi = Pic?

R E}
o7 = 75 (L - 1 ) OPe_ 1 cSBk)
‘W2 ()2 Pi 92 B;

Beam Phase: m

Pr1=+ 2N fi Tk or Gi1=Ge+2m ) f(t)fn—"

n=1

Mecn Radial Orbit:

&?k=R-"(-l— (Eﬁ_&))
# \ Py Bj




3.0 SOME SIMULATION RESULTS

Using the model shown in Table 1 we tracked one particle for the LEB at ¢ = 0 to 0.05 sec with the
voltage function shown in Figure 3. Figur: 4 shows the plot of the particle phase with respect to time for
Ep = 600 MeV and ¢p = 0, and with all other injection parameters in the program shown in Figure S.
Synchronous phase calculated from ESME particle-tracking code using the synchronous particle concept
is shown in Figure 6. Figure 7 shows the plot of the phase with respect to time as obtained from the Thin
Element Particle Tracking Codes by going through each magnetic lens at 5 ns time step. Figure 8 shows
the expanded view of the comparison between Figures 7 and 4. In our code, the simulations are done with
the frequency updates equally divided by 114 steps within each turn, as compared to integration of the
frequency ramping at intervals of 1.9 us in the Thin Element Tracking Codes. Clearly, the phase values

coincide very well.
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One particle tracking program for the LEB

program track
implicit real*s (a-h,o0-z)
real*s m0,tv(85),volt(80)

open{unit=4,file="report.dat’,status="unknowvn”)
open{unit=15,file="volt.dat” ,status="unknown’)

Read voltage

jvmax=80

do 1 i=1,jvmax
read(15,")tv(i).volt(i)

continue

rewind(15)

Initialise LEB parameters

cycleb=10.d0
hnual=114,0d0
circ1=570,06856828208d0
rou=30.97464863d0
€¢=299782458. 0d0
er=0.9382796d0
ee=1,60217733d-19
gmt=23.242d0
pinj=1.219d0
pext=12.0d0
pi=dacos(0.0d0)*2.0d0
twopi=2.0d0*pi
deg=180.0d0/pi
phi0=10.0d0/deg
psync=pinj®1.0d9/cc
pevd0=psync

Calculate the injection frequency

einj=dsqrt{(pinj*pinj)+(er*er))
eext=dsart((pext*pext)+(er*er))
og=twopi*cycleb

r@=circl/tvopi
m0=er*1.0d%%ee/(cc*cc)
enx=er*1.0d9/(rou*cc)
fr={cc*hnuml)/circ]
onebgmt=1.0d0/(gut*gst)
bmin=pinj*1.0d9/(rou*cc)
bmax=pext*1.0ds/(rou*cc)
bx=(bmax-bmin)*0.5d0

enev=einj

bst=bmin

enl=enx/bst

es=1.d0+en1*ent

den=dsart(es)

frf=fr/den

t=0.0d0

C

200

50
52

Main program starts from here

continue

Cet the voltage values updated each turn from
the linear interpolatir~ routine

call volts(tv,volt,vt,jvmax,t)
vt=1,0d-3*vt

Calculate nev energy after passing the gap
de=vt*dsin{phi0)

engv=enev+de
pevd=dsqrt{enev*enev-er*er)*1.0d9/¢cc
psyn=pinj+({pext-pinj)*0.5d0)*(1.d0-cos(og*t))
psync=psyn*1.0dS/cc

ensyn=dsqrt ((psyn*psyn)+(er®er))
betas=psyn/ensyn

vels=betas*cc

tous=circi/vels

gamas=ensyn/er
onebgams=1.0d0/(gamas*gamas)

etas=onebgmt- onebgals

dpevepevd-psyn

dpevr—((pevdo‘pevd)/2 0d0)-psync
pevd0=pavd

dpbp=dpev/psync

bst=psync/rou

dbbb=dbs/bst

dpbpr=dpevr/psync
dtou={((etas*dpbp)-(onebgmt*dbbb)Y*tous
deltr=onebgmt*(dpbpr-dbbb)*r0
tou=tous+dtou

workout the phase by integrating the freg
and vrite data to a output file

kint=hnuml

ddt=tou/real (kint)

tdt=t

sdt=0.0d0

do 200 kk=1,kint
bst=bmin+bx*(1.d0-cos(og*tdt))
en1=enx/bst
es=1.d0+(ent1*ent)
den=sqgrt(es)
frf=fr/den
sdt=(2.0d0*pi*frfeddt)«sdt
tdt=tdt+ddt

continue

phit=sdte+phi0

t=t+tou

phi=(mod(phitepi. tvopi)-pi)

phix=phi*deg

kt=kt+1

phiD=phi

write(4.50)kt.t,phix, bst.dbs.celtr

{1f(t.9e.0.050d0) then
90 to 52

endif

¢ vo 51

ormat(1x,16.2x,6(e18.12.2x))

write(6.50)kt.t.frf phi, vy

stop

end

Figure 5. Fortran Code for Tracking One Particle.
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Figures 9-12 compare the phase curves with field error. The field error was assumed to have Gaussian
noise of bandwidth 1 KHz with a normal distribution such that

