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A DESCRIPTION OF DASSL:
A DIFFERENTIAL/ALGEBRAIC SYSTEM SOLVER

a
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Linda R. Petzold
Applied Mathematics Division
Sandia National Laboratories, Livermore

ABSTRACT

This paper describes a new code DASSL, for the numerical solution of implicit
systems of differentifal/algebraic equations. These equations are written in
the form F(t,y,y') = 0, and they can include systems which are substantially
more complex than standard form ODE systems y' = f(t,y). Differential/alge-
braic equations occur in several diverse applications in the physical world.
We outline the algorithms.and strategies used in DASSL, and explain some of
the features of the.code. In addition, we outline briefly what needs to be
- done to solve a problem using DASSL.
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Introduction
This paper describes a new code DASSL, for the

numerical solution of implicit systems of differential/alge-
braic equations. These equations are written in the form

F(t,y,y) =0

y(to) == ¥o (1)

V(to) = wo'.

where F', y, and ¥ are N dimensional vectors. DASSL
is useful for solving two general classes of problems which
cannot be handled by standard ODE solvers. For the first
class, it is not possible to solve for y explicitly to rewrite
(1) as a standard form ODE system y = f(t,y). For the
second class, it is possible in theory to solve for ¥, but it is
impractical to do so. For example, to convert Ay’ = By to
standard form, we must multiply by A™'. If A is a sparse
matrix, A”' may not be sparse, so it is advantageous to be
able to solve the equations in their original form.

Systems of differential/algebraic equations (DAE) arise
in several diverse applications in the physical world. Prob-
lems of this type occur frequently in the numerical method-
of-lines treatment of partial differential equations!. In these

-applications, §F /8y’ may be singular (so that it is not pos-
.sible to solve explicitly for y’) because of boundary con-
‘ditions, or because the PDE system includes both evolu-

tionary and non-evolutionary equations (such as the incom-
pressible Navier-Stokes equations, or the boundary layer
equations3). Differential/algebraic equations arise in the
simulation of electronic circuits, where they are sonietimes
called semistate equations3. These systems also occur in the
dynamic analysis of mechanical systems®. These problems
can all be solved using DASSL.

Nearly all of the most popular codes for solving ordi-
nary diferential equations have been directed at systems
written in standard form

v =f(t,y), y(to) = Yo. (2)

Several codes besides DASSL have been written for solv-
ing systems which cannot be written in standard form. In
the early 1970's, C. W. Gear® first noticed that, numeri-
cal methods for solving stiff differential systéms, could be
adapted to solve some DAE systems, and Gear and Brown®
wrote a code for this purpose. In 1980, G. Soderlind’
published a code for solving systems of the form

Y =102 Yt) =10 )
0 = g¢(t,y,2),

in which y and z are treated by different methods. A.
C. Hindmarsh and J. F. Painter recently released a code
LSODI! for solving linearly implicit DAE systems A(¢, y)y'
= f(t,y). LSODI is similar to DASSL in that it uses back-
ward differentiation formulas (BDF) to advance the solution
from one time step to the next. However, there are sub-
stantial differences between these two codes, both in how
they are used and in the strategies which are used internally
to compute the soiution. We will explore some of these
differences later; for other details, the reader is referred to
Petzold®.

DASSL was developed beczuse of a need at Sandia
National Laboratories to solve problems of the form (1).
The code has been used for solving problems arising from
several different applications by users with varying back-
grounds, on several computers. We have token care to make
the code easy to use, while at the same time providing op-
tions which are needed for flexibility in solving practical
problems. The Fortran source code for DASSL can be ob-
tained by writing to the author.

How The Code Works

In this section, we outline the algorithms which DASSL
uses for advancing the solution from one time step to
the next. A complete description of the algorithms and
strategies used in the code can be found in Petzold®.

The underlying idea of Gear® for solving DAE systems
is to replace the derivative in (1) by a difference approxima-
tion, and then to solve the resulting equation for the solu-
tion at the current time ¢, using Newton's method. For ex-
ample, replacing the derivative by the backward difference
in (1), we obtain the first order formuia

1, — —
F(tmym‘{l—ATyL-l') = Q. (4)
n

This equation is then solved using Newton's method,

oF 1 aF\! Y — Yn—1
mat o m_(OF 1 OFN ol m Yn — Yn—t
n In (ay' rvs ay) ( Yn KV )

(5)
where m is the iteration index. The algorithms used in

. DASSL are aun cxtension of this approach. Instead of using

the frst order formula (), DASSL approximates the deriva-
tive using the A*M order backward differentiation formula
{BDF), where & ranges from onc to flve. On cvery step it




chooses the order k and stepsize At,, based on the behavior
-of the solution.

