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ABSTRACT 
During the operation of three in-situ heater experiments at Stripa, Sweden, 

groundwater flowed into many of the instrumentation and heater boreholes. 
These flows were recovered and measured routinely. The records of water in­
flow indicate two origins: inflow attributed to local hydrological pressure 
gradients, and water migration from cracks closing under the rapidly increas­
ing, thermal-induced stress changes. The latter component appeared as a main 
pulse that occurred when the heaters were turned on, and lasted about 30 to 40 
days, steadily declining over the next several months, and decreasing sharply 
when heater power was decreased or stopped. 

The magnitude of the total inflow per hole ranged over more than five 
decades, from 0.1 to over 10,000 liters over the 500 to 600 day time periods. 
When plotted against the logarithm of total volume, the frequency distribution 
displays a normal curve dependence with a mean of approximately 10 liters. 
Of this amount, 1 to 2 liters of flow into 38 mm diameter boreholes accom­
panied an increase in applied heat load. These amounts are compatible with 
rock porosities of a fraction of one percent. 

Inflow into the 3.6 and 5.0 kW heater holes peaked within 3 to 6 days 
after heater turn on, then declined to zero inflow, with no further inflow 
measured for the remainder of the experiments. In the heater holes of the 
time-scaled experiment, which operated at 1.125 kW or less, the initial pulse 
of inflow took much longer to decay, and 7 of 8 heater holes continued to 
flow throughout the experiment. 
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The packing off and isolation of a borehole some 40 m distant in the 
ventilation drift dramatically increased the inflow into the heater holes in 
one of the three heater experiments. This demonstrated the existence of per­
meable flow paths among a number of boreholes. The records of water inflow 
demonstrate the need for a thorough understanding of the nature of fluid flow 
and storage in fractured crystalline rock. 
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1.0 INTRODUCTION 
As part of a set of comprehensive field experiments at Stripe., Sweden 

(Witherspoon et al., 1980), three thermomechanical experiments, driven by 
large electrical heaters emplaced in boreholes in an underground granitic 
site, have recently been completed. The electrical heaters, surrounded by 
arrays of thermocouples, extensometers, borehole deformation giuges and 
vibrating wire stress meters, simulate.the heat load imposed on the rock mass 
by canisters of radioactive waste. There are three heater experiments with 
locations as shown in Figs. 1.1, 1.2, and 1.3. Experiment 1, with its cen­
tral heater borehole designated H9, applied a heat load of 3.6 kW for 398 
days; experiment 2, with a central heater of 5.0 kW and eight peripheral 
heaters of 1.0 kW, operated for 394 days; while experiment 3 in the time 
scale drift operated with 8 heaters of monotonically decreasing heat load for 
369 days. 

Because of the long-term nature of the Strlpa heater experiments, re­
porting of progress and results is proceeding in three phases. The first 
phase, reporting on design considerations and installation, included documen­
tation of the electrical heaters (Burleigh et al., 1978) and the rock mechan­
ics instrumentation (Schrauf et al., 1979). The present report is included 
in the second phase, which covers the operation of the experiments, the re­
sulting data base, and instrument performance. Detailed specifications of 
the three experiments, as well as the disposition of the data base, are given 
by Chan et al. (1980). The third Mhase, data analysis, can properly begin 
only after the second phase is completed. 
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9S0 9f>0 9 M 1000 1010 

XBL802-6T83 

Fig. 1.1. Plan map of the LBL experimental drifts at the 343 m elevation at 
Stripa. 



FULL-SCALE DRIFT 
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Borehole layout in the f u l l - s c a l e d r i f t . The U, T , C holes were 
dewatered regular ly . Haater holes H9, HlO, and H11-H18 were dewa­
tered with i separate system. Extensometer (E) holes were not 
dewatered. 
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Slant holes 
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Fig. 1.3. Borehole layout in the time-sciile drift. Heater holes HI, 
were outfitted with a separate lewatering system shown in 
No other holes were dewatered on a systematic basis. 

Fig. 
, H8 
2.1. 
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The three thermomechanical experiments were located in the time scale 
and full scale drifts, whereas the hydrological experiments were undertaken 
in the ventilation drift (Fig. 1.1). No hydrological experiments were done 
in conjunction with the thermomechanical experiments; however, after some of 
the instrumentation boreholes had been drilled, it was apparent that signifi­
cant quantities of groundwater were infiltrating into the holes, and that 
infiltration was likely to continue during the experimental phase. Conse­
quently, the heater installation design was modified to accommodate the 
removal of water from the heater holes lest the applied heat load be in error 
(Burleigh et al., 1978). The instrumentation boreholes were either grouted 
or outfitted with dewatering tubes (Schrauf et al., 1979) to keep electrical 
components dry and minimize convective heat transport. 

The original purpose of the dewatering systems, whicn were hastily de­
signed and implemented to meet experimental deadlines, was to preserve the 
integrity and fidelity of the heaters and instrumentation. However, as ex­
perimental operation commenced, it was realized that the systematic recording 
of the amount of water collected from the boreholes would provide a worth­
while indicator of the patterns of fluid flow around, and in response to, the 
heater experiments. Consequently, regular operation of the dewatering sys­
tems became part of the experimental routine; however it was given a lower 
priority than other previously programmed activities, which contributed to 
some irregularities in the data collected. 

Fifty-five of the 134 boreholes in the three experiments were dewatered 
and measured on a regular basis. The horizontal boreholes collared in the 
extensometer drift (Fig. 1.1) were drilled with a slight upwards incline to 
permit drainage, and were either left open to drain (horizontal U and C 
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holes), or were grouted (horizontal E holes). The disposition of the verti­
cal holes was varied, as shown in Table 1.1. A few holes, designated H and 
N, were not instrumented but were left open for other purposes, and were de-
watered either occasionally or not at all. The large diameter (406 and 127 
mm) heater holes were dewatered using a suction line-barrel collection system, 
with an air line assist if the depth so warranted. All extensometer (E) 
boreho'es were grouted, as were the 12 thermocouple (T) holes in the time 
scale drift. A separate dewatering system served the 38-mm diameter bore­
holes in the full scale drift. 

The deployment, operation and sources of error of the dewatering system 
are described in Section 2, followed by a discussion of data handling and 
editing in Section 3. Features observed in the data are discussed in Section 
4, in conjunction with time plots of the daily inflow rates. Some events ob­
served in the inflow records are clearly correlated with the deployment of 
packers for hydrological experiments in the ventilation drift. Locations of 
the boreholes in which these other experiments were emplaced are shown in 
Figs. 1.4 and 1.5. 



Table 1 .1 . Oewatering status of a l l ve r t i ca l boreholes in f u l l scale and time scale d r i f t s during heater experiments. 
Horizontal holes collarei) 1n extensometers d r i f t are not included here. A dash indicates that no holes of 
that size are present in a given area. 

Borehole Prefix Volume H9 area 
diameter per length 

trail) (1/m) 

HIO area Time Scale 

40S H 129.46 H9: bar re l , suction only HIO: bar re l , suction only -
127 H 12.67 — — HI - H8: barrel wi th 

aspirator 

76 E,H 4.53 E6 - £11: grouted E12 -
HlO: 

- E17: grouted 
blocked 

El - E5: grouted 
Ml : blocked 
H2: open, not dewatered 

56 M 2.46 M6 - M9: occasional 
dewatering for ul trasonic 
experiments 

— M4,H5: open, 
not dewatered 

46 N 1.66 - - N1.N2: open, 
not dewatered 

38 U,C,T 1.13 CI - C2, Ul - 110 
T13 - T18: vacuum 
f lask wi th borehole 
pressure 

C3 - C5, U l l - U20, 
T19 - T24: vacuum flask 
wi th borehole pressure 

T l - T12: grouted 
M3: f lowing, water 
diverted out of area 

38 1.13 M l - HIS: ba r re l , 
suction only 



Floor 
drift 

-j 
H2 HI H3 

T 

J' 
O 

H4 s2-si 

4m 

XBL8I4-28S8 

Fig. 1.4 Sectional view, orthogonal to axis of time scale dr i f t , to the 
northeast, showing projected location of slant holes SI and S2. 
See Fig. 1.3 for collar locations. 
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XBL 7811-13108 

Fig. 1.5 Details of borehole layout in ventilation drift, from Forster and 
Gale (1980). Radial boreholes, given an R prefix in Fig. 1.1, ex­
tend orthogonally from the walls of the drift (A). Boreholes at 
the back of the drift (B; are prefixed HG. 
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2.0 THE DEWATERING SYSTEMS: OPERATION AND CHECKS 
2.1 Description or Dewatering Systems 

The dewatering systems were installed in 1978, at the same time the rock 
mechanical instrumentation (Schrauf et al., 1979) and the heaters (Burleigh 
et al., 1979) were installed. The systems were operated with only a few minor 
modifications imposed on the installations described by Schrauf and Burleigh. 
The following paragraphs, directed to Figs. 2.1 - 2.4, describe the dowi.'iole 
and uphole portions of systems as they were operated from the summer of 1973 
to February, 1980. By the time regular dewatering commenced in the summer of 
1978, all drilling in the full scale, time scale, and ventilation drifts had 
been completed. 

