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THE STATUS OF FUEL CELL TECHNOLOGY

by

John B. O'Sullivan
Institute of Gas Technology

During the late 50's and early 60's, many of the major U.S. industrial
companies invested heavily in fuel cell technology. The potential of this
direct, non-Carnot-limited energy conversion process to provide efficient,
inexpensive electricity encouraged research in many fuel cell systems. These
efforts emphasized systems based on alkaline, phosphoric acid, solid polymer,
solid oxide, and molten carbonate electrolytes. Operating temperatures for
these systems range from 100° to 1000°C. An extremely large investment by the
military and NASA permitted the accelerated and successful development and
utilization of the polymer- and alkaline-based power systems for use in space
exploration. These successful space power developments, however, were not

suitable for most terrestrial applications using hydrocarbon fuels.

During the early 70's a reduction in government funding coupled with economic
pressure on the research budgets of industrial firms caused most companies to
withdraw from the area. Military funding, primarily by the Army, and funding
by the electric and gas industries permitted the slow but continued growth of
phosphoric acid technology. Molten carbonate and solid oxide technology were
funded at only a subsistence level. With the formation in the mid-70's of the
Energy Research and Development Administration —-- eventually the Department of
Energy (DOE) -- a major infusion of funding resulted in a broader range of

technology development.

The combination of DOE, Gas Research Institute (GRI), and Electric Power
Research Institute (EPRI) funding enabled the field demonstration of
phosphoric acid systems at the 40-kW and 4.8-MW sizes. It also permitted

accelerated research in the solutions of problems associated with the molten
carbonate and solid oxide electrolyte-based systems. These systems, operating
at 650° and 10(%2°C, respectively, have tle further advantage of providing for
cogeneration. The temperature level of the waste heat stream permits its use
to either generate more electricity by a bottoming cycle, increase efficiency,

or raise high—cuality process steanm.
iii
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Phosphoric acid fuel cell technology has now become commercial via the initial
purchase of approximately 50 200-kW onsite power systems by the gas industry
worldwide. The current emphasis of DOE, GRI, and EPRI is to bring about the
demonstration and commercialization of molten carbonate and solid oxide tech-
nology. To this end, contracts for the production and operation of fuel cell

stacks are under way to validate technical performance and the economics of

manufacture.

Research efforts are continuing, but at a much lower funding level, to examine
alternative fuel cell systems, such as proton conducting and other oxide ion
conducting eleétrolytes. There has also been a renewed interest in polymer

electrolyte membrane systems, especially for electric vehicle applications.

As a result of the recent technical successes shown by these programs, the
fuel cell research programs of Europe and, especially, Japan have been renewed
after being essentially dormant for almost 20 years. Although this presenta-
tion emphasizes the ongoing efforts in the United States, to provide a proper

perspective the national programs of Japan and the active European countries

will be addressed briefly.
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THE STATUS OF FUEL CELL TECHNOLOGY

Introduction

This brief status report provides an introduction to what fuel cells are, why
they are important, what uses have been made of them to date, the goals and
timetables of current programs, and who the players are in this vital tech-
nology. Copies of most of the slides presented and additional diagrams are
appended to this paper. Further details can be obtained from the comprehen-

sive texts cited in the bibliography.

Fuel cells are a means of converting chemical energy directly into electrical
energy without going through the typical combustion engine-rotating generator
steps. They are electrochemical devices, similar to batteries, except that
the fuel and oxidant are provided externally; thus they are not dependent, for
capacity, on the stored chemical energy as are batteries. Fuel cells were
invented initially by Sir William Grove in 1839, and the period of current
development was started by Francis T. Bacon in England in 1932. Bacon's early
fuel cells used a concentrated aqueous alkali hydroxide (200°C) as the

electrolyte.