Newton's method(5) converges most rapidly when the
initial guess y9 is accurate. DASSL obtains an initial
guess for y, by evaluating the polynomial which inter-
polates the computed solution at the last k - 1 times
ta—1sta—2; - tn—(k41), 3t the current time ¢,. An initial
guess for ¥, is obtained by evaluating the derivative of this
polynomial at ¢t,. Once y) is found, Newton's method is
used to solve for y, as in (5), except that in general the
derivative is approximated by the '™ order BDF formula,
instead of by the backward difference of y,. When the
stepsize is not constant, there is a choice as to which form
of the BDF formula to use. DASSL uses the fixed lead-
ing coefficient form of the BDF formula (see Jackson and
Sacks-Davis? ). These formulas tend to be more stable than
the fixed coeficient formulas used in LSODI!, and are more
eficient in some respects than the variable coefficient for-
mulas used in EPISODE!®. In DASSL, these polynomials
are represented in terms of scaled divided differences; the
details are discussed in Petzold®.

It is important to solve the nmonlinear equation (4)
eficiently. To simplify notation, we can rewrite this equa-

tion as -
F(t,y.ay+5)=0, (6)

where & is a constant which changes whenever the step-
size or order changes, f is a vector which depends on the
solution at past times and t,y,a,8 are evaluated at t,.
This equation is solved in DASSL by a modifled version of
Newton's method, :

8F  8F\"
ymHl =y C(a—y-; +a-5;) F(t,y™ &y™ + p). (T)

The iteration matrix G = 8F /8y + adF /8y is computed
and factored, and is then used for as many time steps
as possible. In general, the value of @ when G was last
computed is different from the current value of &. If o is too
different from &, then (7) may not converge. The coanstant
c in (7) is chosen to speed up the convergence when axa,
and is given by 0

o)

The rate of convergence p of (7) is estimated whenever two
or more iterations have been taken by

_ (g™t — g\
, “( W=7 ) ' ®)

(The norms are scaled norms which depend on the error
tolerances specified by the user.) The iteration has con-
verged when

(8)

[

Ly =y <03, (10)

1—0»p
It p > 09 orm > 4, and the ite}ation ‘has not yet

converged, then the stepsize is reduced, -and/or an iteration -

matrix based on current approximations to y,y/, and a is
formed, and the step is attempted again.

‘The linear systems are solved using routines from the
LINPACK!! subroutine package. The matrix can cither
be dense or have a banded structure. For most problems,
the iteration matrix is computed by fnite differences. The
J*t column of G is approximated by incrementing the
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J*® component of y in (6), and then forming the finite
difference quotient. The choice of the increment is a deli-
cate but important issue; for details, see Petzold®. When
G is banded, it is computed using the algorithm of Curtis
et. al.!2 so as to minimize the number of function evalua-
tions required. There is an option available for the user
to write a routine to compute G, given ¢,y,¥ and a. For
some problems, this can be more efficient than using finite
differences to compute the matrix.

After the corrector iteration has converged, an error
test is made to determine whether the solution satisfies
a local error tolerance specified by the user. The test is
satisfled whenever Cllyn — yo||< 1, where C is a constant
which depends on the order and recent stepsize history of
the method. The constant C is chosen to control both the
variable stepsize local truncation error, and the error in
interpolated values of y between mesh points. If the error
test is satisfied, the code takes another step. Otherwise, the

-stepsize and/or order are reduced and the step is attempted

again.

The stepsize and order for the next step are deter-
mined using basically the same strategies as in Shampine
and Gordon!2. The code estimates what the error would
have been if the last few steps had been taken at constant
stepsize, at the current order k, and at k — 2,% — 1, and
k -+ 1. If these estimates increase as k increases, the order
is lowered; if they decrease, it is raised. The new stepsize
Atn4 is chosen so that the error estimate based on taking
constant stepsizes Atn4.1 at order k,4; satisfles the error
test.