The uphole portion of the dewatering system for the 38-mm boreholes 
around the H9 and H10 areas is shown in Fig. 2.1. The depths of the holes 
exceed 10 meters, so that a combination of pressure and vacuum was used to 
remove the water. Groups of holes were pressurized in a parallel hookup and 
water was removed through vacuum lines routed through thn vacuum manifold to 
the trap. Rubber stoppers inserted into the top of each borehole (Fig. 2.2) 
permit pressurization of the boreholes. In the T-holes, the suction line ex­
tends 10 to 15 cm below the fiberglass plug; its opening is within 1 m of the 
bottom of the hole. In the USBM and IRAD holes, the suction line extends 1 
to 1.5 m below the gauge; its opening is located anywhere from 1 to 3 m above 
bottom, depending on hole depth and gauge location. Hole; vary as to back­
filling: the T-holes are completely backfilled with sand while the U and C 
holes remained open except for the gauges and short sections of insulating 
material placed immediately above the gauge. In some instances USBM and IRAD 
gauges were interchanged between U and C holes, so that the prefix does not 



VACUUM 
TRAP 

VACUUM LINE 

VACUUM 
MANIFOLD 

SHUT OFF 
VALVES 

VACUUM 
PUMP \ DRAINAGE 

VALVE 
SHUT OFF 

VALVE 

VACUUM LINES 

MINE AIR 
o 

PRESSURE 
REDUCER 

( I50psl— 40p»l) 

PRESSURE LINE 
(BRANCHING OFF TO EACH HOLE) 

XBL 803-8854 

Fig. 2.1. Dewatering schematic from Schrauf et a l . (1979) for 38-mm holes (U, 
T, C holes in Fig. 1.2) in the fu l l scale dr i f t . Pressure applied 
to pressure lines was 40 psi (as shown) until September 1978; after 
October, pressure applied was 15 to 21 psi (details in Appendix A). 



o.Thermocouple hole 

w 

USBM CABLE RUBBER STOPPER 

_VACUUM LINE 
l/IS" O.d. BRASS 

- USBM GAUGE 

VACUUM TUBE 
( 1 / 4 " O.d, COPPER) 

FIBERGLASS PACKING 

THERMOCOUPLE 

b. USBM gage hole c. I RAD gage hole 
XBL6W-2B79 

Fig. 2.2. Installed configuratior. of dewatering based on Schrauf et a l . (1979) 
in a) boreholes with thermocouples only (T-holes), b) boreholes with 
USBH gages, and c) boreholes with vibrating wire (IRAD) gases. 
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always specify the gauge type. Appendix A of Schrauf et al. specifies the 
interchanged holes and gauges. 

As shown in Fig. 1.3, only eight heater holes were dewatered regularly 
in the time scale drift. Each was fitted with a dewatering system of the 
type shown in Fig. 2.3. A full description of the system is given by Bur­
leigh et al. The schematic of Fig. 2.3 differs from Burleigh's description 
of the original installation in only a few details: a pressure gauge and a 
flow meter were added to the air line, and the line connecting the two-stage 
pumps was disconnected so the inlet of the stage supplying the air line and 
the outlet of the vacuum stage each vent to the atmosphere. In practice the 
steam collection circuit indicated in the schematic was not used for any sig­
nificant length of time. Almost all dewatering was accomplished by aspira­
tion, whereby the suction provided by the vacuum pump was augmented by air 
flowing at high velocity from the air supply line. 

Dewatering of the H9 and HIO heater holes was done with the same basic 
system as used in the time scale heater holes (see Fig. 2.4), except the eir 
line was not needed because the full scale heater holes are only 5.6 m deep 
compared with the 11 m depth of the time scale heater holes. After the init­
ial installation, a tee, filter, and manifold were added to the HIO system to 
permit dewatering of the eight peripheral heater holes. 

2.2 Operating Procedures 
Dewatering of instrumentation holes was performed by first opening the 

valve connecting the mine air to the pressure line (Fig. 2.1). A pressure 
reducer-regulated the pressure from the mine air to about 1.5 atmospheres. 
Several boreholes in each experiment area were pressurized as a group 
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..Periodic 
' discharge 

T T 
Valve Position Function 

VI A-B Water suction 
A-C Steam suction 

V2 A-B Water suction 
A-C Water discharge 

V3 A-B Pressurize barrel 
A-C Vacuum barrel 

V4 Open Pressurize hole 
Closed Pressurize barrel 

V5 Open Pressurize airline 
Closed Pressurize barrel 

eck valve 

XBLei4-2e*2 

F ig . 2 . 3 . Schematic of dewatering pump I n s t a l l a t i o n , modified from Burleigh 
et a l . (1979) , for the time scale experiment. 
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• .Periodic 
!, discharge 

Water suction 
Steam suction 
Water suction 
Water discharge 
Pressurize barrel 
vacuum barrel 
Vacuum barrel 
Pressurize barrel 
Dewatering HIO 
Dewatering peripheral 
Relief valve 

XBL8I4-208S 

Fig. 2.4. Schematic of dewatering pump installation, modified from Burleigh 
et al. (1979), for the HIO full scale experiment. 
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(Schrauf et a l . , 1979, Table 9) . The vacuum generated by the snail Gast pump 

was applied to the line for an Individual hole by opening the proper valvr of 

the vacuum manifold. Air and water flowed fror the line cc-*ng from the hole 

and entered an Inverted glass flask, which served as a water trap. Water was 

emptied from the flask by closing the shut-off valve to the vacuum pimp, and 

opening the drainage valve to the flask. Air s t i l l coming from the pres­

surized hole would force the water out of the flask. 

Dewatering of each 36-nrni hole generally lasted as long as water could be 

observed to flow In the vacuum line coming from the hole. Some exceptions 

occured at times of high inflow rate when the system was overtaxed. Time 

allowed for dewatering was five minutes for dry holes, two or more hours for 

high inflow holes. 

To dewater the heater holes, the system shown in Figs. 2.3 and 2.4 norm­

ally ran continuously while water was collected in the barrel. When Hff and 

H10 were yielding water, the barrels were emptied daily, with periodic checks 

thereafter Barrels in the time scale dr i f t were emptied on Monday, Wednesday 

and Friday, except for H2 which was emptied every working day because of i ts 

higher inflow. To empty the barrel and measure the contents required the 

following steps: 

Time Scale (Fig. 2.3) 

1. Close valve V4 
2. Move valve V3 from A-C to A-3 position 
3. Hove valve V2 from A-B to A-C position 
4. Collect the water 1n a measuring vessel and log the amount and time. 
5. Reset the valves in steps 1-3 to their original positions. 
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Approximately one hour was required to empty and measure the contents from 

the barrels of a l l the time-scale heater holes. 

Full Scale H9 - HIP (Fig. 2.4) 

1. Close valve V4. 
2. Move valve V3 from A-C to A-B position 
3. Move valve V2 from A-B to A-C position 
4. Open valve V6 to let room air go into the pump 
5. Collect the water in a measuring vessel and log the amount and time 
6. Reset the valves in step 1-4 to their origina.1 position. 

Full Scale Hll - H18 (Fig. 2.4) 
1. Close valve V5 

2. Open valve V7 

3. Open the valve for the part icular hole that is going to be de-
watered. Leave the system on for 30-40 minutes or unt i l the gauge 
on the vacuum barrel reads less than 2-6 inches Hg. 

4. Close the valve from the hole 

5. Close valve V7 

6. Remove the small drop-out pot that is mounted on the l ine near V7. 

7. Measure the water and log the amount and time 

8. Put the drop-out pot back on the l ine 

9. Open the valve for the next hole 

10. Open valve V7 and start over again from step 3. 

When a l l the holes are de-watered, close valve V7 and open valve V5 to 

let the system continuously remove water from H10. 
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2.3 Sources of Error 
Operational problems. As mentioned in the introduction, the dewatering 

work was not anticipated in the original design of the heater experiments. 
To acquire the data, personnel had to be diverted from other duties. As a 
result, data acquisition received the lowest priority among the many activi­
ties required to keep the experiment operational, and many of the lapses in 
the data record occurred when a technician was called away to a more pressing 
duty. Contributing to this problem was the fact that the dewatering systems 
were not set up for automated operation: extracting and measuring the re-
covereo water was time-consuming and tedious. These operational difficulties 
accounted for many of the long time gaps between data points in some of the 
records. 

Other gaps are due to removal of instrumentation from holes for repair. 
Most of the vertical 38-mm holes in the H9 and HlO experiment areas were dis­
turbed at some time during the experiments. The T-hole thermocouples were 
replaced during October and November, 1978, and USBH gauges were removed at 
various times for maintenance. For example, in March, 1979 all gauges from 
Ull and U13-U18 were removed from their boreholes. When a gauge was removed 
for an extended time, the dewatering tube was replaced without the gauge and 
dewatering continued on a regular basis. However, the replacement of the 
tube produced measurement errors if the tip was not reinstalled to its exact 
original depth. 

