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ABSTRACT

Numerical studies were carried out to investigate the gross structure
of flow in cylindrical combustors. The combustor configurations studied
are variations of a working design used at The University of Tennessee
Space Institute to burn pulverized coal at temperatures in excess of 3000K
for generation of a plasma feeding a ‘magnetohydrodynami¢ channel. The
numerical studies were conducted for an isothermal fluid; the main objec-
tive of the calculations was’ to study the efféct of the oxidant injection
pattern on the gross structure of recirculating flows within the combustor.
The calculations illustrate the basic features of the flow in combustors of
this type and suggest implications for the injection of coal and oxidizer
in this type of combustor. :
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Nomenelature

Ci Constant in gerrning eq. (6), 1.45
C2 Consﬁant in governing eq. (6), 2.00
C3 Constant in governing ég. (7); 0.09

D i Combustor diameter, m

k Turbulent kinetic energy, m2/sec?

X Thermal Conductivity, ﬁ/sec m K

L Combustor length, m

P Static pressure, N/m2

T Radial coordiﬁate in physical plane, m
R1 ' Radius of core, m

R2 Radius of outer wall, m

u Axial Velocity, m/sec

U Inlet bulk velocity, m/sec

v ' Radial velocity, m/sec

z Axjal coordinate in physical plane, m

Greek Letters

P Density, kg/m3
u Dynamic viscosity, ut + ul, N sec/m2
ul . 'Laminar viscosity, N sec/m2
Ut Turbulent-viscosity, N gec/m2
w Vorticity, EZ-— 333 1/sec

9z ar
) Stream fuunction, f(purdr - pvrdz), kg/sec
€ Dissipation rate of turbulent kinetic energy, W
ok Prandtl number for the transport of k, 1.0
o> Prandt]l number for the transport‘of €, 1.3
¢ General dependent variable

Y

Axial coordinate in computational plane

N n ’ Radial coordinate in computational plane



1.0 INTRODUCTION

1.1 Recirculating Flows in Combustors

The purpose of this study is to provide conceptual understanding of
the complex aerodynamic environment that exists in the primary combustor of
the Coal Fired Flow Facility (CFFF), This combustor burns pulverized
seeded coal and oil with preheated mixtures of oxygen and nitrogen to
generate a plasma for MHD flow experiments and downstream heat recovery and
pollutant control systems. The.primary combustor operates based .on recir-
culating flow mixing. It is important to understand the characteristics
of recirculation zones, shown schematically in Figure 1. :

Zones of recirculating fluid in combustors exist in general and, for
many types of combustors, e.g. turbojet and ramjet engine combustors, the
recirculation is sometimes created by physical devices called flameholders.
It is desirable that the recirculation zones be generated by purely aerody-
namic methods to avoid the mechanical problems associated with flameholder
hardware. The usual aerodynamic mechanisms for generating recirculation
zones are jet mixing and designing of the combustor with an abrupt increase
in cross—sectional area. The latter method gives rise to combustors that
are called sudden—expansion or "dump”™ combustors.,

The recirculation- zones act as flameholders by providing a flow regime
where the flames may persist and propagate to the remainder of the reacting
flow. The recirculation zones prevent flame blow-off, increase the effec-
tive residence time for thermochemical processes to occur, and, when pro-
perly oriented in the combustor, produce steady, highly efficient combustor
operation. The present study examines the orientation, location, and
strength (or intensity) of recirculation zones in the UTSI MHD combustor
for various oxidizer injection radial locations and for various combustor
geometries. The study does not attempt to simulate the effect of the
pulverized coal jets on the mixing and recirculation processes, In the
future these effects will be investigated, but at present, they are thought
to be small.

