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ABSTRACT 

Even if the form of an energy-economy model's equations can be 
assumed to specify correctly our technological processes and the rele­
vJ\nt behaviors of our society over the necessary time range, there is 
uncertainty in model results induced by our imperfect knm>~ledge of the 
numerical values of the model's parameters and input data. Some of 
this uncertainty is typically 11 Covered 11 by provision of alternative 
scenarios with assumptions, but up to now modelers have rarely dealt 
in detail with the inherent uncertainty of input data. Hm-1ever, when 
model output or 11 response 11 can be represented by a first-order Taylor 
expansion in the input data about the nominal solution point, knowledge 
of the variance-covariance (uncertainty) matrix of the input data is 
sufficient to determine the uncertainty in the computed response induced 
by the input uncertainties. Some gufdelines are given for the evaluation 
of the required input uncertainty matrices. Illustrative examples are 
given from our beginning efforts to develop an uncertainty matrix for 
the important parameters of the Long-term Energy Analysis Package used 
within the Energy Information Administration of the Department of Energy. 
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... 
INTRODUCTION 

J ..... 

One way to increase the usefulness ·of energy economy models for 
policy analysis by decision makers \'/ill be to include uncertainty in­
formation with the model output. This goal is generally approached 
now by showing alternative scenarios for a range of values of a few key 
parameters and by comparing the projections of various~ model formula­
tions for nearly-common input assumptions. This paper discusses the 
·need to deal more completely with quantitative expression of the uncer­
tainty of model results and sketches· a path which may be followed to 

·meet a portion of this need. 

Particularly for scenarios which reach a generation in~o the fu­
ture, serious uncertainty stands everywhere~ Modeling current economic 
behavior is difficult, and one cannot be secure that our society will 
closely follow similar patterns under the altered stimuli of the future. 
In a rough ·way one may separate model output uncertainties into two 
categories: 1) the result of uncertainties in the model specification 
and 2) the propagated effect of uncert~inties in the numerical values 
input by the model user. The first includes uncertainties from .what is 
excluded from the model, and the second from what is included. This 
paper is concerned only with the latter category, the output uncertain­
ties generated by uncertainties at the inputs, The assumption is made 
that the model specification is sufficiently valid that the indicated 
separation of classes of output uncertainties can be made. In this paper 
the terms 11 input data 11 and 11 model parameters .. are used interchangably, 
.and no di st i ncti on is made bet~-Jeen endogenous and exogenous paramete·rs 
even though in a completed work the two classes might be treated sepa~ 
rately. . 

Beyond the considerable effort involved, some may feel that propa­
gation of input uncertainties is unnecessary or imprudent. To claim· 
that uncertainties in model parameters representing the future cannot 
be assessed would be to claim too much, for in this case the nominal 
values of th~ parameters would be equally inaccessible~ Anothe~ thotight 
has been that a model just plays out alternative scenarios based on 
hypothesized input parameters, so it is not necessary to consider un­
·certainties. This argument is weak if the model contains so many param­
ete~s that the user can hardly be cognizant of all the assumptions made. 
Moreover, the distinction that a mode) yields 11 projections 11 rather than 
11 forecasts 11 gives little comfort to th~ user who must ultimately make 

-decisions based at least in part on model outputs. The 11 Sensitivity 
studies .. often given to show the consequences of reasonably altered key 
input parameters are satisfactory for those parameters varied, but these. 
few studies do not inform.the user of the cumulative consequence of · 
uncertainty in the hundreds of other parameters of presumably less im­
port. 

There is promise in confining the use of model outputs to ratios 
or differences \'thich ~lill be relatively insensitive to input uncertainty 
but appropriate for decision making. However, without the numerical 
values of the propagated uncertainties it is not possible to take ad:... 
vantage of this effect in an objective way. In the end, there is no way 
for the model user to escape the need to know quantitatively the impact 
of the uncertainties in the model inputs. He must know whether the un­
certainty is so large that a resulting conclusion is in doubt. 
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1,------------------------------------------------

As evaluation of the uncertainties in model inputs becomes ac­
cepted as part of the task of gathering ~ suitable data base, the nec­
essarily increased scrutiny of the underlying information will tend to 
yield more accurate values for the model's input data. When uncertain­
ties have been propagated to the model output, the modeler will know 
which classes of input uncertainties have the greatest impact on the 
outputs, so that future efforts to improve the accuracy of the data base 
can concentrate at the points of greatest leverage. 