The sensitivity to replacement errors or to any kind of movement of the 
dewatering tube can be examined by considering the volune of water per length 
of hole, given in the third column of Table 1.1. For example, the 38-mm 
holes contained 1.13 liters per meter of hole, (or 1.13 ml/mm), so that an 



offset In position of-the dtwaterlrtf, tmbefW only 10 m produces m error of 

11.3 ml of water collected. Even larger i-olaetrlc errors wil l be Induced by 

small shifts of the tube 1n the larger diameter boreholes, as given In Table 

1.1 However, this type of.disturbanceappears In: the dewaterlng records as 

an Increase (or decrease) 1n Inflow for one collection period, after which 

the Inflow returns to Its previous lower (or higher) value. 

To assess errors due to loss of water fro* the dewaterlng systems, a 

series of checks was undertaken on an opportunity basis during the operation 

of the experiment. The effect of varying collection times was examined by 

doing a few special dewaterlngs at short time Intervals and by examining the 

data record when the Inflow appeared to be relatively constant but the col­

lection times varied. In addition several tests were done In which measured 

amounts of water were added to a hole and subsequently recovered. 

Tests In 38-1 boreholes. Inflow data from two boreholes In the K10 

area, U16 and U17, are plotted In Fig. 2.5 for three-month periods during 

which the Inflow was judged to be constant. For U16, the three months just 

prior to peripheral heater turn on were chosen, and for U.17, the three aonths 

just prior to turnoff of all heaters. For U16 the mean Inflow for the test 

period was 140 ml/day, with all but two points lying within +20X of the mean. 

In the case of U17 the mean Is 73 ml/day, again with al l but two points lying 

within +20% of the mean. Any trends occurring In this Interval are well 

within +_20% of the mean, as shown by the respective averages of the darkened 

and open circles, chosen from different halves of the time Interval. These 

+20% bounds apply to these two holes even though the sampling Interval varied 

from 1 to 17 days. As the solid line In each graph Indicates, the water 

column 1n the borehole would be 2 m (1 m above the end of the suction line) for 
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Fig. 2.5. Average daily inflow rates plotted against time period over which 
samples were collected in holes U16 and U17. Dark points during 
first half. Average daily rate (dashed line) is used to compute 
the height of water column in 38-nm hole at end of collection oeri-
od (solid line). 
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those staples when 17 days elapsed between sapling In U1S (U17). For these 
cases, then, the data show that the height of the water column does not af­
fect the volume of the sample. 

Borehole U16 was also dewatered three times with elapsed times of 2 to J 
hours between samples, as shown in Table 2.1, thereby retrieving volumes much 
smaller that those ordinarily recovered 1n U16. Converted to daily rate, the 
short-term samples recovered in these second dewaterings fall within the 
scatter of the samples from the regular dewaterings. Mean and standard devi­
ation for all points in Table 2.1 is 137 ± 18. 

Results of a third check, in which one liter of water was added to U14 
and U12 and then recovered during special dewaterings, are shown in Table 2.2. 
The two tests in U14 were remarkably good. In the f>'rst test, all but 2 of 
1000 ml were recovered after 45 minutes. In the second test, 1030 ml were 
recovered about 21 hours after injecting 1000 ml. The 30 ml excess is the 
normal daily inflow as measured in regular dewaterings (third column in Table 
2.2). In the test of U12, 40 excess ml were recovered 1 hour after injecting 
1010 ml, a discrepancy unaccounted for by normal inflow. 

A final test carried out in borehole U14 is documented in Table 2.3, 
where two 30 minute dewaterings followed the injection of 200 ml of water. 
The first test used a length of tubing with which the thermocouple and IRAO 
holes are normally equipped; the second test used tubing from a USBM gauge 
borehole which included a small diameter segment to bypass the gauge. In 
both cases most of the injected water was recovered after 10 minutes of dewa-
tering, with a deficit of only 5 ml after 30 minutes. Although the small 
diameter tubing did not affect the measurement, during the course of the ex­
periment they would sometimes clog. 
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Table 2.1. Special del t ir ing of, hole 1116, done on throe occasions after 
• regular dawrttrlnqs. Wo water,,wet added ar t i f ic ia l ly . Fourth 

colon |ives MM t 1 M elapsed between end of regular dewaterlng 
and end of toeetel (tecond) dewaterlng; second dewaterlng took 15 
minutes. For the 08/18 case, second dewaterlng rate (column 6) 
was computed as: rat* - 17 ml/(2.5/24) - 163 ml/day. 

Date Regular 
Volume 
(ml) 

Dewaterlng 
Kate 

(ml/day) 

Second Dewaterlng 
(1975) 

Regular 
Volume 
(ml) 

Dewaterlng 
Kate 

(ml/day) 
Time Elapsed 

(hours) 
Volume 
(ml) 

Rate 
(ml/day) 

05/29 1695 154 
06/15 2405 142 
06/18 430 143 2.5 17.0 163 
06/25 935 134 
07/03 1068 134 2.75 16.5 132 
07/06 282 94 3.0 18.0 144 
07/13 935 134 



24 

Table 2.2. Special dewatering tests of U12 and U14, adding one-liter slugs 
of water. Regular dewatering records before and after the special 
tests are also shown. Column 5 gives time elapsed after slug 
input until end of dewatering, which required 45 to 50 minutes. 

Oate Regular 
Volume 

Removed 
(ml) 

Dewatering 

Rate 
(ml/day) 

Slug Input 
Volume 
Added 
(ml) 

Special Dewaterinq 
(1979) 

Regular 
Volume 

Removed 
(ml) 

Dewatering 

Rate 
(ml/day) 

Slug Input 
Volume 
Added 
(ml) 

Time 
Elapsed 

(hr:min) 

Volume 
Removed 

(ml) 
Rate 

(ml/day) 

05/15 180 45 

05/21 275 46 

05/21 1000 00:45 998 — 
05/21-22 1000 20:45 1030 30 

05/29 245 35 

06/15 575 34 

— hole U14 -

06/15 1490 88 

07/13 2720 97 

07/13 1010 00:50 1050 

07/17 475 119 

07'18 35 35 

J 7/24 685 114 

hole U12 -
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Tible 2.3. Special dewatering tests in borehole U14, adding 200 ml slugs of 
water. Gauge was absent .from borehole. For test 1 , the dewater­
ing tube consists r f a length of 1/8-inch o.d. copper tubing 
extending to bottom of hole. For test 2, the tubing ord inar i ly 
used with USBM gauges was substituted, consisting of the 1/8-inch 
copper tubing with a 0.5-m segment of 1/16-inch o.d. brass tubing. 
Amounts of water l is ted are cumulative throughout each of the two 
30-minute dewatering periods. 

Date Time Test No. 1 Test No. 2 
(minutes) (regular tubing) (with small dia. segment) 

Volume (ml) Volume (ml) 

05/15/79 10 188 190 

20 194 193.5 

30 196 195.5 
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This sequence of tests in the 38-mm boreholes, which typically flowed 
at rates ranging from" 20 to 400 ml/day, showed that scatter of +20X occurred 
at a nominal inflow rate of 100 ml/day. Within this scatter, the recovery 
seemed to be linear over the range of volumes from 10 ml to 2000 ml. When 
controlled amounts of water ara added, recovered volumes are within +5% of 
the injec'.ed volumes. No noticeable errors were caused by the small diameter 
tubing in the USBH gauge boreholes. 

Tests in heater hole H8. To check the operation'of the barrel-type 
dewatering system used in the time scale and full scale heater holes, a 
sequence of tests was run in time scale borehole H8 from September 1979 to 
February 1980. Time scale heaters had been turned off on June 5, 1979, but 
the mechanical and dewatering systems continued to operate during the cooldown 
period. Because H8 had produced no water for a year, no data were lost 
by testing. Moreover, testing could be done concurrently with regular 
dewatering of the other heater holes. 

After an initial period, during which 14 liters of water were added to 
H8 before the level stabilized, sequential injection and dewatering commenced 
on Oct. 2, first with 10 liter volumes followed by progressively smaller 
injection volumes over the next 60 days. Additions and removals were done 
each working day. Losses from the system are plotted in Fig. 2.6. Summing 
all values in Fig. 2.6 between October 3 and November 26, the net water 
loss is 1022 ml or 19 ml/day. If just the three week period from October 18 
to November 9 is examined, the loss per day is 27 ml. 

On December 5, the heater was turned on at a 1.125 kW power level, and 
the addition and removal sequence was repeated with some minor variations. 
Results are shown in Fig. 2.7. Not the influx re-.orded immediately after 
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Fig. 2.6. Calibration of dewatering system in time scale heater hole H8, with 
heater o f f . Each datum is volume removed by dewatering minus volume 
added immediately after the previous dewatering. Volumes added 
( l i t e r s ) are shown above data. 
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Fig. 2.7. Test of H8 dewatering system, heater on. When no water is added 
artifically to the hole, the volume removed is plotted. When water 
is added, volume removed minus volume added prior to removal is 
plotted. Dashed lines join two points acquired with leaking air 
pressure line. 
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turn-on when no water was being added to the hole. The quick increase and 
slower subsequent decrease is similar to other pulses of influx observed in 
the actual experiments after heater turn-on . Comparing Figs. 2.6 and 2.7, 
it is obvious that the fluctuations in the net amount of water lost or gained 
between dewaterings is much greater with the heater on than off. Especially 
noticeable is the marked periodicity in the latter half of Fig. 2.7, which 
was absent when the heater was off. 