Fuel cells are typically classified based on the nature of electrolyte
utilized and the temperature of operation. Common electrolytes used in
developmental systems over the last 35 years a:e alkaline, acidic (phosphoric
acid and polymer exchange membranes), molten carbonate, and oxide ion-
conducting materials. Some electrolytes are liquid and some are solid at the
operating temperature. These temperatures range from about 100°C to as high

as 1000°C, depending on the system.

Conceptually, fuel cells have no moving parts and thus do not "wear out" or
create noine. In reality, some moving parts -- fans, compressors, pumps, etc.
-- are required for an operating system, and each fuel cell type has its own
unigque failure modes. Fuel cells are 1low-voltage, high-current devices;
therefore, many cells must be aligned in series to produce useful d-c voltages
that must in turn be converted to a-c power for most applications. Being
electrochemica! devices, their major inefficiencies, resistive and polari-

zation losses, occur at higher current densities, and thus their efficiency at
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partial load 1is typically greater than at full load. This 1is the exact

opposite of engine-driven systems whose efficiency drops sharply at reduced
load.

Since practical systems are based on the assemblage of cells into cell stacks
to vyield practical voltages, these stacks may be configured into various
series-parallel combinations to attain a final installed system voltage and
power output. It is this inherent modularity that also serves as an attrac-
tive feature. One can install an initial system to satisfy the electrical
capacity needs at that time and may then "grow" the system according to future
demands without concern for efficiency of scale and premature commitment of
capital. Typically, a wutility or industrial firm will procure a larger
generating capacity than needed because it will be more efficient than a
smaller unit. However, the additional capital invested will not provide a
return until some uncertain time in the future when the demand eventually
reaches the installed capacity. This commitment to excess capacity is be-
coming more and more difficult for industry to make in the face of a rapidly

changing, and thus uncertain, marketplace.

Fuel cell systems have one unfortunate characteristic, which is not inherent
but is a practical reality in all present developmental systems: They cannot
utilize hydrocarbon fuels directly. The dominant electrochemically active
fuel species 1is hydrogen. Thus the fuel must be converted, usually by an
external reformer, into hydrogen and carbon monoxide prior to conversion in
the fuel cell. Higher temperature fuel cells can utilize carbon monoxide
directly but slowly, so, in reality, the carbon monoxide is converted inter-
nally to hydrogen by the rapid water—-gas shift reaction and thus is utilized
indirectly through the hydrogen intermediate. Extensive research has been
devoted to the direct utilization of fuels such as methanol, methane, and the
lighter hydrocarbons, but the rates of conversion have been too low for the

practical production of useful power levels,

Early developmental efforts focused on the lower temperature systems because
it was believed that the problems concerning catalysis and materials of con-
struction were more tractable than those inherent in the high-temperature

systems. Currently, major emphasis is on the higher temperature systems
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because the waste heat is rejected at temperatures sufficient for use either
in a combined cycle or for cogeneration. Each of these nets out a much higher
overall efficiency of fuel utilization. The materials of construction and
other life-limiting problems and methods for economic fabrication are now felt
to be resoulvable, yielding an economically viable alternative to combustion-

driven systems such as gas turbines, steam turbines, and combined cycles.
The remainder of this paper briefly details past efforts but concentrates on
current developmental systems, their characteristics and advantages, and their

likely entrance into the marketplace.

Space and befense Programs

Although early fuel cell developments were concerned with the efficient
production of power 1in general, the major funding efforts focused this
development on systems targeted for space and defense applications. These
applications had their own unigque needs and system and economic constraints
that permitted the development of systems that were not directly translatable
into terrestrial systems. Thus, although these development efforts provided
great insight into general fuel cell system problems and places to look for
possible limitations in other systems, only part of that effort has been use-
ful in the successful development of systems for economically practical ter-

restrial applications.