One of the main complications which arise in solving
DAE's, which has no counterpart in ODE’s, is that it may
not be a trivial matter to obtain initial values for all of the
components of y or ¥. Depending upon the application,
users may know yo but not y}, y5 but not yo, or various
combinations of these possibilities. In our experience, it is
fairly common for users to know all of yp, and some but not
all of the components of y}. To facilitate solving problems
of this type, there is an option in DASSL to compute the
initial values for ¢/, given the initial values of ¥ and an ini-
tial guess for ;. The aigorithm uses the backward Euler
method (4), in conjunction with a damped Newton itera-
tion. A stepsize Aty is chosen based on considerations ex-
plained in Petzold®, and the iteration matrix is computed at

= yo + AtoYy, ¥ = vj. This algorithm works best when
the iteration matrix does not depend on g/, or depends on
this value only weakly. In contrast to the approach used in
LSODI, it is applicable even if F /8y is singular.

The code is arranged so that a driver routine, called
DASSL, allocates storage, checks for illegal input and other
errot’ conditions, sets up the initial stepsize and optionally
calls a subroutine to compute the initial derivative. DASSL
calls the one-step solver DASTEP to advance the solution
over each time step, and manages the output and error
messages. Communication between DASSL and the other
routines is via parameter lists and one labeled common
block whose elements can only be altered by the driver,
The common block contains pointers into work arrays, and
these pointers can be chaunged only by the driver. Two

-routines NJAC and SOLVE manage the solution of the

system of linesr equations in DASTEP. NJAC computes

“the iteration matrix and factorizes it, and SOLVE calls the

appropriate linear system: solver to solve the decomposed
system. Because the linear algebra is localized to these two
routines, it is a simple matter to add new linear equation
solvers for ditlercnt types of matrices.

-
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Using DASSL

DASSL is designed to be as easy to use as possible,
while providing enough flexibility and control for solving a
wide variety of problems. It is extensively documented in
the source code. In this section we outline whai needs to
be done to solve a problem using this code.

The most important information the code needs is how
to define the function F in (1), which describes the equation
to be solved. To define F’, the user writes a subroutine
RES which takes as input the time T and the vectors Y
and YPRIME, and produces as output the vector DELTA,
where DELTA= F(T,Y,YPRIME) is the amount by which
the function F' fails to be zero for the input values of T,Y,
and YPRIME.

To get started, DASSL needs a consistent set of initial
values T, Y, and YPRIME. This means that we must have
F(T,Y,YPRIME)=0 at the initial time. As we pointed
out earlier, finding a consistent set of initial values for a

iven Eroblem may not be trivial, and there is an option in

ASSL to compute the initial value for YPRIME. We know
of no procedures which apply in ail situations for obtaining
consistent initial conditions. Often, it is not difficult to find
these values for specific classes of physical problems.

Additional information which must be supplied to the

.solver is virtually identical to that needed by ODE solvers*¢,

so we will not discuss it further here.
When DASSL is finished (either successfully or unsuc-

cessfully), it returns to the user's callinifprogram with a flag
'IDID which indicates what happened.

the flag is positive,
the problem was soived successfully. Otherwise, something
went wrong. DAE systems are in general quite a bit more
complex than ODE systems (after all, ﬁl) jncludes (2) as a
special case), and the number of complicaticns which can
occur in solving them is correspondingly greater. The way
that DASSL handles failures is explained in Petzold®, and
the code documentation gives information about the most
likely cause of the problem in the event that a negative IDID
is encountered,

If the DAE system does not have a well-defined solu-
tion, then the code is likely to have trouble. It is possible
to write down problems of the form (1) which do not have
any solutions, or which have solutions that are not unique.
These problems cannot (fortunatzly!) be solved by the code,
and will resuit in a negative IDID. Other problems may
have solutions which are unique except at a single point.
Still apother type of system has a unique solution, but the
problem is not weil posed in the sense that a small (but dis-
continuous) perturbation to the equations causes an enor-
mous change in the solution. All of these systems ran cause
problems for a code. Often, the system ¢an be rewrittenina
mathematically equivalent form so that.it is solvable. This
sometimes involves differentiating an algebraic-constraint
and/or eliminating a variable from the system by solving
for it in terms of other variables and their derivatives. A
complete description of the sources of these difficulties. is
beyond the scope of this paper. The interested reader is
referred to Petzold!® for a more detailed discussion of these
types of systems. These complications will never occur for
many practical problems. Anyone using this type of code
should, however, think carefully about both his problem,
and the formulation of his problem, before trying to solve
it numerically.
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