OBSERVATION AND ANALYSIS OF TIME-DEPENDENT CLOSED ORBIT MOTION IN THE LAMPF PROTON STORAGE RING

Authoris) R. L. Hutson, D. H. Fitzgeraid, and R. J. Macek

```
sugmitted to Particle Accelerator Conf.,
    San Franclsco, CA
    May 6-9, 1991
```


DISCLAIMER

This repori was prepared as an account of work sponsored by an agency of the United Siates Government. Nether the United States fovernment nor any agency thereof, nor any of their employees, makes any warranty, express ur implied, uf ussumes any legal liability of responsibility for the accuracy, completeness, of usefulness of any information, upparatus, product, or procest disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, prowem, or wervice by trade nane. trademark. manufacturer. or otherwise dues nit necessurily constitute or imply its endorsement, recommendalion, of favoring hy the United Siates (iovernment of any agency thereof The views and opinons of authors expressed herein do not neceasarily state or reflect those of the United Siates (Government or any agency thereof

H, d '

"

Observation arıd Analysıs of Time-Dependent Closed Orbit Motion in the LAMPF Proton Storage Ring

R. Hutson, D. Fitzgerald, and R. Macek
Medium Energy Physics Division, Los Alamos National Lab, Los Alamos, NM 87545

Abstract

When the stored beam is artificially offset in a section of the LAMPF Proton Storage Ring by changing sclected ring dipole strengths, there is evidence for a small time dependence of the offset during the course of beam injection. A complete discussion of the time dependence of orbit offsets should take into account at least the following possibilitics: 1) correlations between the injection timing pattern and ring dipole field ripple, 2) corrclations between the injection timing pattern and changes of beam position monitor characteristics, and 3) growth of space-charge effects as the number of stored protons increases. Since there is no a priori reason to expect the correlations mentioned, we have analyzed the ubserved time dependence of the beam offset in terms oi space-charge effects only, although the other possible causes cannot be ruled out. The buildup of circulating charge during preton injection leads to a shift of the betatron tune of individual protons because of space-charge forees; this shift can cause a change of the individual proton closed-orbit positions, and consequently a change in the position of the beam as a whole. Al the end of a PSR injection cyele there are approximately 2.5×10^{13} protons stored in the ring. The observed time dependence of the beam offset indicates a horizontal-plane tune shift of -0.03 ± 0.02; this is consistent with a theoretical estimate ol a maximum expected spacecharge lune shift of -0.09 when 2.5×10^{13} protons are stored in the ring.

I. INTRODUCTION

In a storage ring the average position of the stored beam at a given location depends on the betatron wne of the individual protons averaged over the whole ensemble of protons circulating in tite ring. If, for any reason, the average tune changes in time, e.g., because of space-charge forces, the average orbit position is affected. We made use of this fact to look for evidence of space-charge horizontal-plane tune shifts in the LAMPF Proton Storage Ring (PSR) at LANL. Wc observed the horizontal beam position at a fixed location in the ring at three different times during proton injection as the amount of circulating charge, and the resulting space-charge effects, increased. These observations were made both before and atter the heam was offset by changing selected ring dipole strengths (referred to from here on as dipole ertors). The time dependence of the offict provides a measure of space-charge tune shift.

II. THEORY

4 (losed-orhir Distortion

It hals been shown that the change of an individual particte's dosed orbit position. caused by insertion of dipoide errors in a
storage ring, depends both on the errors and on the betatron tune of the particle [1,2]. Therefore, if dipole crrors are introduced purposely in order to offset the closed orbit away from its initial position, the magnitude of the offset at a given location in the ring provides a measure of the betatron tune of the paricle.

If dipole errors are represented as angular kicks, o(k), at locations, \mathbf{k}, then the offset, $\mathrm{su}(\mathrm{s})$, of the horizontal position of the closed orbit of a given proton at location, s, can be written as

$$
\begin{equation*}
\Delta u(s)=\sum_{k} \frac{1}{2} \phi(k) \sqrt{\beta(s) \beta(k)} \frac{\cos (\pi Q \cdot \mu(s, k))}{\sin \pi Q} \tag{I}
\end{equation*}
$$

where $\beta(s)$ and $\beta(k)$ are the betatron functions al the location of interest and at the location of the kth kick respectively, Q is the betatron tune of the proton, and $\mu(\mathrm{s}, \mathrm{k})$ is the phase advance measured irom the kth kick t the location, s [2].