As part of a broader effort to validate the Long-run Energy 
Analysis Package (LEAP)-developed by the Office of Applied Analysis of 
the Energy Infonnation Administration, (6) the authors are beginning an 
attempt to develop uncertainty information appropriate for the param­
eters of LEAP. This paper indicates some of the approaches we expect 
to use in this work as well as the advantages we. expect to obtain to 
the extent the effort is successful. 

WHAT IS NEEDED TO PROPAGATE INPUT UNCERTAINTIES 

Formulation of Uncertainty Propagation 

Uncertainty propagation may be based on a first-order Taylor's ex­
pansion of a model 1 S output about the solution point for the nominal or 
"best" set of input parameters. To fix ideas, let R(a) be a specific· 
response or result of the model when run with the set-of input param­
eters which are the components of the parameter vector a. The response 
of interest might be the fraction of GNP estimated to be spent for en­
ergy in the year 1995; and the a; are input to represent in a specific 
model formulation our resources, demands, and economic behavior. (A 
model response is defined as any desired combination of output prices 
and commodity flows.) Each of the parameters is uncertain by an error 
or disturbance term oai. Since we do not know the values of these 
error quantities we will have to deal with their probability density 
functions. 

The (unknown) error vector oa induces a corresponding error in 
the response R which may be estimated using a first order Taylor expan­
sion about the expectation value of the parameter vector E{a} = a. . -

oR = R(! + ~) - R(a) e:t Ii (dR/dai) a oai 
or in vector notation 

oR ar St ~ , 

. ·(l) 

( 1 a} 

where S is the vector of derivatives of the response with respect to 
the various parameters. The Si, or sometimes the relative quantities 
(ai/R}(dR/dai}, are frequently called the sensitivity coefficients 

for R. 

Since the modeler uses his best estimates of the input parameters, 
the best esti~ate of oR = 0. More precisely, the expectation value of 
oR or the average over its probability density function is z~ro. 

E{oR} e:t E{St~} = St E{~} = 0 (2} 
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But the uncertainty in R is not zero, and the portion of this uncertainty 
which arises from uncertainties in the a1•s may conventionally be ex~ 
pressed in tenns of the mean square deviation or variance of R: 

Var(6R) ~ Var(R) 

Var.(6R) ~ E{6R2 } ; E{St ~ 6atS} = StE{~ oat}S :: StV(_~JS 

The matrix V{a) is called the variance-covariance 01· uncertainty matrix 
of the input parameters a1• Within the limits of linear uncertainty 
theory it contains all the information needed to obtain through Eq. (3) 
the output uncertainty for any response R provided that the sensitivity 
coefficients can be obtained. The diagonal elements of V{a) are the 
familiar variances of the input quantities; if the probability density 
function of a is boldly assumed to be 11 normal 11 then there is roughly a 
probability of 2/3 that the true value of ai lies in the.interval 

± (V .. )112 about the best estimate. Usually, the off-diagonal elements 
. 1J 

of V(a) are best considered in terms of the correlation matrix defined 

as Corr(a) .. = v .. J(V .. v .. )112, so that all the elements have values 
- 1J 1J 11 JJ . 

in the range (-1,1). Note that for a model such as the current LEAP, 
which has over 2000 input parameters, the covariance and correlation 
matrices are very large indeed, and one may well wonder whether the 
information required for application of Eq. (3) could ever be assembled. 
Fortunately, since the parameters a. are gathered from diverse sources, 
we can start with the assumption thAt most of the off-diagonal elements 
are null.· Nonetheless, the task of obtaining the necessary correlations 
is as formidable as it is essential. The labor involved is attractive 
only because it is needed to assess the validity of model outputs. 