Different aerodynamic environments affect coal injector performance;
the injectors must distribute the seeded pulverized coal in an intensely
turbulent flow. For a coal injector which is centrally located, the inten-
sity of the recirculating fluid on the centerline near the coal injector is
of critical importance. Too strong a recirculation will result in the
pulverized coal blowing back on the injector; too weak a recirculation will
result in the coal jets penetrating too far downstream and not being ade-
quately dispersed and mixed with surrounding oxidizer. It seems reasonable
to assume that for such a combustor, the fluid in a central recirculation
zone near the axis will be fuel rich, partially burned products of com-
bustion. Hence, the output chemistry of the flow leaving any such com-
bustor will depend on the combustion occurring in the central and outer
annular recirculation zones and how this flow leaves these zones to mix and
pass downstream. Clues to flow field behavior are provided in a gross sense
by calculated results of the kind presented herein. A preliminary study of
this type was carried out for siwmple cylindrical combustors and presented
in Reference 1.
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1.2 The UTSI MHD Combustor

The UTSI MHD combustor was generally thought to operate as shown sche-
matically in Figure 1, Oxidizer jets enter the combustor through annular
rings of holes in the upstream end of the ‘combustor. Pulverized coal 1is
injected into the primary combustor through a central coal injector, and
enters the combustor in multiple, dense phase jets. The oxidizer jets
penetrate and mix with the coal jets, and, since the oxidizer is preheated
to about 1140K, the coal and oxidizer react and burn. The coal is seeded
with potassium carbonate (KZCO3) and at the equilibrium temperature of
about 3000K, the products of combustion are electrically conducting because
of potassium atom species ionization. :

The combustor generates plasma that is fed to a MHD channel downstream
through a sonic or choked flow nozzle. For the UTSI experiments, the
nozzle downstream of the choked or sonic throat continues to expand in
cross-sectional area, hence, the flow is expanded to low (Mach 1.25) super-
sonic flow speed before eptering the channel. Figure 2 shows a schematic
of the UTSI upstream combustor system up to the nozzle inlet station.

2.0 NUMERICAL SOLUTION PROCEDURE

2.1 The Goverhing Equations for Isothermal Flows

The numerical solution procedure for studying the UTSI MHD combustor
flow fields is a Navier-Stokes solver. The Navier-Stokes equations are re-
cast into a vorticity transport equation, shown in Table I, equation (1).
To close the system of equations, a relationship between stream function
and vorticity was derived, equation (2), of Table I. For laminar,
incompressible flows, the system of equations is complete with the specifi-
cation of the viscosity, equation (3), of Table I. For compressible flows,
an energy equation is also required for closure through the equation of
state. For either incompressible flows or compressible flows, if the
pressure field is required, an additional equation can be derived from the-
Navier-Stokes equation, for example equation (4), of Table I, (taken from
Ref. 2), to “"recover” pressure. The flows that were calculated in the pre-
sent study were treated as isothermal and incompressible to provide a
qualitatively correct understanding of the behaviof‘of the flows.

F1nally, for turbulent flows, it is assumed that the vorticity
transport equation, equation (1), was valid to describe the motion of the
flow when the laminar viscosity was replaced by an effective or turbulent
viscosity. A model for turbulent viscosity is thus required and two models
are often used. These are a constant effective viscosity, also given by
equation (3), and a two—equation model based on turbulent kinetic energy
and its (locally isotropic) rate of dissipation, given by equationo (5) and
(6) respectively. For the two—equation model of turbulent transport, the
turbulent viscosity is related to the turbulence kinetic energy and dissi-
pation by equation (7), of Table I.

2.2 DMNumerical Solution System

The present study used coordinate transformations to transform the
actual axisymmetric combustor geometry and the equivalent nozzle geometry
into a uniform cylindrical coordinate geometry, Figure 3. Then each

3
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TABLE T - SYSTEM OF GOVERNING EQUATIONS
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governing equation was transformed using chain-rule differentiation from a
physical coordinate (z,r) system into a transformed coordinate (£,n)
system. Each equation was then transformed into the general form given in
equation (8) for use in the actual

92 82¢ 3 3¢. .
a1¢ 3z Y 220 377 PleaE "2t de 7 O | o ®

finite difference numerical solution method. The numerical solution method
is a point-by-point,:under/over relaxation method that has been described
in References 2 — 6. The details of the application and operation of this
solution procedure are not discussed in this paper.