B. Space-charse Tune Shift

Near the end of a HSR injection cycle, the circulating charge is large enough to exert significant space-charge forces on protons; the forces are defocusing and reduce the tune of individual prowns. The net defocusing effect, as manifesied in relatively large tune shifts, is largest for those protons undergoing small-amplitude betatron oscillations about the center of charge of the beam; protons following trajectories with large amplitude oscillations experience relatively smaller space-charge tune shifts. This amplitude depe-dence of the tune shift can be explained in a quailutive way by using a harmonic-oscillator-like picture. In this model the ring quadrupeles provide a restoring forec (with an effective spring constant) to proton motion transverse to its average otit. The oscillation frequency or wne depends on the net effect of all the quadrupoles, increasing with quadrupole strength. The eflect of the repulsive space-charge forces is to cancel some of the primary atuactive forces exerted by the quadrupoles: the result is a weakening of the effective spring constant and a decrease in the oscillation frequency or betatron tunc. This explanation car be made a little more quantitative by considering a merlel in which the space charge is distributed with cylindrical symmetry about the average orbit, the tolal charge withill " radius r being given by $y(r)$. The repulsive force on a prown at r is then proportional $t 0 \mathrm{G}(\mathrm{r}) / \mathrm{r}$. If the forec is written in the came form as the force defiang a hamontic oscillator, i.e., an p. oportional to the displacement I, the space-charge force is expressed as

$$
\begin{equation*}
f(r)-\frac{n}{r^{2}}(r) \times r \tag{?}
\end{equation*}
$$

where $\mathrm{a} \times \mathrm{q}(\mathrm{r}) / \mathrm{r}^{2}$ looks like a spring constant.
At small r and for realistic charge distribuions, $q(r)$ is very nearly proportional to r^{2} so that the spring constant describing the space-charge force is approximatcly constant independent of r. This constant subtracts from the constant representing the effects of the quadrupoles. So, for those protons with small betatron-oscillation amplitudes, the result is a shift of the oscillation frequency or betatron tune downward. For protons undergoing large-amplitude oscillations, the average q(r) over the full range of r spanned by the proton motion tends to a constant as $\mathrm{r}_{\text {max }}$ increases so that the effective spring constant expressed above tends toward smaller values when averaged over the full range of r. In this case there is relatively litue space-charge tune shift.

C. Beam Position Offses

Equation (1) shows that the magnitude of a proton closedorbit offset, introduced by the insertion of dipole errors, depends on the space-charge tune shif: because of the offset dependence on Q. Since each proton has a different becatron oscillation amplitude, its tune shift, and therefore its closedorbit offset, will be unique. Any measurement of beam position offset provides a measure of the average closed-orbit offsets for all the protons each having a different betatron oscillation amplitude.

III. MEASUREMENTS

A. Description of the Proton Storage Ring

The PSR, sketied in Figure 1, is filled with protons by lirst stripping H^{-}ions to H^{0} with a 1.8 -Testa dipole magnet in the ring injuction line and then stripping the H^{6} to H^{+}with a $2(K)-\mu \mathrm{g} / \mathrm{cm}^{2}$ carbon foii in the ring itself.

Figure 1. I ayout of ik l.ANL. Ireton Storage Ring
After the ring is filled ty proton injectien. the stored tham

 Near He ar at an mecoun int rval there are apmoximately
2.5×10^{13} protons circulating in the ring, enough to give rise, to significant space-charge forces.

B. Offset and Measureticent of Beam Position

In section II it was pointed out that the magnitude of the bea. n offset caused by insertion oi dipole crrors depends on the spzce charge tune shift because of the tune dependence of the offset shown in equation (1). We used this orbit offset behavior as a tool to look for evidence of a space-charge tune shift as the amount of beam circulating in the ring increases. For the measurements described, the nominal unshifted horizontal-plane betatron tune was 3.16 .