NASA programs for manned spacecraft required power and energy levels that were
not attainable with either batteries or combustion engines using stored reac-
tants. The Gemini series utilized a system based on a polymer electrolyte
membrane (duPont-Nafion) fueled by hydrogen and oxygen, which were stored
cryogenically. The materials of construction were expensive, and the elec-
trodes needed high-platinum loadings for the optimal system power levels.
Overall weight efficiency and reliability were the dominant constraints, and
costs were only a minor consideration. In the competition for the Apollo
Program power modules, General Electric, which built Gemini, lost out to
United Technologies Corp. (UTC). The UTC system was based on the higher
temperature alkaline electrolyte demonstrated by Bacon in England. This fuel
cell's higher power density yielded a lighter overall system that was appro-

priate for the high energy needs of an eventual lunar landing. A backup

3
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contract was also awarded to Allis-Chalmers to develop a system based on the
use of a lower temperature aqueous alkali hydroxide. Both of these systems
required hydrogen as fuel and utilized oxygen, both stored cryogenically. As
a footnote for understanding later system emphasis, alkaline electrolytes will
be neutralized by reaction with the carbon dioxide in air and especially :n
the product of a hydrocarbon reformer. Therefore, most terrestrial
applications would require, at a minimum, the separation or removal of the
carbon dioxide during the use of hydrocarbon fuels, a major cost and system
complication that has prevented terrestrial use of alkaline systems for other
than special (military) applications. Alkaline systems, with evolutionary
development, have remained dominant in both NASA and military space

applications and are in use in the Shuttle Program.

Early military programs, attempting to piggyback on the NASA developments,
utilized alkaline electrolytes as well. Since cryogenic fuel/oxidant storage
was cumbersome, military applications, such as submarines, torpedoes, undersea
vehicles, and terrestrial mobile power sources, used either pressurized hydro-

gen or special fuels such as hydrazine (N,Hy) with either pressurized oxygen

or atmospheric air, as appropriate. The bulk of European developments
followed a similar path at that time. Later developments for land-based --
not undersea -- power sources recognized the need to utilize common hydro-

carbon fuels for any major penetration into military usage. These fuel cell
developments, of necessity, shifted to COz—rejecting electrolytes: solid
polymers, sulfuric acid, phosphoric acid, molten carbonate, and others. of
these, the major emphasis finally settled on phosphoric acid fuel cells
(PAFC), which by that time had been selected as the fuel cell system for early

market implementation by the U.S. utilities. This program is covered in more

detail in a following section.

The U.S. Army furded the building of developmental prototypes of the phos-
phoric acid system (3 kW and 5 kW) by Energy Research Corp. (ERC) and pre-
production prototypes (1.5 kW) by UTC. These were complete systems and
included reformers and inverters for a-c power. As a result of the complexity
of fuel processors designed to handle sulfur-containing military fuels (for
example, diesel and JP-4) methanol was selected as the fuel for a silent

lightweight electric power source. The Army program terminated in about 1984
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as a result of the Army's unwillingness to handle in quantity, logistically, a
special fuel such as methanol. This extremely cursory overview does not cover
the many experimental systems built and tested by the military over a 25-year
period and is only used to illustrate the status of the program at its

termination.

Utility Programs

In the early 60's the U.S. gas utility industry became concerned and
threatened by the projected inexpensive electricity ("too cheap to meter")
from nuclear reactors and the all-electric home. As a result, a major
commercialization program was funded by the American Gas Association (A.G.A.)
at UTC with supporting work at the Institute of Gas Technology (IGT). This
program, TARGET (Team to Advance Research on Gas Energy Transformation),
selected phosphoric acid-based techneclogy for the design and construction of
12.5-kW d-c (10-kW a-c) demonstration units. These were to serve as the power
generation module in an all-gas home, single or multifamily. While UTC empha-
sized the initial market entry unit, IGT continued R&D on molten carbonate-
based systems for later and/or other applicaticns. The TARGET program pro-
duced a field demonstration of 60 experimental units from 1971 to 1974. These
were installed in commercial and residential sites across the U.S. The
resulting economic evaluation indicated that those units were too small and
technologically immature to yield the necessary production base and to permit

a cost-effective market entry.