3 The boundary conditions.fer the pfesent study are shown in Figure 4.
When using the two-equation turbulence model, the turbulent-kinetic energy
(k) and dissipation (€) had to be evaluated and assigned at the walls

during the course of the solution. The usual procedure of assuming nearly -

equilibrium conditions (turbulence production = turbulence dissipation) at
the walls led to numerical instability if the equations were not relaxed
carefully. This resulted in 'excessive computing times since so many casee
were being studied. So to make qualitative estimates of the nature of the
recirculating flows, a constant effective viscosity model was used in the .
majority of the calculations. Essentially, this "laminarizes"” the computed
‘flows, which 1s an acceptable approximation for .the purposes of the present
study. A more thorough theoretical study has recently been completed, and
will be presented in the future, that identifies the effects of turbulence
modelling on the predicted internal flow fields of such configurations,’ '
Reference 7.

2.3 Parameters of the Calculation

The primary parameters varied in the present study were the combustor
length to diameter ratio and the outlet conical contraction angle, for
fixed oxidizer inlet conditions. Then, the combustor geometry was fixed
and the oxidizer inlet location was varied radially, compared to a base or
reference case. In all cases the input mass flux and velocity were held
constant. The governing set of variables for each’ case therefore, were p,
u, and HE, and the geometry of the combustor.

3.0 CALCULATED RESULTS

3.1 Fixed lnlet Conditions for Variable Combustor Geometry

Figures 5, 6. and 7 show, for fixed inlet conditions and approximately
equal L/D, the effect of conical contraction anple on .the internal recir-
culation patterns. The contraction angle has a relatively minor effect on
the structure of the recirculation zones' in the main combustor for this L/D
ratio combustor. The outlet velocity profiles are significantly affected,
however. The outlet velocity profiles are for incompressible flow and thus
are not accurate in terms of magnituce, Nevertheless, fhe profile shapes
can be compared. The profiles shown in Figures 6 and 7 still exhibit a
wake-like character which suggests that fluid from the inner and outer
recirculation regions may not be well mixed when leaving the combustor.
Based on these limited comparisons, it is inferred from a purely aerodynamic
viewpoint, that steep (greater than 43°) contractions should not be used
for combustors with L/D approximately of the order of unity.
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Boundary Conditions
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Figures 8, 9 and 10 show, for fixed inlet conditions and contraction
angle, the effect of varying L/D on the recirculation zone structure. A
comparison of the figures shows that the structure of the inner or central
recirculation zone and the velocity of the backflow, is relatively
unaffected by the L/D ratios evaluated. On the other hand, the outer
recirculation zone is greatly affected by the length of the combustor. The
outer recirculation region can extend into the conical section of a short
combustor. The velocities of the backflowing fluid do not seem to be
greatly affected in either recirculation zone. The calculations suggest
that if reactiﬁg flows were contained by these combustors of different
length, the flow chemistry and the uniformity of the temperature and con-
centration profiles at the combustor exit would be very sensitive to com-—
bustor length or L/D. For this contraction angle (43°), it takes a
relatively long combustor, L/D greater than 1.725, for the wake-like
character of the velocity profiles to begin to dissipate, again suggesting
that steep contraction angles should be avoided in short combustors, and
that a combination of L/D and contrartion angle can be found to optimize
the conbustur performance, . -

3.2 Fixed Combustor Geometry and Variable Inlet Conditions

The calculations, presented in Fig 11 and 12, together with the
results of Fig 6, show the effect of varying radial location of the oxi-
dizer injection ports on the structure of the recirculating flows inside
combustors of fixed geometry. For these calculations, the total mass flow,
the injection velocity, the L/D ratio, and the contraction angle of the
conical outlet have been fixed. Because the flow is treated two-
dimensionally, the rings of oxidizer injection holes were replaced by
annular slots. The axisymmetric affect of radius of the annular slots
requires that the slot widths be decreased for increasing radial location,
and vice versa, for constant input stream flow area. The figures show that
the internal structure of the flow field inside the combustor is very
dependent on the radial location of the oxidizer injection ports. The
three figures document the conclusion that for fixed input mass flow, the
radial location of the oxidizer jets is the single most important control
parameter for establishing the size of the inner and outer recirculation
zones., The calculations can be used to argue that favorable locations for
the oxidizer holes will probably be at the midspan of the inlet plane or at
slightly greater radial locations. Such configurations result in recir-
culation zones of approximately equal size in the outer annular region and
in the central core region into which the coal is injected. Considering
the prewvinus raesults, for a combuoter of L/D Letween 1.0 and 2.0, and a 30°
conical contracting combustor outlet, ‘the oxidizer injection pattern should
be near optimum for performance based on generating a uniform temperature
and composition plasma when located at the midpoint bhetween thec centerline
and the outer wall. This is about the best or limit of utility for a cold
flow analytical study in terms of what it can provide to describe optimum
combustor geometry.