The periodic effect shows high values recorded on Mondays followed by 
low values on Tuesdays. What is thought to be happening is that when the 
heater is operating, the water at the bottom of the hole is heated and removed 
as vapor by the suction line. Once the vapor enters the barrel, it is cooled 
and condensed as liquid water. By this mode, water can be removed from the 
hole even though the water level is below the end of the suction line. More 
water is collected from Friday to Monday than from Monday to Tuesday because 
there are two additional days in which water can be removed as vapor from the 
hole. The water level is significantly lower on Monday, and this deficit mus. 
be recovered on Tuesday's dewatering value. This phenomenon can be clearly 
seen by the large apparent losses of water when the pouring of water back down 
the hole is resumed after a period when no water was added to the hole. For 
those periods in which no water was added, water was still removed from the 
hole t; the dewatering system for some time. 

Despite the fluctuations, the average losses from the system are not 
large. The total loss throughout, the test period, from December 5 through 
February 15, was 1308 ml, or 18 ml/day. Considering just tne four weeks from 
January 17 to February 15, the loss averages 41 ml per day. 
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There are three possible loss mechanisms for the H8 ins ta l la t ion . 

F i r s t l y , water could be gradually seeping back into the rock surrounding the 

heater hole, as evidenced by observations of the water level in hole H5. 

Hole M5, a 56-ron hole located about one meter from H8, is about 2.5 m deeper 

than H8 and remained open for water level observations during the H8 tests. 

During the 5-month test period in H8, the water level in M5 rose from 12.49 m 

to 11.31 m below the co l lar . The additions to H8 could have provided some or 

a l l of this 3 - l i t e r volume. 

A second loss mode, which can occur with the heater either on or of f , is 

the loss of vapor to the mine atmosphere from the barrel through the pump 

out let . Consideration of the pumped ai r flow rate and ambient temperature 

gave an upper bound of 250 ml per day which could be lost in this fashion 

(A. Dubois, internal communication). 

The th i rd loss mechanism is the- escape of water vapor past the insula­

t ion surrounding the heater assembly (Fig. 2.3), then out the top of the hole. 

Since the rock above the heater is re lat ive ly cool, most of the water vapor 

would condense on the borehole wall and t r i ck le back down the hole. The suc-

tjon line operates at a s l igh t ly nigher air flow rate than the pressure l ine ; 

therefore, there is a net movement of air down the hole. I t is not known i f 

this small a i r flow down the hole would s igni f icant ly retard the upward d i f ­

fusion of water vapor. Normally the water at the bottom of the hole is at 

the temperature of the rock with which i t is in contact. In performing the 

heater ^watering cal ibrat ion, sometimes large amounts of water (10 l i t e r s ) 

were poured into the hole so that a signif icant amount of i t would be in con­

tact with the heater. As a resul t , when the heater was on, the water vapor 

loss would be expected to be greater for the cal ibration test than during the 

normal progress of the heater experiment. 
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The main interest in performing the calibration was to assess the amount 
of water loss by the dewatertng process and, thus, how the amount of water 
collected in the dewatering barrels differed from the true amount of water 
flowing into the hole. When the heater dewatering system was actually in 
operation, only one of the loss mechanisms is likely to have occurred. Mater 
flow into the rock is not expected to have occurred while the time scale ex­
periment was in progress because a net inflow was seen in all holes except H8. 
Also the loss of steam past the canm'ster 1s not seen as a significant prob­
lem during the normal operation of the dewatering system. Only the water va­
por exhausted out the vacuum pump represents a loss common to both the cali­
bration run and the regular heater hole dewatering. 

In this regard, the H8 test appears to have been overly conservative. 
Loss estimates when the heater is on are in the range of 40 to 100 ml per day, 
with some uncertainty in the upper bound because of the unexplained losses in 
the final 10 days of the test. We suspect that this range represents a maxi­
mum loss from a water collection system for a heat.r hole during the ,. -gress 
of the heater experiment. For most of the heater holes, this amount is not a 
significant fraction of the total inflow rate. 

Rock-related effects. Aside from the question of water losses directly 
attributable to the dewatering apparatus, questions concerning the effect of 
fluid flow paths within the rock must be addressed. It is desirable to know 
the extent to which boreholes are hydraulically connected to one another anu 
to the floor of the drift. If such interconnections exist, and if significant 
head imbalances between adjacent holes are allowed to build up between dewa­
tering times, then it is possible that the amounts recovered could depend 
upon the order in which holes are dewatered (although the U16 and U12 tests 
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(Fig. 2.5) were negative in this respect). It 1s also desirable to determine 
the elevation at which water is Infiltrating into the boreholes, since this 
bears upon the interpretation of mechanisms for the observed increases in 
water inflow. Because of the priorities of other activities, there was no 
attempt to answer such questions completely or systematically. We next de­
scribe a few modest tests using simple techniques on boreholes which became 
available during the heater experiments. 

One test was done prior to installation of the dewateHng apparatus, to 
determine if the pressurization technique would work (Schrauf et al., 1979). 
Holes were tested one at a time, applying pressure from the mine air supply 
by means of a tube passing through a plug in the top of the hole, and observ­
ing air bubbles escaping from the top of the water column in nearby holes or 
from wetted cracks on the drift floor in the vicinity of the hole under pres­
sure. Holes that leaked air were placed in a separate group for pressuriza­
tion during the dewatering operation (Fig. 2.8). Although no pressure 
records were kept, the grouping serves as a crude indication of which holes 
leaked more air than others when pressurized. 

A more systematic test was done in July, 1979 to check for communication 
between boreholes. All holes in an area were plugged and pressurized, except 
one observation hole which was vented through a water flask. By eliminating 
pressure connections one-by-one while watching the air escaping through the 
flask, groups of interconnected holes were determined. Moving the flask to a 
new observation hole and repeating the procedure produced the result shown in 
Fig. 2.9. Two groups of interconnected holes, both in the H10 area, were 
found. Note the lack of correspondence between the results of this test and 
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Locations of holes which leaked air through open fractures, from 
Table 9 of Schrauf et a l . (1979), as determined in 1978 prior to 
i n i t i a t i on of heater experiment:.. Determinations were made by 
pressuring one hole at a time, and observing pressure drop or escape 
of a i r . Holes that leaked air are shown as solid c i rc les . These 
holes were grouped separately for a i r pressurization during dewa-
ter ing. 
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Fig. 2.9. Test for hydraulic borehole interconnections using compressed air 
during July 1979. Air pressure of 1.5 atmospheres was applied to 
all but one of the 38-mm vertical instrumentation boreholes (per­
ipheral heater holes H11-H18 were not tested). Results from H10 
area are shown on the right: two groups of holes were found to be 
interconnected. No boreholes in the H9 area were found to be in­
terconnected by this test. 
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the one shown in Fig. 2.8, suggesting that most of the losses 1n Fig. 2.8 

were through fractures to the dr i f t floor. 

Another attempt to examine cross-hole effects is documented in Table 

2.4. When hole U8 became available, i t was f i l led to the collar with water, 

and a decline of 60 mm was observed over the next three days. The regular 

dewatering records from the three neighboring boreholes are also shown in 

Table 2.4. The inflow in al l three holes increased after the f i l l ing and 

emptying of U8, and the incremental volumes recovered are of the same magnitude 

as the U8 loss. Because this test was so extreme compared with actual 

operating conditions and because the resulting flow changes produced were 

only 10%, i t does not appear that cross-hole effects were important. However, 

to be really effective, such cross-hole testing requires a dedicated effort 

with proper equipment and a carefully considered test plan. 

During the summer of 1979, the walls of six boreholes were inspected 

for the presence of water using an optical borescope. The vagaries of 

water infiltration are available for inspection in Fig. 2.10. The onset of 

some wet zones coincides wit'i fractures visible with the borescope; others 

could not be so correlated. I t is clear, however, that water does inf i l trate 

at depths just below the drif t floor, well above the mid-plane of the heaters. 



36 

Table 2.4. Regular dewatering data in ml from U7 - UIO. Corresponding rates 
(ml/day) are given in parentheses. Borehole U8 was filled to the 
collar with water on July 13, 1979. The water level in U8 dropped 
60 mm in the next three days, for a loss of 68 ml. 