Shortly atter the gas industry started its program, the electric utilities
became concerned with their future as a result of increased emphasis on, and
expense for, control of emissions from coal-based plants and the rise in cost,
complexity of siting requirements, and extensive procedural delays in nuclear
installations. Fuel cells, operating on reformed natural gas or naphtha, were
viewed as having the greatest potential for providing future generating capac-
ity. The electric utility program funded by the industry, and eventually the
Electric Power Research Institute (EPRI), was also awarded to UTC. This
program similarly emphasizea phosphoric acid as the market entry technology.
Molten carbonate systems combined with coal gasifiers were viewed as a longer

term solution.
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Following the successful demonstration of a 4.5-MW a-c unit (20 stacks) at
Tokyo Electric Power and the aborted test of a similar unit at Consolidated
Edison in New York, the electric industry was solicited for a commerciali-
zation venture to buy a number of 11-MW units (18 stacks). The aborted test
in New York had nothing to do with the technology and a lot to do with both
bad luck and the unreasonable regulatory procedures of the New York Fire
Department. Because the widespread implementation of cogeneration and
independent power production, along with conservation, had sapped much of the
projected industry growth, the high cost of the market entry units was deemed
excessive for the immediate market in the U.S. One 11-MW unit was purchased
by TEPCO and some smaller units were purchased in Europe so that some
countries could become familiar with the technology. Italy, for example,

purchased a 1-MW demonstration unit.

The second phase of the gas industry program emphasized scale-up to 40-kW a-c
to broaden application to commercial/industrial sites that could utilize some
cogeneration in the form of hot water. This phase was funded by the industry
and the Gas Research Institute (GRI) and resulted in a field demonstration of
46 units from 1984 through 1986. Following this successful demonstration, the
gas industry was solicited by the International Fuel Cell Corp. (joint venture
of UTC and Toshiba) to join in commercialization through the purchase of 200-
kW units. Commitments were made, worldwide, for over 50 units; the initial
units will be delivered and installed in late 1991 or early 1992. The market

entry price is around $2500/kW, with the price dropping as the production base

increases in the future.

When these utility programs were initiated, the utilities were the sole
funding source. After the creation of the Energy Research and Development
Administration (ERDA) and subsequently the Department of Energy (DOE), the
government played a major role in funding the development and demonstration of
the utility units. The DOE is also funding a competitive electric utility
program at Westinghouse, which is planned to eventually commercialize a 3 to
13-MW a-c, air-cooled, phosphoric acid system. This program is proceeding at
this time and has demonstrated its current technologic maturity with a 100-kWw

single-module stack. Fabrication of a 375 to 400-kW four-stack engineering

module has begun.
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DOE, GRI, and EPRI have also been increasing their funding of advanced
systems, both molten carbonate and solid oxide, during the last 10 years;

these programs are discussed in a later section.

Current Programs -- Vehicular
Numerous prototype fuel cell-powered vehicles -- vans, trucks, forklifts, and
others -- have been built by many developers and potential users. However,

the first serious, and therefore significant, attempt to commercialize a
vehicle, a forklift truck, was the effort initially of Engelhard Minerals and
Chemicals and later in a joint venture with Fuji Electric. This vehicle
utilized phosphoric acid technology and comprised a 5-kW fuel cell in a hybrid
configuration with lead-acid batteries. Fuel cells have a high energy den-
sity, whereas batteries have a high power density; thus batteries will supply
the additicnal power required above some average demand, and the fuel cells
will supply excess energy to recharge the batteries at lower loads. The lift
truck can also operate, although not as effectively, on the batteries while
the fuel cells are being brought up to temperature during startup. Engelhard
has recently gone out of fuel cell development, and Fuji is focused on transit

buses as the ‘ehicle of choice.