3.3 General Combustor Configuration

In the previous calculations, the nozzle of the combustor was treated
as a contracting conical section. To demonstrate the generality of the
program to treat nozzles of arbitrary geometry, a calculation was made for
a combustor with L/D x~ 1.4, oxidizer injector location near the half-radius
and a 45° contracting conical nozzle with an extension, The program was

12
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able to easily compute the flow in this configuration and the results are

displayed in Fig 13, Thus, in principle, the program can be used to com-

pute the flow from combustor inlet plane to the beginning of a real nozzle

throat regime, Fig 13 demonstrates the power of the coordinate sketching

technique for handling arbitrary axisymmetric nozzle geometries. It must

be pointed out that the effects of compressibility were not incorporated in
the present model formulation which was based on constant density.

4.0 SUMMARY

The results of the calculation for an isothermal analytical combustor
model showed that the radial location of the oxidant injector had the
single greatest effect in establishing the characterictico of the recir-
culation zones inside the combustor. A radial locatiom, for a single row
of holes, about half-way between the axis and the wall may be ahout the
optimum jet position for generating an outer annular and central recir-
culation zone of about the same size and strength, The effect of the
angle of the conical contracting nozzle inlet was secondary on the internal
recirculation zone structure, but did affect the degree of homogeneity of
the flow leaving the combustor and entering the nozzle. A contraction
angle greater than about 45° should be avoided based on the results of the
present calculations if the combustor length is short. The effect of
varying the combustor L/D ratio on the inner recirculation zone structure
was small, but, for the radial location of the injector studied, the effect
of L/D on the outer recirculation zones was significant, hence, short (L/D
< 1.0) combustors should be avoided if possible. There is, of course, a
trade-off: shorter lengths for fixed diameters means lower heat loss and
hence higher thermal efficiencies for the combustor, while on the other
hand, short combustors may not provide for sufficient mixing, hence, lower
aerodynamic performance and combustion efficiency. Thus, in the present
study, an isothermal flow analysis indicates that a rombugtor of L/D ~
1.25, conical nozzle inlet angle of 30°, and a radial location for oxidizer
injection at about the half-radius position should lead to good combustor
performance from a purely aerodynamic viewpoint. To verify this result,
the effects of combustion chemistry on the flame structure in actual com-
bustors must be studied. '
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APPENDIX A

Coefficients in the Standard Form* for the Governing Equations

 for the Transformed Coordinate System

~*[Equation 8]



GOVERNING EQUATION FOR VORTICITY (w)

Vorticity is defined, for two-dimensional, axisymmetric flow as

ov Ju
R i (9)

ahd the transport equation for vorticity, derived from the Navier-Stokes
equation is

32w 32w pu 23y W  pv 2 3pw dw

Fr I v R i i ol PR i A T

192 1382w pv 1 w1
iz tvirt S rwoa et

2 32y 3v du 92y du 32u v AW -du v v
—_——— — t —— (—+ — + =) -

T[_azar (a_r'a—z) 322 3r 9r2 9z 93z dr 9z  dr r

U 9 du dv : 1 93(u2 + v2) 3p 3(u2 + v2) 3p
TR tE TP R e w32 = 0 (10)

This equation is transformed to stretched coordinates (£,n) as

32w W 320w 92 qw
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32w w ' azm 32w oW
28 —— + 29 + 227 210 w5 + 211 —= + 212 —— -

982 35 3Ean n2 3n
1 ) du . 3w w . W
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1 U - aw Jw
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1 (a2 a2y Au Pu %y ] du
- ——— + _
m (z 363 + z3 — E + 221 zb e FRTY z5 T + 2z
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P —c —_— 1) — —_— ? — .
'(48 ) z' 3E 2z7 zll) 3E9n + z1l1 302 z12 8n) +