Two sets of measurements were done. During the first set there were no dipole errors introduced into the ring artificially. The beam position was measured at the beam position monitor shown in section 4 of the ring (Figure 1). The position was measured at three different times during an injection interval as the amount of stored beam, and therefore the space-charge effects, built up. The measurements were done at 200, 400, and $580 \mu \mathrm{~s}$ after the start of injection. At $200 \mu \mathrm{~s}$ the amount of stored beam is small, but at 580μ s the effecis of space. charge forces were expected to be detcciable.

During the second set of the same three measurements, dipole errors had been inserted into the main ring benders located at the start of sections $1-6$ by shunting part of the current in these magnets. The dipole strengths were adjusted to result in a nominal $5-\mathrm{mm}$ outward (or positive) orbit shift at the section-4 beam position monitor. Figure 2 shows the relative sizes of the angular kicks introduced by the dipole crors while Figure 3 shows the theoretical (assuming the nominal tune of 3.16) closed-orbit offsets to be expected near the upstream end of the ring quadrupoles.

Figure 2. Kick Angles Introduced at Ring Bendug Miknets it the Start of Ring Sections 16.

Figure 3. Closed-orbit Offsets Expected Near the Upstream End of the Ring Quadrupoles After Dipole Changes were Inscred.

$$
\mathrm{QFn}=\text { focusing quadrupole near beginning of section } n \text {. }
$$ $Q U n=$ defocusing quadrupole near end of section n.

IV. RESULTS

The time dependence of the dipole-error-induced orbit offset (at the section 4 beam position monitor) is plotted in Figure 4. Mcasurements of the beam position were done b; photographing an oscilloscope trace of the beam-positionmonitor signal, and the error bars in Figure 4 represent errors in eltimating the signal suength from thise photograpt.s.

Pigure 4. Plot ol Difference Between Orbit Positions Before and after Insertion of Dipole Strength Changes

The change of the ofbit offect, as time progresses from $\therefore(1)$ Io $5 \times 0) \mu \mathrm{s}$ alter start of amection, is $+1.5+10 \mathrm{~mm}$. The change is interpretad here as evidence for a space-charge func hall caused tov the increase in the number of circulating protoms from near zero to approximately 2.5×10^{11}. By whbituting a range of values of Q into equation (1), along
with the magnitude of the beam angular kicks corresponding to the inserted dipoie errors, a change of Q can be found which results in a change of the calculated value of $\Delta u(s)$ that is equal to the measured orbit offset crange of $+1.5 \pm 1.0 \mathrm{~mm}$; the change of Q consistent with the offset change is found is be -0.03 ± 0.02 and is interpreted as a space-charge tune shift. Recall that this represents a kind of average tune shift over all protons since the tune of an individual proton depends on the amplitude of its betatron oscillations.

Using Guignard's [3] expressions for calculating tune shifts due to direct space-charge forces, we estimate that the maximum expected tune shift for protons in the PSR, when it is operating with a nominal horizonial betatron tune of 3.16 and with 2.5×10^{13} stored protons, is approximately -0.09 . This is somewhat larger than our experimentally estimated value of -0.03 ± 0.02, but it is not surprising since the orbit position measurements average the closed-orbit offsets for all the protons in the beam; some protons have small-amplitude betatron oscillations and relatively large tune shifts, while others have larger osciltations and smaller tune shifts.

V. REFERENCES

[1] E. Courani and H. Snyder, "Theory of the AlternatingGradient Synchrotron", Annals of Physics, vol. 3, pp. 1-48, 1958.
[2] E. Keil, "Single-Particle Dynamics - Lincar Machinc Imperfections", in Theoretical Aspects of the Behaviour of Bcams in Accelerators and Storage Rings, CERN 77-13, 1977. p. 53.
(3) G. Guignard, Sclection of Formulac Concerning Proton Storage Rings, CERN 77-10, June 1977, pp. 43-48.