U8 U70 U9 U7 

6/14 940(55.3) 180(10.6) 560(32.9) 140(8.8) 
7/3 210(11.1) 
7/12 578(20.6) 
7/13 U8 filled 105(10.5) 925(31.9) 250(8.6) 
7/17 U8 emptied 
7/24 420(60.0) 152(13.8) 
7/25 406(33.8) 115(9.6) 
7/31 405(57.9) 102(14.6) 55(9.2) 
8/1 215(30.7) 
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Fig. 2.10. Water observations with borescope in six 38-inm boreholes during the 
summer of 1979. Approximate daily inflow at time of observation is 
also given. Other observations are: 

C2: 4.40 m, rusty zones with water droplets; 4.54 m, flowing frac­
ture, 2 urn wide; {*) dewatering tube on C2 was clogged, 3.625 1 of 
water removed on 790801 and 790802. 
U12: 0.13, 0.31, 0.51 m, water drops associated with fratures « 1 
mm wide; 4.30 m wide fracture (< 1 mm). 
C4: no water down to 5 m. 
U20: L.14, 2.21 m, droplets associated with several minor fractures. 
UT. 1.52 m, wet spot, no adjacent fractures; 1.93 m water drops 
along holes; 3.24 n, several fractures « 1 mm, rock completely wet 
along one side of the hole. 
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3.0 DATA COMPILATION AND EDITING 

3.1 Data Entry and Editing 
For convenience In editing, averaging, and plotting, the data received 

from Stripa were key-punched onto cards for computer entry. The data received 
from the field, on photocopies of the original data sheets, listed the 
calendar day, day of the week, and volume removed in milliliters. On some of 
the forms the time of day was also entered, but this was not retained in the 
computer entry. Only the calendar day and volumes were keypunched, along 
with a header card listing the borehole name. 

Daily log books, technical memoranda and the dewatering records were 
used to identify data irregularities. The first step in the procedure was to 
record by experiment, in calendar order, all logbook entries related to the 
dewatering system and activities in the mine which could possibly affect the 
water inflow. These entries were then transferred to a calendar listing of 
the inflow data and the average daily inflow for each hole. Finally, the 
dewatering records were reviewed by hole and relevant entries were made on 
the calendar listings. The annotated calendar listings provideu a means of 
spotting and explaining data irregularities, though there were many unex­
plained suspect data points. 

Data irregularities which led to editing of data stemmed from a variety 
of causes. There were quite a few entries of zero inflow when in fact 
the sample had been lost or taken for geochemical analysis. A more extreme 
example is an inflow value in heater hole H5 in January 1979 which is fifty 
times greater than other values recorded at that time. The extra influx is 
attributed to spillage across the drift floor from neighboring hole M3. Othar 
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inconsistencies occurred when the dewatering lines became clogged or broken. 
When gauges or thermocouples were replaced, the dewatering lines could be 
lengthened or shortened, resulting in inflow values higher or lower than the 
first collection. Initial dewatering data were also excluded since there was 
no known zero time for computing average inflow. 

Editing of data proceeded by first listing all documented errors of the 
above types for each borehole. In addition, some of the highly irregular 
data, such as that of H5 mentioned above, which were obvious but not docu­
mented, were also listed. A listing of all anomalies thus identified is 
given in Appendix A by date, experiment day, and source. Also given is a 
code number used to flag the data irregularities: 

1 — cause documented 
2 — related factor documented 
3 — no documented explanation 

The data flags were entered onto the keypunched inflow data records along 
with a 48-character comment. The computer programs which do the calculations 
and plotting use the flags to omit edited data. An asterisk on the plot sig­
nifies the omission of a data point. 

3.2 Description of Tables and Plots 
Two types of tables have been produced. The first type gives the 

calenda data, experimental day,* inflow recorded on that day and the average 

*In proofing this report it was noticed that the convention for experimental 
day used for the dewatering tables and graphs denotes the day of heater turn-
on as day 1. This differs from the convention adopted for the thermomechani-
cal data, where the day of heater turn-on is denoted as day 0 (Chan et al., 
1980). Because of the multiple day collection periods used for the dewatering 
data, this discrep-.? / does not seriously affect the comparisons between mea­
sured heater effects and the dewatering records. 
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daily '"nflow computed by dividing the inflow collected by the number of 
days in the collection period. In addition, questionable data have been 
flagged, with the codes described earlier, and the comment which appears on 
the data record also appears in the table. Plots based on this tabulation 
are presented and discussed in Section 4. 

The average daily inflow for each month in the collection period is 
given in the second type of table. The table contains the month, the 
number of collection days roughly corresponding to that month, the total 
inflow, the average daily inflow and the maximum and minimum daily inflows 
for the month. The average daily inflow for the month is calculated by 
summing the inflow during the month and dividing by the number of days in the 
month. When a collection period covers the end of one month and the beginning 
of another, the days of the former month are added into the count for the 
latter month. This way of averaging the data has resulted in some intervals 
much longer than or much shorter than thirty days. Two types of daily inflow 
tables have been produced, one for 'uncorrected' data which includes all data 
collected, andd another for 'corrected' data, from which bad data has been 
omitted. 

3.3 The Data Base 
Encompassing the tables discussed above and the plots given in th is 

report, the dewatering data base consists of three component: 

1) Original f i e l d documents including dewatering data sheets, and dai ly 
log books. Sets c f each are stored at LBL and at Str ipa. 

2) Five 3-ring notebooks of tables and graphs, consisting of : 
a. Listings of water inflow data as stored in PSS* 

PSS (Program Storage System) is an on-line storage system in use at the 
LBL Computer Center for storing data and programs. 
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b. Tables of monthly average Inflow, uncorrected and corrected. 
c. Plots of monthly average inflow, corrected. 
d. Tables of daily average inflow. 
e. Plots of daily average inflow, uncorrected and corrected (the 

latter are also presented in Section 4 of this report). 
f. Workbooks for anomaly identification, one line per day. 

3) Computer files of data and programs: 
a. Data are stored in PSS library WATINF, as PSS subsets H9C1C2, 

T13T18, U1U10 for experiment 1, C3C5, H10H18, T19T24, U11U20 for 
experiment 2, and H1H8 for experiment 3. 

b. Four programs produced the tables and graphs: identified by PSS 
subset: 
F0RMAT5, prints tables of average daily inflow on monthly basis. 
F0RMAT6, prints actual inflow data with average daily inflow. 
WTRPLT5, uses output of FORMATS to plot average inflow on 
monthly basis. 
WTRPLT6, uses output of F0RHAT6 -to plot daily average inflow. 
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4.0 PRESENTATION OF THE DATA 
Water inflow plots from the three heater experiments are presented in the 

following order; H9, the 3.6 kW heater, (referred to as experiment 1); H10, 
the 5.0 kW heater (experiment 2), and the time scale experiment (experiment 
3). Preceding each set is a calendar giving the major events relevant to the 
water inflow data, referenced to the number of days elapsed after the initia­
tion of each reipective experiment. Events in other experiments or other 
drifts which could conceivably affect the inflow are also given on each calen­
dar. 

Daily inflow rates, computed as described in Section 3, are plotted as a 
function of experiment days. Points omitted in the editing process are des­
ignated with asterisks. To reduce the number of plots, several holes have 
been composited together on a single plot. Insofar as possible, holes have 
been grouped according to position within each experimental area; a secondary 
consideration was to keep the scaling as consistent as possible on any given 
page. Also, the total number of different vertical scales has been kept to a 
practical minimum. The radial distance, in meters, of each instrumentation 
hole from its central heater hole is given in parentheses. 

4.1 H9 Area 
Inspection of the water inflow into the holes around the H9 heater 

(Figs. 4.2 - 4.4), in conjunction with the H9 calendar (Fig. 4.1), yields the 
following observations: 

• Because inflow measurements were made for more than a month prior to 
the turn-on of H9, the effect of the turn-on can be seen in the data. For 
the main heater hole (Fig. 4.2), a brief pulse follows the turn-on, followed 
by complete cessation of flow. No further flow was observed in H9 throughout 
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the remainder of the experiment. Most of the instrumentation holes also reg­

ister an increase following turn-on, generally followed by a decay which ap­

pears to have a decay constant of about one month. 

• Half of the 38-mm holes (9 of 18) produced water only sporadically 
during heater operation. Inflow rates into these nine holes was generally 
less than 30 ml per day, and in many cases less than 10 ml per day. 

t Most of the holes with sustained higher flow rates, on the order of 
50 to 100 ml per day, are located towards the rear of the drift. These can 
be viewed in Fig. 4.4. The high "background" inflows in these six holes dis­
tinguishes them more from the other H9 holes than does their transient behav­
ior. 

• An exception to this pattern is borehole C2 (Fig. 4.3), which has a 
peak inflow after turn on of more than 300 ml per day. We have no explana­
tion for this unusually high flow. 

• Water was also removed from the four monitor holes M6 - M9, during 
the H9 heater experiment, as a prelude to the periodic operation of an ultra­
sonic cross-hole experiment (Paulsson and King, 1980). Water was removed 
simply by inserting-a hose to the bottom of the hole, connecting it to the 
mine compressed air supply, and blowing out the water while keeping a bucket 
inverted over the opening to confine the eruption. At first the volume thus 
removed was measured after it had been sponged into a container; later, the 
volume was determined by measuring the depth to top of water in the hole be­
fore expelling the water. The results of these water removals are shown in 
Table 4.1. Collection times were too infrequent and collection methods too 
crude for direct comparison with the regular dewatering data; however, it is 
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Table 4.1. Mater recovered from 56-iim ultrasonic monitor holes H6 - M9, given 
as volume in liters and as average daily inflow. Prior to 23 
July 1979, the volumes were measured by sponging up the water 
blown out onto the surface of the drift. From then on, amounts 
were obtained by measuring depth to top of water in each hole and 
converting to volume at 2.46 liters per meter of hole. Data pro­
vided by B. Paulsson. 