Wt
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2 2, ' a2y du 32u 32y
= =F —_—t + — + z4 210 — + 10 ——
. {(z13 g + z1 z7 502 2h 2] g+ 2l4 5o+ 24 210 oo+ 2l 210 )
ov 8u 32y oy azu
- — + + 23 —+ +
(27 ag + 210 — a zl ag ) (22 —gz- z3 ag 2z1 24 —— 3£8n
32u Bu du 8211 32u

25——2—+ z6 Bn) (z7 BE+2103 ) (28—?2—+ z9 3€+227 z10 8€3n+-

Zu a v Ju u
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3u 324 a2y 324 524
[(z13 — 3T + z1 z7 —€2-+ z4 z7 a£8n+ zl4 — 3 D+ 24 210—2-+ z1 z10 agan) +
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32+ 32y ' 52y 32y
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[u(z7 55 + 210 a =y + v(zT == 3F *+ 210 371 (zl-sg—-+ zh 33-)} = 0. (11)

or

(22 + 28 2 (25 + 211 e _ 1 {z1[pu-2(z1 2% + 24 LTI
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z7{pv - 2(z7 3E + z10 ﬁ) "—r:] - u(z3 + 29)} %- —‘]; {z4[pu - 2(21 %—+ z4 %:;-)] +
3 9 . 3
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where

32w w azu a2y du
dw ={{42(zl zh + z7 z10 5EST +TJ- [(z2 + 28)3—5-2—+ (z5 + 7‘11)'3—,]2"" (z3 + z9)ﬁ+
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The standard coefficients ‘are defined by

alm

32w

biw

ba2w

dw

1]

z2 + 28
z5 + z11

1
n

ay u
{zl[pu - 2(2z1 3E—+ zh sﬁ)] +

du
z7{pv = 2(27 — + z10

g

i 27
a—n)].} - (23 + 29 +—)

1 du du
E-{z4[pu—2(zl 5Et zh sﬁ)] +

) au
210[Pv - 2(27 5 + 210 'a‘ﬁ)]} - (26 + 212 +—)

§

oy

}} from page A-4.
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Governing equation for stream function (V)
For two dimensional flows, in axisymmetic coordinates, the steam func-

tion is defined as

Y oY

I pur; T T pvr (13)
or

Vv = [(purdr-pvrdz) (14)

By substituting derivatives of V¢ for u, v in the definition of vorticity,
one gets

dv du i 9 1 oy d 1 3y : _
=T TR Br 3P T Gr W (13)
or
3 1 3y 2 1 9y -
Zor Pt G te=0 (16)
or
1 32y 1 3p 1 3%y 1 3p 3y 1 a¢+ 0 .
e - a— _.+___ -— e — . e —— -
PT 322 pZr z 9z pr. 3r2  p2rdrdr prl 3r ¢ an

or, finally, an equation relating ¢ and w as

32y 32y 1 93p 3 1 ap ay 1 ay .
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This equation is transformed ‘to €, n coordinates as
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The standard coefficients are defined by
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GOVERNING EQUATION FOR TURBULENT KINETIC ENERGY (k)

The first equation in the so-called "k-€1" model for turbulence transport is

U .ok 9 H

ok
% @) Tw G T ) Tkt 0 (20)

] ’ d :
Ty (purk) + 3T (pvrk? - -3 oo

The standard coefficients are defined by

ajx = 22 + 28

ag = 25 + z11
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32k ok
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Sk is the physical net source term for k, namely,’

du,9 ov. 2 v,2. .9u av, 3
Sk = pe = u{2] (53)° + (53)° + (P 157 +53)°)
It transforms to
du du ov av v
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(27—é—§-+ le-é—n-+ Zlﬁ‘l" Z4ﬁ) }



GOVERNING EQUATION FOR TURBULENT KINETIC ENERGY DISSIPATION (e)

The second equation in the so-called "k-€1" turbulence transport model is

i de 3 u ]

) 9 9 €
E—(pure)-’--é—r-(per)—W(Er-é?) —-5-?(-3-6-1‘3-1—_-)+r33=0 (21)