Obstacles to be Overcome 

Many problems must be solved to apply the uncertainty analysis of 
Eq. {3) to an energy economy model. Some of these are listed in the 
paragraphs below. 

The complete set of sensitivity coefficients may be difficult and 
expensive to derive; moreover, the derivatives may not even be contin­
uous over the important range of variation of the parameters. Research 
into mathematical methods is required in this area, and a companion 
paper address~s this important question. {5) 

The uncertainties in some input quantities may be so large that the 
validity of the first-order expansion of Eq. (1) might be questioned. 
Initially, the reasonable course is to defer this question on the as­
sumption that the first-order theory is likely to suffice for those cases 
where output uncertainties are acceptably low. If large uncertainties 
are found for several parameters with high sensitivity, reruns of the 
model would be appropriate with these input parameters separately varied 
over their likely ranges. If many parameters have marginally large 
uncertainties, an overall check of the uncertainty propagation should be 
considered employing tv1onte Carlo variation of the input parameters. 
Parameter values to be used would be perturbed by amounts drawn from 
the (probably multivariate normal) joint probability density function 
defined by the uncertainty matrix developed for the input data. 
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Perhaps the greatest obstacle to our current effort is that param­
eter uncertainties and correlations have not been given for the param­
eters of LEAP or for other comparable models, so a data base of 
uncertainty information must be constructed. 

Assembling~ priori Information to Simplify Uncertainty Analysis 

The approach just discussed provides a format around whi c.h to 
organize the uncertainty analysis but the level of effort necessary to 
carry out such an analysis may be very large. Therefore, prior to 
undertaking a full blown uncertainty study, the analyst would do well 
to lay out the information available and, if necessary, draw simplifying 
assumptions to increase the tractabi.lity of his work. Such ·simplifica­
tions may hinge on three types of prior information: knowledge of the 
parameters of the variance-covariance matrix; knowledge of the range of 
relevant policy use to which the model will be put; and, knowledge as 
to the importance of individual parameters in generating model outputs. . . 

Although it may appear.trite to state it, the overall produc- · 
tivity of the uncertainty analysis hinges on the quality of the infor­
mation contained in the variance-covariance matrix, and so the class of 
data available may guide the final work plan for the analysis. Fre­
quently no information of this type will be available directly. When 
it is not the analyst has the option of constructing proxy uncertainty 
values from data similar to those contained in the model. 

In planning the uncertainty analysis, two additional types of a· 
priori knowledge should be considered. The first involves limiting the 
analysis to portions of the model actually used for critical analyses. 
To the extent that one knows in advance that all outputs are not used 
equally, it may be possible to limit the analysis, and by doing so 
concentrate additional resources on fewer areas. The second considera­
tion is whether or not individual parameters can be ranked, if only 
crudely, as to their overall importance in generating the model solu­
tion. If, for example, only 10% of the parameters account for 90% of 
the model output .variance, it should be possible to concentrate efforts 
on fewer parameters. 

Thus, to the extent that the analyst can limit his activities to 
investigating portions of the variance-covariance matrix, it may be pos­
sible to bring more resources to bear on a relatively small number of 
parameters. 

PRACTICAL EVALUATION OF PARAMETER UNCERTAINTY MATRICES 

While we have only begun to consider the uncertainties in the 
-LEAP input parameters, there is enough experience in related enter­
prises to indicate the main approaches to be used. Experience will 
lead to further development of methods. 

Utilize Prior Estimates 

A first step is to represent what is known, including correla­
tions. The uncertainty evaluator can return later to refine estimates 
of uncertainties~ For example, in his report developing a data base 
for LEAP, Bhagat et al. {2} give ranges of values for some cost 
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param!ters. These are .understood to correspond roughly to 10%-90% of 
the c~mulative probability distribution. (3) Whether these ranges· 
represent-the scatter among corresponding data for different plants 
the ambiguities the authors en·counteree in obtaining any value, it is 
reasonable to adopt as initial values the uncertainties derived from 
these ranges. 