8B =2 x 104 B, (rand(normal)) . (12)

The radial orbit errors are shown in Figures 13-16. Figure 17 shows the mean radial orbit with respect
to the particle phase using Thin Element Tracking Code when the particle is tracked with an initial
transverse displacement of 36 in both transverse planes. Clearly the envelope of the mean radia! orbit
curve matches well with Figures 15 and 16. The matching can also be seen in Figure 18, which is shown
to compare Figure 17 with Figure 4. From this comparison we see that the betatron oscillations did not
show large effects in the beam phase. In Figure 19 the tracking results are compared to Thin Element
Tracking Codes for an initial phase, ¢p = 10°.

Another useful test is seen in Figure 20. In this test tracking is dore by injecting a particle at ¢p =0 and
by maintaining the bending field at B, (minimum field at injection for a synchronous particle) and the rf
frequency at fm;n (minimum frequency for a synchronous particle), throughout a 50 ms period. The plots
of the phase curves must show no phase increase, as evident in Figure 20. Note that the scales are
expanded to show a negligible difference with two curves. As we had expected, the particle gains no
energy and hence returns to the accelerating gap with zero phase.

An rf engineer would be interested to know about the beam behavior when one of the cavities breaks
down. If it is not repaired soon enough there will be beam oscillations, as shown in Figure 21. Figure 22
shows the plot with a voltage error of 1%, SO KHz bandwidth, and Gaussian noise with normal
distribution.

Phase (deg)

0 .0 g.02 0.03 0.04 0.05 o oo 0.02 0.03 0.04 0.05

Time (sec) Time (sec)
Figure 8. Time Variation of the Figure 10. Particle Phase Predicted
B-Fieid Error Signal. Using the Codes of Figure 5

with B-Error.
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Figure 13. Mean Radial Orbit Shift Predicted Using Codes Shown in Figure 5 with (a) 58 =0
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x10-5

8A(m)

L
o

0.01 0.02 0.03 004 0.05
Time (sec)

®)

Figure 14. Mean Radial Grbit Shift Predicted Using Thin Element Tracking Code with (a) 5B =0
and (b) 5B as in Eq. (12).

x10-5 x10-5
4 \ 4
\
3 ‘\ 3
2 1 2
T -
oy of
-1+ -1+ P
-2 0 10 20 3¢ 40 S0 60 70 2 0 10 20 30 40 50 80 70
Phase (deg) Phase (deg)

Figure 15. Variation of Mean Radial Orbit Figure 16. Varlation of Mean Radial Orbit
with Respect to Particie Phase with Respect to Particie Phase
Using Codes Shown in Figure 5 Using Thin Element Tracking
(No Field Error Included). Code (No Field Error included).

10



8§A (m)

=2
[¢] 10 20 3o 40 50 60 70

Phase (deg)

Figure 17. Variation of Mean Radial Orbit with Respect to Phase Using Thin Element
Tracking Code When the Particle Is Launched with 3¢ in Both Transverse

Planes.
9, 200
| i
8+ A= 19.5° N r -
| S — S S R
7% r oo 1907 oo r T
5 R .S L
\ | I B SRS | ! o Co
A T A ) v 180~ ' SR . -
5+ : ! H ' ‘ 1 : ‘ - oo c R
; ) [ . :
o AR 175+ o [ ' ! .
S P A R L o f
! [ Py (] ‘ ! 170- . . ,
i | \ ! ! ' . : !
3r ! [ ) Vot |! W N 165+~ V! Vol 4 -
! ] - \ [ g! \ . . j H
2+ i L ' Uy v Y - . ! ' o '
s | [N i 160+ i \ i ‘ -
i . . v i ; . v : , v
i / ] ! i i v
] vty : 155 : .
0 ' 150
1 2 3 4 5 4.65 470 475 480 485 490 495
Tum Numpers 1 - 200 x10-4 x10-3
s70 60
1] i
565~ ; - 50+ -
'I.\ "
56.0- - I .( - ¢
[ [ { 0r
Y [ { :
555- - ros £ . -
[ N A
‘l 4 i [ i 1 " 30-
. HE i LI L -
550 @ i v i .
4 ! ¢t J \
[ “ t ; 20~ \
545- 1 I’ Vi - ‘a\
'
v ! A
54.0- [V} ~ 10~ \
835 Q
004 0.042 0044 0.046 0.048

0021 002° 0.02* 0021 0022 0022 0.022
Tum numpers: 10.000 - 10.500 Tum numpers 20,000 - 25.196

Figure 18. Phase Curves When the Particle Is Launched with 35 in Both Transverse
Planes (Expanded Scale of Figures 4 and 17).