The standard coefficients are defihed by

aje = z2 + 28
aze = z5 + z11
b 1 du ou
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op ou z7
z7(pvog - z7 3E - 210‘330 - U (23.+ z9 +-—;9}
1 du ou
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z10(pvoe - z7-§E-— 210-339 - u (z6 + z12 +-—;70}
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Se is the physical source term for €, namely,
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It transforms to
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GOVERNING EQUATION FOR PRESSURE IN AN INCOMPRESSIBLE FLOW (P)

32p 32p 1 ap : '
(-5.2-2-+-a_ﬂ.).+-;(-ﬁ)=sp - | (22)
where . = : . : SR
. W  w 3w 32 u24y2 32 u24v2 13 u2+v2
Sp = Wulgp + P + v G5 - Gt g 7)) ey )

.The equation taken from Ref. 3 is transformed to stretched coordinates (£, n)

as follows.
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‘(278_64-2108) +v(28——2-+zll—f+ 29 a£+2128 + 227 z10 3§3n)+
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6 du + 4 + 7 10 2y + 2 + 28 o2v + 5'+ 11 22 +
+ —_—
(z6 + z12) 5T 2(zlz zlz >§€§h ] v [(z z8) 322- (z z11) izt

ov v 32y ‘au Bu
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du dv v v dv 2, du du
z7 —a—£+ z10 -5—) + (zl z4 ) + (z7 3F + z10 ™ =) [u(z7 7 + 210 ) +
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The standard coefficients are defined by

ajp = z2 + 28
azp = 25 + z11

z7
bip = (23 + 29 +—)

z10
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dp =<H }} from pages A-10 and A-11.
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THE VELOCITY RECOVERY EQUATIONS

(1) for u
oY
-a?= pur
or -’
1 3y
U = ———
pr or

Therefore, in transformed coordinates

1 Y Y
u=F'-_-(z7 ﬁ+ ZIOB_Vf)
(11) for v
Y
Tz—=-9vr
or
1 dy
V=T orez

Therefore, in transformed coordinates,

1 oY ay
V—"p—r(zl—afﬁ' 443;)
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~ APPENDIX B

Coordinate Transformation Technique
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Numerical Solution Procedure

The numerical éolution procedure is written in terﬁs of stretched coor-
dinates. The coordinate stretching reduired in the present study was provided
by the transformation functions of the form

£ = g(z,r) |

n ; ffz,r)
_For these stretching functions, it turns out that by the chain-rule of

differentiation,

9 9k 2 an 3
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The Fortran encoded functions which représent the partial derivatives used in

coordinate t;ansformations are listed below:

o9&
1 zl =~5?

2 =z

9g
(-a—z-)2 =zl x z1

32¢
3 z3 = a—zz-

an
4 zh =~rz-

n
5 25 =(ﬁ)2=z4xz4

32n
6 26 = a—z-z—

g
? z7 = Tr

9 )
(-5—5)2 = z7 x z7

o

N

[«
]

?2¢
9 29 = -3—;2-

10 210 = 3N
or

an

11 z11 = (3_:)2 = 210 x 210
07n

12 z12 = m'

32g

13 z13 = m

92n
dzor

14 z14

These coefficients can be arranged in a convenient tabular form .that shows
the relationship between derivatives in both coordinate systems. This 1is

provided in the following table, TablevII.



TABLE 1I.

Coefficients Relatiang Derivatives

of Variables in Both Coordinate Systems.

- 92 32 3 ) 32
g2 anZ 13 an JEdn
3 = 0 0 z1 zb 0
9z
9 0 0 27 210 0
YT . - ;
32
= z2 z5 z3 z6 . - 2z1z4
32
= z8 z11 29 z12 2z7z10
ar2
82 - z1z7 24210 z13 z14 (z1z10 + z4z7),
d9zor : : :
) 32 32 3 3 32
- Example: — =0 —— + 0 ——+ 21 — + 24 — + O
9z, g2 an2 - 3 - 9m 9EIN



COORDINATE TRANSFORMATION STRETCHING FUNCTIONS

The physical combustor geometry is transformed to a uniform rectangle

in a computational plane (£,n) by the'following functions.