Use Statistical Techniques 

Simple statistical methods may be used whenever several sources 
.of corresponding data can be found. Suppose that cost data can be com­
piled for several (N) coal-burning electric plants and that all these 
data can be corrected for passage of time and adjusted as necessary to 
be appropriate for a nationally aggregated model like the current LEAP. 
For each plant, suppose there are several cost components parameters 
a. • Then the port ion ,of the parameter uncertainty matrix corresponding 
t6nthe parameters for this specific activity can be estimated directly 
from the scatter among the collected data. The samp 1 e variance­
covariance matrix element linking parameters ai and aj is defined as 

vs . . = I (a . - a. )( a . - a. ) I ( N - 1) 
lJ n 1n 1 Jn . J 

, (4) 

if the a; and a. have been taken as an average over the same set of data. 
. J 

(Otherwise the denominator is more appropriately taken as N.) If these 
sample covariances are boldly taken as correct for representing the 
probabi.lity density function of the coal-burning electric plant cost 
parameters, then the uncertainty matrix components of the mean param­
eter set can be taken as 

V .. = VS.j/N lJ . 1 . 

This relation can be obtained for example by considering a weighted· 
least-squares combination of the N parameter sets. 

(5) 

When portions of the overall parameter covariance matrix are esti-. 
mated using Eqs. (4) and {5), there will be many small off-diagonal 
elements which will appear to have little pattern, as well as some 
correlations large enough to appear real. In this technique one accepts 
the helter-skelter appearance of the matrix elements \vith confidence 
that on the average the elements obtained will give a correct repre­
sentation for uncertainty propagation. 

Consider Common Uncertainty Components 

The effects of common underlying uncertainties are best analyzed 
starting with linear error terms, not variances. A common uncertainty 
often systematicly affects the value chosen for more than one input 
datum. As a simple example we trace the covariance terms introduced 
when construction cost data are combined and represented, as in LEAP, by 
specific capital costs (SCCi) and capital labor fraction (CLFRi) for 

the ith type of faciljty. (1) Assume that the underlying data are the 
estimated or observed materi.als cost·Mi and labor cost Li (which might 

be further subdivided by classes of labor and types of material), \~here 
all these costs are normalized for a given sized plant. Then 

I •. 
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SCC. = L. + M' .. ,. iO!:nd CLFR. = L-/(L. + M~). The first step is to express 
1 1 li 1 1 1 . 1 

these relations ii1n tenns of small error terms: 

oSCC- = &t- + iM. 
t 1 1 

oClFR. =, (,lrl1 .. ol.- L. 6M.)/SCC=? 
1 ' "il "11 1 l 1 

{6) 

If the labor and rnateri.als estimates are for (incorrect) simplicity as­
.sumed not to be oO>rrelated, i.e., if E{6L. x oM.} = 0, we can write the 

. 1 1 

input covariance. elements induced by the choice of variables: 

V(SC.C.J =·1Ell{-oSCC.) 2 } = V(L.) + V(M.) 
1 .' 1 1 1 

V{CLFR;)) =: 'MtV(l1) + LrV(Mi) /Seq 

CoV(SCC' .. ,CIL!FlR.) = M.V(L.)- L.V(M.)/SCC~ 
. ll' 1 1 1 1 1 1 • (7) 

These d:fst:iiirrrctions may be i nconseqtient i al for the current version 
of LEAP, si'nce tfine.reiis no balance of materials or labor use against 
supply and only tll1l'e tf(J)tal capital cost should. impact the model solu­
tion. However·,, tlh,e details should become more relevant for distant 
years becau.se th:e uncertainty will become significant in the assumption 
that one choice~ of coiTilstant value dollars can be correct for both labor 
and mat,eri als t.bN.ugh the year 2020, and the breakdown of specific 
capital cost int.G ·its components wi 11 be required fo assess covariance 
elements Cov(SCC:ii·'' SCCj) linking the cost estimates for the various 

types of facilfi:ti<es co,ns idered. 