Date 
liters (ml/day) 

Day Date Mf M7 MS H9 Date MS 

0 24 Aug. 1978 0 2.0 0.3 2.0 
20 13 Sep. 1978 0.25(13) 3.0(150) 1.0(50) 4.0(200) 
110 12 Dec. 1978 2.8(31) 4.0(44) 2.5(28) 1.5(17) 
252 3 Hay 1979 Amount not recorded 

333 23 July 1979 l.O(-) 4.25(-) 0.5(-) ll.O(-) 
398 26 Sep. 1979 2.2(34) 0.55(8) 2.1(32) 7.0(108) 
626 11 May 1980 3.78(17) 10.42(46) 5.38(24) 15.4(68) 
677 1 July 1980 4.24(83) 8.62(169) 4.36(85) 22.35(438) 
699 23 July 1980 1.33(60) 0.39(18) 0.91(41) 5.0(227) 
706 30 July 1980 0.12(17) 0.05(7) 0.25(36) 1.33(190) 
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of interest that the calculated rates are of the same order as the 38-mm bore­
holes. In addition, the inflow into M9 is three to ten times higher than in 
M6, H7, and H8, in accordance with the tendency for the holes at the rear of 
the drift to show higher inflow. 

• Thermocouples in the T-holes were exchanged because many of them cor­
roded early in the experiment. Exchanges occurred during the period 2 Oct 
78 - 17 Nov 78, equivalent to H9 experiment days 39-85. A day or two was re­
quired to remove the sand and corroded thermocouple string, replace it with a 
new string, and replace the sandpack. Because the replacement time is brief, 
it does not usually show up in the dewatering records. However, some T-holes, 
notably T16, T15, and T14 register zero inflow within a week or two after e." 
change, followed by recovery to flow rates similar to those before the ex­
change. The decrease to zero could be attributed to the volume of water re­
quired to saturate the sand. 

• Eight of the 18 instrumentation holes register a perceptible decrease, 
immediately following the turn-off of the H9 heater at day 398. The correla­
tion is particularly convincing because most of the holes not exhibiting such 
a correlation are either at zero or very low inflow at the time of turn-off. 

• Most of the holes with significant inflow remaining after turn-off 
display a recovery to higher >Mlues (Fig. 4.4) over the 100-plus day period 
following turn-off. The packing, off of borehole Rl in the ventilation drift 
occurred on day 426, as shown in the calendar (Fig. 4.1). Rl is singled out 
for correlation because it was the dominant water producer in the ventilation 
drift. Although this was a significant hydrological event in the time scale 



drift (see discussion in Section 5), there are no clearcut correlations with 
the recovery phase in-the H9 boreholes of Fig. 4.4. 

4.2 H10 Area 
The format for the HIO area boreholes (Figs. 4.6-4.11) is similar to 

that for H9, with one exception. Hater inflow was measured in the peripheral 
heater holss H11-H18 for the 92-day time period commencing four days after 
turn-on o1 the peripheral heaters on experiment day 204. No measurements 
were made in these boreholes for other than the time period shown in Fig. 
4.6. Inspection of the inflow records shown in Figs. 4.6 - 4.11 permits the 
following general observations for the HIO area boreholes: 

• Inflow data were not collected prior to turn on of the HIO heater, 
hence the effect of turn on upon water inflow is not as clearcut as it is in 
the H9 area. However, almost all of the holes show a progressive decline in 
inflow rate lasting for about 100 days following the turn on of HIO, quite 
similar to the decay observed in the H9 area. 

t Coincident with the turn on of the peripheral heaters on day 204, 13 
of 18 of the 3d-mm boreholes exhibit a marked increase in inflow rate. (Hole 
C3, in Fig. 4.8, appears to increase before peripheral turn-on, because sam­
pling was not frequent enough to catch the effect of turn-on.) Inflow rates 
remain high for about 40 days, then decline when the peripheral heater power 
is reduced on day 244, although the decline is not as precipitous as the in­
crease on day 204. 

• Holes which are still flowing immediately prior to turn-off register 
a sharp decline at turnoff, on day 394, to a lower inflow. Seven holes (C4, 
C5, U14, T19, T20„ T21, T24) decrease from finite to zero inflow at the time 
of turnoff. In most of these holes flow resumes again, but the duration of 
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Fig. 4.11. HIO area U-holes. 
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zero flow varies from 46 to 157 days following turnoff . These times of re ­

sumed flow do not correlate with other events such as H9 heater turnoff (day 

450) or the packoff of borehole Rl (day 485). 

• The recovery of inflow into the H10 ar*» ' les following turnoff is 

similar in appearance to the recovery seen in the H9 area (Fig. 4.4). In 

part icular, holes which maintained a non-zero flow throughout, such as U20, 

U19, U17, and U16, a l l exhibit a r. - l i ke increase commencing shortly after 

turn-off . There are some tantal iz ing correlations between the Rl packer i n ­

sta l la t ion (Fig. 4.5) and some steps in the U16 and U20 records, but none are 

de f in i t i ve . Likewise, the correspondence in time between the ramp increases 

in flow and the hydrological experiment ac t i v i t y in the venti lat ion d r i f t 

suggests a causal relationship, which must remain speculative at th is point. 

In addition to the above general observations, some observations on spe­

c i f i c holes and groups of H10 holes can be made: 

• Holes close to the H10 heater hole, par t icu lar ly the six T-holes 

(Figs. 4.7 and 4.8) display similar inflow patterns in several respects: the 

magnitudes are low and comparable, the pulse coincident with peripheral heater 

turn-on is well-defined, and inflow declines to zero after turn-of f . The sim­

i l a r i t i e s among the close-in holes is not surprising because of their proxim­

i t y to one another. 

• Holes farther from the heater hole (Figs. 4.9 and 4.10) have higher 

inflow than the close-in holes, as can be seen from the scale changes in the 

f igures. Character of the inflow patterns varies considerably among the outer 

boreholes. 
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• Heater hole H10, like H9 (numerical data are given in Appendix C) 
shows a sharp inflow pulse immediately after turn-on, then declines to zero. 
No inflow occurred after this initial pulse. 

• Hole U12 is the most singular of all holes in the full scale dri*t 
(Fig. 4.11). Flow remains quite low !ntil after peripheral heater turn-on 
when it increases to the 100 to 200 ml per day range, followed by a decrease 
to near-zero values at turn-off. Such behavior suggests that a conductive 
fracture opened during the peripheral heating phase. 

4.3 Time Scale Drift 
Because the inflow rates vary so much among the eight time scale heater 

holes, a common scale could not be used for compositing, and graphs are pre­
sented separately for each hole in Figs. 4.13 - 4.16. In conjunction with 
the time scale calendar (Fig. 4.12), the graphs permit the following observa­
tions: 

• Inflow rates are highly v "iable among the different holes, ranging 
from the excess of 10 liters per day recorded occasionally in hole H2 down to 
the rates of 10) milliliters per day, and less, in holes H8, H3 and H6. The 
higher flow holes are at the rear (H2) and front (H4) of the drift. 

• With the exception of H2, inflow generally declines after heater turn-
on No data were collected prior to turn-on. The rate of decay varies con­
siderably from hole to hole, with apparent deray constants ranging from sev­
eral days (H4 and H3) to several months (H7, HI, H6, H5). 
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• On day 193, hole Rl in the ventilation drift was packed off for a few 
days. This appears to have caused an inflow increase in three holes towards 
the r.sar of the time scale drift—H2, HI, and H7. Other holes show either no 
response or a barely discernible reduction in inflow. 

• The inflow rate into the four holes towards the rear of the drift -
H2, H7, HI, and H5 — drops sharply at approximately day 355, two weeks prior 
to time scale turnoff. During this same week (day 356 * 2), the records show 
that packers were removed from boreholes SI and Rl. There is no way to de­
termine whether the effect was produced by Rl, SI, or by the two combined. 
No such changes are observed in the three flowing holes towards the front of 
the drift (H3, H6, and H4). 

• Turn-off of time scale heaters occurred on day 369. Most heater holes 
show a gradual increase of inflow commencing at that time. In two cases, H3 
and H6, turn-off coincides with a sharp declfne, followed by a slow recovery. 
±n all cases recovery begins prior to commencement of packer installation in 
the ventilation drift holes (Fig. 4.12) on day 408. There is no evidence that 
the series of injection tests in intervals in Rl (~ day 389 to 400) perturbed 
the time scale inflow. Nor is there evidence in the inflow data that the 
packer installation for the macropermeability experiment occurring between 
days 408 and 510 affected the flow into the time scale drift. 

t However, on or near day 517 inflow increases dramatically, coincident 
with the packer installation and sealing of borehole Rl. The hydraulic con­
nection between hole Rl and the time scale boreholes is thus well established, 
as well as the existence of permeable flow paths among the seven active time 
scale heater holes. 