DOE has two transit bus programs: one with Booz-Allen and Fuji and the other
with ERC. Both of these use phosphoric acid fuel cells and are designed in a
hybrid contiguration with batteries. Each program has built and operated a
fuel cell system at about the 30-kW level. The test bed bus, which will have
a 50-kW fuel cell power plant fueled by reformed methanol, will lead to
eventual commercial prototypes. Recently, DOE awarded a multimillion dollar,
multiyear contract to General Motors (GM) to develop a fuel cell-powered
vehicle. The development team includes Los Alamos National Lab (methanol
reformer), Ballard Power Systems, Inc. (polymer electrolyte membrane fuel
cell), and Dow Chemical (advanced polymer membranes). The selection of the

prototype vehicle(s) and its design variations is under way.

The thrust of all of these programs is an efficient, low-emissions urban
vehicle tu reduce the air-quality problems endemic to the major cities.
Ballard Power Systems, Inc., a Canadian firm, also has a fuel cell bus program

funded by its government. This vehicle's power source is not a hybrid and
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relies solely on the fuel cell to provide the high current demands of the

start-stop transit duty cycle.

Current Programs -- Power Generation

High-temperature fuel cells (>500°C) are viewed as the technical successors to
phosphoric acid technoulogy (<200°C) for power production and cogeneration.
These applications can efficiently wutilize the high—-temperature exhaust
streams for fuel processing, high-pressure steam gecneration, or bottoming
cycles. The leading candidates are fuel cells based on solid oxide (1000°C)

or molten carbonate (650°C) electrolytes.

Molten Carbonate Technology

The three major developers of molten carbonate fuel cell (MCFC) technology in
the United States are the M-C Power Corp./Institute of Gas Technology
(MCP/IGT) team, ERC, and IFC. The latter two are emphasizing externally
manifolded cell stacks, whereas the MCP/IGT team has a unique internally
manifolded design based, conceptually, on plate frame heat exchangers
( IMHEX®) . This "manifolding" refers to the means by which cell reactants,
fuel and oxidant, are introduced into and exhausted from the cell stack. All
three developers have DOE-funded programs, with the emphasis on commerciali-
zation at MCP/IGT and ERC and on technology development at IFC. Both MCP/IGT
and ERC also have coordinated programs with EPRI, GRI, and various gas and
electric utility participants. All three developers utilize flat-plate cell
designs and metallic bipolar separator plates. Tape casting is the manufac-
turing method of choice for electrodes and electrolyte cell components. Other
approaches, calendaring, hot pressing, and electrophoretic deposition, have
been examined by the developers and found wanting. All three developers have
assembled and tested cell stacks with varying cell areas and number of cells
in series. The largest stack of each developer to date has been 1 ftz, 24

cells, 2.5 kW (MCP/IGT); 4 ft2, 20 cells, 8 kW (ERC); and 8 ft2, 20 cells, ~15
kW (IFC).

Stacks planned for the near-term are a 60-cell, 20-kW stack at ERC and a 60-
cell, 6-kW stack at MCP. All developers plan for commercial cell sizes in the

range of 6 to 10 ft2 in 250 to 500-cell stack modules. ERC has the endorse-
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ment of the American Public Power Association for a 2-MW demonstration at the
city of Santa Clara, California, and will build a 2 ft by 3 ft, 200+-cell
stack module as part of this program. A 100-kW stack is also planned by ERC
for testing by Pacific Gas and Electric. Both ERC and MCP/IGT will eventually
build 250-kW commercial prototype stacks as part of the DOE program. MCP will
be producing about eight small (1 ftz) and about six large (10 ftz) stacks for
DOE, EPRI, GRI, and the utility partners during 1991 and 1992. These will
include at least three complete systems at the 20 to 50-kW size. This testing
will culminate in the 250-kW DOE power plant, cited previously, in late 1993,
followed by a more advanced 250-kW power plant for San Diego Gas and Electric
in late 1994. Following field tests of pre-production prototypes, market
entry commercial production is planned for mid-1997. The market entry systems
will be based on natural gas (cogeneration and dispersed power) with later,
mature-production systems using the product of coal gasification (central

station power).