E = — 2 o
] me—-f

where L is the combustor length, and

r - R1(2)

" R@E M

where Rl (z) and R2 (z) are the inner and outer radii of the combustor walls.
Hence
z =LE = XIT ; r = R1+n(R2-R1) = X2T

80

9

vy

1
T

[
N
|
L]

3]

)
2 2 = 652)2 = z1 x z1

3 z3 5-3:{:0

an  (R2-R1)(-R1”)-(r-R1)(R2"-R1") _ =Rl”  (r-R1)(R2"-R1") -
3z (R2-R1)2 - R2-R1 (R2-R1)2

an
5 25 = ‘5;92 = 24 x zb

32n  (R2-R1)(-R1”“)+R1”(R2°-R1") (R2-R1)2[-R1”(R2”-R1”)+(r-R1)(R2"“-R1"*)]-
322 (R2-R1)Z (R2-R1)%

(r-R1)(R2°-R1°)2(R2-R1) (R2°-R1")

-RL”Y  RU(R-RI7) - (r-RL)(R27°-R17)  2(r-R1)(RL”-R17)2
R2-R1 (R2-R1)2 (R2-R1)2 (R2-R1)3




10

11

12

13

14

In

and R1” and R2"

an 1
R2-R1

an .
211 = cg;)Z = 210 x 210

azn
zl12 = a—r-z—

32¢

213 = dzdr =

32n ] 1

-(R2°-R17)

zl4 =

the previous equations R1”° and R2” refer to

d2r1
refer to-—E;z-and-—Egz-respectivgly.

32r 3z oemy) C

(R2-R1)2

d2r2

drRl

and

dr2

dz

dz

, respectively,



APPENDIX C

Boundary Conditions for Dependent Variables

iti Transformed Coordinate Sjst_ém
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(A) for velocities u and v
(1) At the inlet boundary, the velocitigs are specified:
u = given or defined as = vo f(r)

v=0

(i1) At the solid wall, a "no-slip” boundary condition is used
u=0 \ '

v=20

(1i1) At the exit, we assumed the flow is fully developed, then

du
3z 0
v
320

(iv) At the axis, for'symﬁgtrf;

(B) for stream function V. ..

(1) At the inlet boundary -
r
] Io purdr
(i1) At the wall
Y = fzz purdr

(ii1) At the exit

(iv) At the axis

v=0



c - v du
(C) for vorticity w = — - 5T

which transforms to

dv.  dv du du

w=2z1 ﬁ+24_a_n-—27—a_g—210_a_ﬁ.

The value of w on the boundary points was assigned using this equation and
- the following finite difference formula for the deviations.
(1) At the inlet boundary (except at the corner)

A forward-difference expression with error of order (0E)2 was used to eva-

3 : .
luate 3 in the expression for w; for example,

_ —$i+2 + 4¢i+l - 3¢i
¢ = 5E

and a central-difference expression with error of order (An)2 was used for

9

an

3 ¢34+l — ¢j-1
¢° = 2An

(ii) Similarly, at the lower corner,'for example

-¢i+2 + 4¢i+1 - 341 ]
$1i° = Y » forﬂ'sg
—¢j+2 + 4¢j+1 - 3¢j )
‘r'j’ = bt fur e
24n on
9
(1ii) At the upper corner for-gg

. -0i+2 + 4éi+1 - 3¢i
¢ = 2BE




a backward-difference expression with error of order (4n)2 was used

9
for -rn

C . 393 - 4431 + 632
¢3" = 280

(iv) At the outer wall, the expression for w reduces to

v du
(U"—'-'Z4—a?-— zlo—aﬁ

where the expression used to evaluate the derivatives was

303 - bb3-1 + 32
"y = 24N -

(v) At the exit.

dw
3z 0
or
ow
3z A
A an
21_3-€+24_37'|.=0
A backward-difference expression with error of order (A£)2 was used for
]
FI3 and a central-difference expression with error of order (An)2 was used for
9

I it then turns out that

1 74 AE
Wi, = [4 wi-1,§ - 01-2,§ - 57 75 (01,341 - ©1,3-1)]

(vi) At the axis
w=20
In all of the above formulations, ¢~ 1s the derivative of either u or v with

respect to £ or n (1 or j, respectively).
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