67 

Besides these general observations and correlations, some characteristics 
unique to individual boreholes warrant comment: 

• Borehole H3, a 38-mm hole at the rear of the drift (Fig. 1.3), was 
unusual among the underground boreholes because of its exceptionally high in­
flow, which required diversion to the main drift through a tube to avoid 
flooding of the drift floor. Estimates of its outflow rate at the collar at 
various times during the two-year period range from 124 to 216 liters per day 
(Nelson et al., 1981). Hole M3 is located approximately 3 m from H2. 

t Borehole H2 has the highest inflow of any of the holes in the full 
scale and time scale drifts, ranging from 7 to 11 liters per day. Gamma-ray 
logs, sensitive to excessive amounts of radon introduced into the bore by the 
inflow, show that the entry point into H2 lies 7 to 9 meters below the collar 
(Nelson et al., 1979). The record of F1g. 4.13 displays a sequence of spikes 
during the first 200 days of dewatering. The apparent surges of inflow occur 
at the first collection after the weekend, and are attributed to partial 
clogging of the suction line. 

• The record for borehole H5 displays a decreased rate of inflow from 
day 190 to day 200, due to testing of the desteaming apparatus at that time. 

• Borehole H8 yielded no water after day 140. It was later used for 
testing of the dewatering system, as described in Section 2.3. 

t The record for borehole H3 (Fig. 4.14) shows two large pulse-like in­
creases, the first between days 150 and 200, the second just before turn-off. 
These two anomalous features are unexplained. 
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• Likewise, the downward step in the H<t record at day 180 is unex­
plained. It is possible that measurements of water inflow in the ventilation 
drift undertaken at that time changed the pattern of puddling and seepage 
from the floor of the main drift. 
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5.0 DISCUSSION 

5.1 Heat Loss from Heater Boreholes 

The heaters for the thermomechanical experiments were operated at care­

f u l l y controlled power levels to f a c i l i t a t e the comparison of theoretical 

predictions with measured displacements in rock. Since any unknown loss of 

heat w i l l impair the v a l i d i t y of such comparisons, we now provide a worst 

case estimate of the heat loss due to heating of groundwater i n f i l t r a t i n g the 

heater holes and i t s subsequent extraction with the dewatering apparatus. 

The rate of heat loss from a borehole is '.he sum of the heat removed in 

l iquid water plus heat removed by water vapor. For our worst case estimate, 

the vapor volumes are less than 10JS of the l iquid volumes, and the heat r e ­

quired to raise the l iquid to the vaporization temperature can be ignored. 

The heat loss rate is estimated from: 

AK = a c p QL AT + a D p Qv , 

AH heat l o s s , W 

a conversion coe f f i c ien t , 4.184 H/(cal /sec) 

C heat capacity of water, 1.0 cal/gm- uC 

P density of water, - 1 . 0 gm/cm^ 

QL extraction rate of water, cm^/sec 

(to convert l i t e rs /day to cm 3 /sec, divide by 86.4) 

AT temperature increase of water, °C 

D heat of vaporizat ion, 539 cal/gm at 100°C 

Q v extraction rate of vapor, cm 3 /sec. 
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The heat loss rate is plotted against water extraction rate with temper­
ature as a parameter in Fig. 5.1, based on the equation above. The range 
of extraction rate is chosen to include H2 and H4, the highest flow holes in 
the time scale experiment. Other time scale holes plot to the left of H4, 
and the heater holes H9 and H10 are not treated here because their inflows 
were low and lasted only a short time (Figs. 4.2 and 4.6). The temperature 
increments are based on measurements with a thermocouple inserted into the H2 
and HI dewatering tubes yielding water temperatures for the extracted water 
of 36*C and 28'C. An ambient temperature of 10"C was subtracted to yield the 
18*C and 26'C isotherms given in Fig. 5.1. These water temperatures were 
measured in February, 1979, after the heater power and heater temperatures 
had declined from their early levels. To correct for this, a 30JS correction 
factor, based on heater temperature records,-was applied to the 26°C value, 
giving 34°C as the estimate of incremental temperature acquired by water 
extracted soon after heater turn on. Added to this is a constant 5.5 W value 
to account for the heat of vaporization of 210 ml of water. The 210 ml value 
was derived from inspection of the H8 dewatering test and consideration of 
the maximum value which fie pump could possibly extract. 

From Fig. 5.1 the highest rate of heat loss is estimated to be 20 watts, 
from borehole H2, early in the experiment when the heat output was 1.125 kW, 
for a loss at that time of 1.8%. If the vapor contribution remained constant, 
then the loss would increase to about 3% by the end of the experiment when 
heater power had dropped to 0.55 kW. losses in. H4 would remain at less than 
2%, while losses from the remaining six time scale heaters would be less than 
1 throughout the heating period. 
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Fig. 5.1. Heat loss rate due to extraction of heated liquid water at 3 tem­
peratures. Heat loss due to 210 ml of vanor extracted per day is 
added to the 39°C line to illustrate the worst case. Extraction 
rates for the two highest flow heater holes are indicated at bottom 
of graph. 
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5.2 Spatial Dependence of Inflow 
Tlie variations in the water inflow record indicate the presence of two 

components: inflow induced by stress changes caused by heating, and inflow 
caused by the local hydrological pressure gradient. Separation of these com­
ponents is judgemental, so that the selected "background" inflow rates attrib­
uted to hydrological gradients are given as a range of values in Fig. 5.2. 
Some of the features apparent in Fig. 5.2 have already been pointed out in 
Section 4, such as the higher inflows in the holes at the rear and side of 
the drift and the general tendency for the closely spaced T-holes to exhibit 
lower inflow rates than the outer holes. 

Attempts to find inflow changes induced by heating as a function of rad­
ial position of boreholes met with little success, partly because of the dif­
ficulty of separating the two flow components. Only in the case of the per­
ipheral heater turn on were the data adequate to subtract a background inflow, 
with the result shown in Fig. 5.3. Note that the volumes above background 
attributed to the peripheral turn on comprise only a few liters. 

The inflow associated with peripheral heater turn-on is greater in the 
outer holes than the inner ones. We know of no way to discern among the sev­
eral factors which could affect this dependence: a) the outer holes drain a 
larger volume than the closely spaced inner holes, b) the inner holes were 
already subjected to a higher temperature and compressive stress when H10 was 
turned on and may have already lost more of their pore water, and c) holes at 
larger radial distance are subjected to a lower stress increase than the inner 
holes, which would produce a trend opposite to that observed in Fig. 5.3. 
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Fig. 5.2. Background inflow rates 1n full scale drift, selected from data be­
fore or at heater turn-off and at >id of data collection to mini­
mize effects of heating. 
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Fig. 5.3. Excess volumetric inflow attributed to turn-on of peripheral 
heaters, plotted with distance from hole HIO. Values obtained by 
summing inflow between days 207 and 244, then subtracting an e s t i ­
mated volume contributed by "background" flow. Triangular points 
are less rel iable because background flows where more d i f f i c u l t to 
estimate. Holes UU, U13, T22 not plotted. 
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5.3 Total Inflow 

The total amount of water recovered from each borehole while the dewa-
tering apparatus operated is presented in Table 5.1, compiled from the monthly 
averages. Once again, the extreme variability among the holes is apparent: 
from a fraction of a liter recovered from some of the 38-mm instrument holes 
to the 5000 liters recovered from heater hole H2. Also apparent is the dif­
ference in inflow between time scale and full scale drifts, with the time 
scale holes, although far fewer in number, recovering more than 10 times the 
amount recovered in the full scale drift. In fact, the entire flow into the 
H9 and HIO experiments is equalled by only several days of flow into hole M3 
(rear of time scale drift) or into hole Rl (rear of ventilation drift): 

The data from Table 5.1 are plotted in Fig. 5.4, as a frequency distribu­
tion versus logarithmic increments of total inflow. Boreholes from the three 
experiment areas are-coded differently. It is readily apparent that in terms 
of total inflow, time scale > HIO area > H9 area. The full scale data obey a 
"log-normal" distribution, as confirmed by a plot on a probability graph. 
Inclusion of the eight time scale data points skews the distribution somewhat 
to the higher values. 

The frequency distribution of inflow in Fig. 5.4 might be expected to be 
similar to a distribution of permaability values for the same set of bore­
holes, if such data were available. For such a comparison to hold, pressure 
conditions must be similar around the two drift:., but no detailed pr -sure 
monitoring was done. Moreover, the geometry is rather complicated so that 
corrections for borehole diameter, drainage radius, and interference effects 
are needed to convert the data to equivalent permeability. Even if such 
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Table 5.1. Volume (liters) recovered from each borehole over duration of ex­
periments. Values are summed from monthly averages (Appendix D), 
with corrections for flagged data points. 