The major design departure is based on external (ERC and IFC) versus internal
(MCP/IGT) manifolding. Both of these designs have advantages and disadvan-
tages; The MCP/IGT team believes that the advantages of co-flow or counter-
current reactant flow and the self-adjustment to dimensional tolerances and
vertical changes in the stack with time outweigh the additional complexity of
separator plate design. External manifolds provide for cross-flow only, and
the insulating gasket required to electrically isolate the manifold serves as
a path for the electro-osmotic pumping of electrolyte that floods the cells at

one end of the stack at the expense of drying the cells at the other end.

The major developmental issues t¢hat need to be resolved are cathode dis-
solution during operation at pressure; electrolyte management to control loss
through evaporation; management of reactant gas crossover from anode to
cathode, or vice-versa; methods of thermal management; efficiency of seals;
long-term changes 1in cell components (physically and/or chemically); and

tolerance to contaminants (primarily with coal-derived fuels).

There are three approaches to processing natural gas for molten carbonate fuel

cells: an external reformer, a thermally integrated reformer, and internal
reforming of the fuel in the anode passages. The first requires the use of
9
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supplementary fuel to supply the endothermic reaction need.. The second
utilizes the waste heat of the stack and thus eliminates the need for added
fuel while reducing the amount of cooling required. This approach would
position a reformer package between every 5 to 6 cells in the stack. The
third approach, direct internal reforming, is the most efficient and the most
difficult. It places the heat-absorbing reaction where it is needed within
each cell. The electrochemical utilization of the hydrogen, produced by
reforming, and the assor.iated generation of water vapor, one of the reactants,
drives the reaction rapidly and efficiently. However, it is difficult to
maintain the long-term activity of the reforming catalyst in the presence of
the reactive electrolyte, which wets all surfaces within the cell. All of the
developers are examining all three approaches. MCP will utilize, initially,
an economic and efficient flat-plate reformer in early systems, and ERC is

planning to vse direct internal reforming in its prototype stacks.

Analyses performed for EPRI have reached similar conclusions regarding coal
gasification and its process integration into the MCFC system. The more the
waste heat can be utilized directly within the fuel cell system and the less

to drive bottoming cycles, the higher the overall net system efficiency.

Sclid Oxide Technology

Like molten carbonate technology, solid oxide fuel cells (SOFC) have been
under development for more than 25 years. However, it has been only in recent
years, since the DOE shifted its emphasis from near-term phosphcric acid to
ionger term higher temperature systems, that adeguate and continuous funding
has been available to provide for rapid technologic advances. Westinghouse
has maintained a continuous program, as the major developer, and has empha-
sized a tubular cell configuration as its basic design. This design has
undergone evolutionary changec to accommodate new approaches to manufacturin
techniques and series parallel cell stack configurations. Other developers,
with other cell design concepts, have recently entered the competition.
Ceramatec, ZTEK, and IGT have planar configurations, and Allied-Signal
Rerospace 1is developing the monolithic design concept of Argonne National

Laboratories.

10
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All of these designs require utilization of very thin components because
electrolyte resistance is relatively high, even at 1000°C. Problems involving
the need for stable and compatible materials would be simpler to solve at
lower temperatures, but adequately conductive alternative electrolytes have
not been discovered. Obtaining an electronically conductive material, stable
in both oxidizing and reducing conditions, for use as a cell interconnect has
been a particularly challenging problem. Present developers use magnesium-
doped lanthanum chromite as an interconnect, strontium-doped lanthanum manga-
nite for the cathode, and yttria-stabilized zirconia for the electrolyte.
These utilize expensive constituents, and thus the amount should be mini-
mized. Appropriate manufacturing methods that satisfy these constraints are