The above: !!»iittern of analysis, in whi.ch the behavior of uncer­
tainty .propagati@ln is traced through the same process used to develop 
the parameter itself, is typical of the manipulations required in 
developing input lJDaraJil!leter uncertainty matrices. 

Revie\'11 Impl.icat:faurns of Common Parameter Values 

A common' mH~merical value for a series of parameters does not neces­
'.sarily reduce the mmdb.er of model parameters for uncertainty analysis. 
In the :lEAP examw>le, many corresponding parameters for different types 
of facilities are -given common values, presumably for lack of suffi­

:cient causecto;dn©ose different values. {6) Examples are the discount 
rates for debt amm for equity, which are given the same values for all 

·-industries-to p·emmit calculation of the present values of future profit 
flows. The app.ro>x-~mation seems reasonable, since the performance of 
the financic;tl matrikiets may tend to influence all industries comparably; 
certaiinly if di:ff1erernt discount rates were specified for the various 
industries tlle marnn component of the uncertainty in these rates \'/Oul d 
be ·strongly corre·nated for the various industries~ Yet it is uncertain 
that the same rarli;1es will be appropriate for th~ various industries, and 
a relatively smailn difference bet\'/een discount rates for competing 
industries would ,affe:ct relative vlillingness to invest in new c!}pacity. 
Since a pr.trne· ga-a·1 hn· 1 ong-run models such as LEAP is to characterize 
adequately the rrriatrket penetration of new energy technologies, the 
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discount rates for the various technologies may need to be treated as 
separate parameters for uncertainty analysis. 

A second example from LEAP is that few parameters are indexed in 
the time variable. Taking the inflation rate as zero is surely a reason­
able simplification, yet we know that the mean inflation rates for var­
ious producer categories differ by as much as a percent, (4) so relative 
costs.for competing industries may shift in the future for reasons not 
easily related to technological change. At this time we.do not assume 
that early attention should be awarded to this comp.lexity! The point is 
that the parameters given common values in the model should be scanned 
for cases where the parameters must be kept separate for uncertainty 
analysis. 

Scan for Blunders 

Blunders in assessment of parameter uncertainties may be sought 
using a variety of techniques. The simple ones depend on careful review 
of labeled arrays looking for unreasonable values. Finding mistakes is 
facilitated by ·scanning tables of absolute covariance elements, relative 
covariance elements, and correlation matrices. Mi~takes.a~e also found 
after uncertainty propagation if the impact of a.paraineter•s uncertainty 
seems incredibly small or large. · · 

A sophisticated test is based on the knowledge that every proper 
parameter uncertainty matrix must be positive definite; that ·is, all 
the eigenvalues of the matrix must be positive. This must be so, or a 
set of sensitivity coefficients could be found which would correspond 
to a ne~ative variance for some res~onse! So a strong test of a covari­
ance matrix is to diagonalize it and scan for any negative eigenvalues. 
This may be practical if the overall uncertainty ·matrix can be arranged 
to consist of relatively small blocks of nonzero elements along the 
major diagonal. 

CONCLUSIONS 

One part of the uncertainty in the output of an energy economy 
model such as LEAP arises from the uncertainties in and correlations 
among the model •s input parameters. The modeler•s and u~er•s confi­
dence in a model, and therefore its utility, will be increased if it 
can be shown that the projected impact of the input uncertainties on 
the calculated responses of interest are sufficiently small as not to 
imperil the intended uses. Since a-method exists which in principle 
can produce these projected output uncertainties, ·this method should be 
applied to models of potential importance. Procedures exist to help 
the evaluator define the input parameter variance-covarian~e or uncer­
tainty matrix, but the effort involved in this evaluation will be 
substantial even if the effort is confined to those parameters be 
lieved to be most important. When the methodologies for evaluation of 
input uncertainties and propagation to output model responses have been 
demonstrated, it will be appropriate for the input uncertainties to be 
assessed in conjunction v1ith the development of the input data base. 
Perhaps the greatest impact of uncertainty analysis on model outputs 
will be the numerical clarification of which questions can reasonably 
be asked of a model consistent vJith the information content of its data 
base. 
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