11



wn
B R S e e S e -
«
I.’"""l",tl" Q
= a
S B <
T
- T ————
> v
= e e e @
<< M
~— e .
e | o
- e o — @
T <
e -
e 0
A <
e
l.lll.\"\'v
e e i o
<7 ~
<
wn
—— S PO S S RO
© w o w o w O W o v o4
(=] o [ © ] ~ ~ {7+ w0 n un
~ - - - - - - - - - -
r i v v Sy W0
T
>
PSS e <
<.
——————
’i.li‘\v
T
—— ’..“l:rn’l:'\.U o
e T
<
T S ———
. »Al\\J o~
e ST
n S —
T em——
\\\
\t\\\l\\t.
\r b 3t o
m @ w0 - o~ o 9_~

x10~4

Tum numbers: 2,000 - 2,100

x10-4

Turn numbers: 1 - 200

1

-

\

\
0.044 0046 0.048 0.05

0.042

60
50
40
30}
20
10
3

0022 0022 0022

J
!
2
4
0.021

0.021

Turn numbers: 10,000 - 10,500

l
b
0.021

i
L
0.021

Tumn numbers 20.000 - 25.196

Figure 19. Phase Curves When the Particle Is Launched at +10 deg.

12



106
1.0

Phase (deg)
[ o
y . N
t
Phase (deg)

o 0.01 02 0.03 0.04 0.05 0 001 002 Q.03 0.04 0.05

Time (sec) Time (sec)

Figure 20. Particle Phase with Respect to Time When the B-Field Is Held at Minimum B for 50 ms (a) Using
the One-Particle Tracking Code and (b) Using the Thin Elemeant Tracking Code.

70

Phase (deg)
Phase {deg)

¢} oo 002 0.03 004 0.0 0 0o 002 co3 004 005

Time (sec) Time (sec)
Figure 21. Phase Curve When 1 out of 12 Figure 22. Phase Curve with a Voitage
Cavities Breaks Down at 30 ms. Error of 50 KHz Bandwidth

and 1% Amplitude Deviation.

4.0 RF BEAM FEEDBACK LOOPS

As discussed earlier, the code was written mainly to study the effect of rf feedback loops on the beam.
Conceptually, as seen from the beam model in Table 1, rf system feedback loops are very simple. An rf
power amplifier drives the cavity, and subsequently a high voltage appears on the gap. The amplitude of
this voltage is programmed and is controlied by a feedback loop to supply the required voltage to the gap,
as schematically shown in Figure 23. To derive v;, a combined power amplifier and the cavity model
must be included in the model. The frequency and phase of the rf signal are generally controlled with
feedback loops from the beam to the frequency generator and a phase shifter. Feedback controllers can be
included to stabilize the loops. With a high-power rf system model in the loop we can obtain the desired
frequency and phase, fi and ¢, at the gap. Thus beam oscillations can be studied with the feedback loops
and for different types of controllers. If the beam frequency must be synchronized with an external
reference, then a synchronization loop can be inserted to modulate the frequency and phase of the rf
generator. If phase-locking with the higher energy accelerator is required, then the synchronization loop
can be turned on at any given time in the acceleration cycle.
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The beam phase loop shown in Figure 23 will hielp to set the synchronous phase to a desired value
provided we can allow the beam to breathe radially. Since the beam tube is always confined to a small
size, a radial loop is required in the system. At this stage we cannot tell to what extent we can control the
synchronous phase without modeling with the beam in the orbit. In the same way, if the synchronization
loop is closed throughout the acceleration of the low-energy ring, then the interaction is even more
difficult to understand. Furthermore, it would be possible to connect the radial loop to modulate the
amplitude of the gap voltage, since the change in the amplitude of the gap voltage changes the energy of
the beam—in effect, changing the radial position. All the controllers mentioned in Figure 23 can be
contained in a single equation, if appropriately designed to take beam physics into account. This global
controller should be able to take into account the noise in the system at different points in the feedback
loop and to accelerate the beam so that it will reach the destination ring at the precise time and energy.
Our work is progressing in this direction.
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