flame/plasma spraying, slurry coating, and various vapor deposition tech-

niques. Westinghouse has built and tested series/parallel cell stacks (144
cells) at the 3 kW-output level. Emphasis has been on producing longer, and
therefore higher output, cells. Most work has been with l4-inch-long cells,

but progress through 20-inch to l-meter cells has proceeded with 2-meter cells
as the target. A 20-kW unit with 20-inch cells was put on test by Westing-
house for DOE in November 1990, and a 25-kW unit, with appropriate modifi-
cations, is scheduled for a Kansai Electric field test in the third quarter of
1991. A 100-kW unit, planned for delivery to DOE in 1992, will incorporate 1-
meter-long cells. This should increase the output from around 20 watts/cell
to about 100 watts/cell. This is in contrast to molten carbonate technology,

which is designing cells exceeding 1000 watts.

Monolithic technology, if successful, should provide for higher output in a

more compact design. Problems in matching coefficients of expansion, mani-
folding and sealing designs, etc.. are much further from resolution in the
less mature plarar and monolithic designs. Thus, SOFC technology holds the

promise of trading off the problems of MCFC for a different set, which those

developers hope will be more solvable.

Economic production of either SOFC or MCFC systems will depend heavily on the
establishment of manufacturing techniques that provide reproducibility, qual-
ity control, and adequately low reject rates. These values will be estab-
lished only through the production of a sufficient quantity of cells in semi-

works facilities. This problem may be more severe for SOFCs, in the tubular

11
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design, because of the greater number of cells required. Both planar and
monolithic designs are at too early a development stage for any realistic

comment on manufacturability.

Other Electrolytes

Research is continuing, at the basic level, to find solid electrolytes that
will adequately conduct either oxide ions or protons at temperatures lower
than 600°C. This would allow use of metallic components and reduce problems
of compatibility and stability while still rejecting heat at an appropriate
level to attain high overall system efficiencies. Recent 1literature, both
U.S. and foreign, cites the results of many experimental efforts in this
area. It is beyond the scepe of this review to detail these ongoing develop-

ments; two references are in the Bibliography.

International Developments

Twenty years ago there were major fuel cell efforts in Europe. Most of these
focused on alkaline technology for mainly military applications. As the U.S.
emphasis shifted to phosphoric acid for terrestrial applications, the European
program all but evaporated. Some efforts continued at the academic level in
universities and industrial labs, but few system developments continued.
Japan also had relatively little research under way. This has since changed

dramatically.

Japan

With the oil shocks of 1974 and 1979, the Japanese government began intensive
energy research programs, projects Sunshine and Moonlight, which had fuel cell
components. As a result, over the last decade the Japanese have rapidly
assimilated the current status of the U.S. technology and, with major govern-
ment funding, forged ahead on their own. Japan is now the major funder of
fuel cell technology with an annual budget of about $120 million dollars.

This is in contrast to the U.S. effort of around $40 million dollars. All the

technologies emphasized in the U.S. -- PAFC, MCFC, and SOFC -- have system

developers 1in Japan. Many of these Japanese industrial firms have either

joint or cooperative ventures with U.S. firms or are equity partners. They
12
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are not only developers but also major purchasers of field test units and

market entry commercial units from U.S. firms.

Europe

Along with this emphasis in the Pacific Rim has come a major, widespread
renewed interest in Europe. Although their developmental budgets are small in
comparison to the U.S. and Japan, most of the major industrial countries have
ongoing research and evaluation programs. To accelerate their knowledge and
understanding of the state-of-the-art in fuel cell technology, they are in-
vesting in technology transfer efforts and procuring prototype units for test-
ing and evaiuation. It is expected that the funding levels will increase
rapidly as these countries become more comfortable with the technologies and
their national programs are structured, with priorities, and put in place.

Goals and schedules drive the level of funding required.

The Bibliography cites a particularly good survey (item 6) of the status and

interrelationships of the foreign efforts in Japan, Europe, and other

countries.

13
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