H9 Area H10 Are* I Time Scale 

CI 2.9 C3 2.3 H10 2.9 HI 359 
*C2 51.6 C4 11.7 *H11 0.9 H2 4960 
T13 0.1 C5 11.5 *H12 1.0 H3 296 
T14 0.9 T19 7.1 *H13 0.2 H4 1158 
T15 1.0 T20 4.9 *H14 1.4 H5 199 
T16 2.7 T21 7.6 *H15 0.6 H6 120 
T17 1.6 T22 4.2 *H16 0.4 H7 661 
T18 0.4 T23 1.7 *H17 1.1 H8 8 
Ul 0.3 

14.2 

T24 

Ull 

6,3 
3.1 

*H18 

Sum 
0.7 
9.8 U2 

0.3 

14.2 

T24 

Ull 

6,3 
3.1 

*H18 

Sum 
0.7 
9.8 Sum 7761 

U3 54.3 U12 27.6 
U4 0.4 *U13 22.9 

U5 0.4 *U14 18.8 
116 0.5 U15 4.6 
U7 7.0 U16 112.7 

U8 34.8 U17 39.9 

U9 21.7 *U18 10.0 
UIO 8.6 U19 26.2 
Sum 203.4 U20 30.9 

H9 19.1 
Sum 354.0 

Sum 222.5 

•Asterisks denote incomplete or poor •juality records. 
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Fig. 5.4. Histogram of volumes recovered over duration of experiments. Data 
taken from Table 5.1, excluding H9, HIO, and peripheral heater 
holes, and including an entry for the flowing hole H3. 
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corrections could be made with confidence, it is doubtful they would intro­
duce order-of-magnitude changes into the frequency distribution. A more sig­
nificant distortion in the histogram is the inclusion of the water contributed 
by fracture closure, which can be expected to be a significant, even dominant, 
fraction of total flow for those boreholes with low total inflow. The net 
effect is to bias upwards, the very low flow values from what would obtain 
without heating truncating the distribution on the low side. Hence the 
5-1/2 decade range displayed on thei total inflow histogram represents a mini­
mum ror the true spread of permeability values in this suite of boreholes. 

5.4 Mechanisms 
Crack-closure hypothesis. All four initiations of heater operation in 

the three experiment? have produced an increase in water inflow in boreholes. 
As the heaters are turned on, the surrounding rock not only rises in tempera­
ture, but also undergoes marked Increases in compressive stress as thermal 
expansion takes place under confined conditions, as shown in the example com­
puted by Chan and Cook (1979) in Fig. 5.5. We hypothesize the following se­
quence: as compressive stresses increase, open fractures in the rock mass 
progressively close. Water occupying crack and pore space is forced to mi­
grate as this space is reduced by increased stress, with consequent inflow 
into the nearby boreholes. If enough time elapses, as it does after turn on 
of the main heaters, then flow from the finite source volume gradually de­
clines subject to permeability constraints. If the heat load is reduced, as 
it is at turndown of the peripherals and turnoff of all H10 heaters, then the 
cracks cease closing and flow reduces or stops. After turnoff, stress quickly 
declines, cracks reopen, or at least partially reopen and resaturation of the 
cracks commences. Once the rock i', resaturated, inflow to the boreholes 
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Fig. 5.5. Computed stress (Chan and Cook, 1979) and 
water inflow in borehole U15. 
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recommences subject to rock permeability and local hydrologlcal pressure gra­
dients. Most of these features can be seen In the selected example of Fig. 
5.5. Some of the considerations upon which the above sequence Is based are 
discussed below. 

Vol metric considerations. It 1s worth emphasizing that with few excep­
tions, the quantities of water recovered are quite snail and comparable to 
reasonable estimates of crack volume. For example, consider the volume of 
rock In a column one meter square and five meters high. If the porosity were 
0.001 (0.1*), then the void space In the column would be 5 1leers, a value 
comparable to the Inflow attributed to thermal stress Increases (refer to 
discussion of Fig. 5.3). If the five-liter void space were distributed in 
planar fractures, it could be accomodated In 50 thin cracks of 0.1 mm aper­
ture spaced 10 cm apart in the same vertical column (5 m x i m x 1 m). An 
average fracture spacing of 10 cm Is reported by Paulsson et al. (1981), based 
on observation of core from the full scale drift. Hence, from volumetric 
considerations, 1t 1s plausible that a significant portion of the Inflow could 
be supplied by reduction of fracture and crack volume In the rock Immediately 
surrounding the heaters. 

Permeability changes due to stress increases. A condition of Increasing 
compressive stress exists throughout most of the rock mass with the turn on 
of the naln and peripheral heaters. It is difficult to explain how permea­
bility might Increase where compressive stress Increases. Rock permeability 
could Increase by the opening of microcracks or slippage along joints (dilatancy 
effect), but substantial differential movement seems unlikely because of 
the low thermal stresses and because of the observed decrease of inflow once 
heating stops. 
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Fractures and cracks are partially closed because of the existing state 
of stress prior to heater turn on. With thermal loading the stress increases 
throughout most of the rock mass and cracks and fractures continue to close. 
Closure of fractures and cracks is expected to be more Important than closure 
of semi-spherical pores because cracks of low aspect ratio close at low 
stress levels (Brace, 1965; Walsh, 1965). Evidence for crack closure with 
heating comes from ultrasonic velocity data (Paulsson and King, 1980), which 
can be interpreted to indicate that fractures close rapidly with turn on of 
the H9 heater, and reopen when the heater is turned off. 

In only one instance do we see an effect which may Je attributed to per­
meability reduction: the cessation of inflow into the H9 and HIO heater holes 
within a month or so after turn on (Figs. 4.2 and 4.6) could be due to reduc­
tion of rock permeability to very low values immediately around the heaters. 
In almost all other cases, water inflow increases in spite of the probable 
decreases in rock permeability. 

Zones of tensile stress. There are some zones within the heated rock 
mass where tensile rather than compressive stresses are caused by the heating 
(Chan and Cook 1979, Figs. 23-25). These zones are immediately above the 
heaters, extending from the drift floor to a meter or so below the drift 
floor. Superposed with the stress state existing prior v. heating, the re­
sulting net compressive stresses are reduced in magnitude or possibly even 
tensile in places. Hence permeability could increase immediately below the 
drift floor as fractures open in response to the reduced compressive stresses. 
Opening of cracks with peripheral turn on was, 1n fact, observed from the 
presence of bubbling along linear features in the drift floor when the dewa-
tering apparatus was operated (Appendix A ) . One might expect that little 
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water would enter the boreholes at this elevation if the rock near the 
drift surfaces were drained, but water was observed in boreholes at depths 
Immediately below the floor (Fig. 2.10). In addition, the exceptional 
behavior of hole U12 (Fig. 4.11) may be In response to fractures opening at 
a reduced stress level. Howevt/, tensile stress affects only a limited 
volume within the rock mass, and would not explain the decrease in flow 
observed at the turn-down (as opposed to turn-off) of the periperal heaters. 

Temperature-dependent properties of water. The temperature-dependent 
properties of water augment the Inflow caused by reduction of crack spacing 
and countet the stress-reduced permeability reduction. Figure 5.6 shows 
that the specific volume of water increases anywhere from 5 to 15% over the 
temperature ranges encountered in the full scale experiments. Pressure 
effects are unimportant. This volumetric Increase would enhance the amount 
of water forced out of pore and crack spaces. In addition, the four to 
five-fold decrease in viscosity due to temperature, as indicated in Fig. 5.6, 
effectively acts as an increase in hydraulic conductivity, thereby decreasing 
thu migration time from crack and pore spaces to the boreholes. Viscosity 
reduction cannot be Important 1n the outer holes where temperature increases 
are small, but could be affecting flow into the inner holes. 

Mineral dissolution. Mineral dissolution and precipitation, as reported 
in laboratory experiments by Summers et al. (1978) can produce dramatic 
permeability changes. However, the differential stresses and fluid pressures 
at Strlpa were not nearly as high as those achieved in the laboratory; moreover 
our estimates of crack volume suggests that only one crack volume of fluid 
moved through the rock during the experiment. Plugging by precipitation also 
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Fig. 5.6. Viscosity and specific volume of water as a function of temperature. 
Viscosity data from Doriey (1940). Specific volume data from Ken­
nedy and Holster (1966), for four values of pressure (10 bars = 1 
MPa). 
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seems unlikely in view of the rapid increase of inflow at peripheral turn-on. 

In summary, the character and time constants of the inflow suggest that 
the component related to heater turn on and turn-off is caused by the reduc­
tion of fracture and crack porosity induced by thermomechanical loading. If 
so, then small amounts of water can be expected to be produced in any satu­
rated rock mass where similar heater experiments are conducted. 
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6.0 SUMMARY 
1) Water inflow into instrumentation and heater boreholes has been moni­

tored for almost two years during the three thermomechanical experiments at 
Stripa. In general, flow increased into both heater and instrumentation bore­
holes following the commencement ot heater operation. The main pulse of in­
creased inflow lasted about 30 or 40 days, followed by a steady decline there­
after. When the heat load was reduced at turn-down of the peripheral heaters 
^nd at turn-off of main heaters, the inflow declined, usually quite sharply. 
These characteristics of the inflow and their relationship to the time-depend­
ent stress behavior are illustrated in Fig. 5.5. 

2) The water inflow records indicate the presence of two flow components: 
inflow attributed to the local hydrological pressure gradients, and water mi­
gration from cracks closing under the rapidly increasing, thermally-induced 
stress changes. The former contributes a background flow rate visible before 
heater turn on and after the decay of induced flow transients. The latter 
component is most visible following turn on of the four sets of heaters, and 
most particularly following turn on of the peripheral heaters in the H10 ex­
periment. Both components are subject to the vagaries of hole placement and 
local permeability variations. Consequently there is only limited spatial de­
pendence of inflow with respect to radial distance from the heaters. 

3) The stress-induced components of flow rate vary noticeably among the 
three experiments, as can be seen by examining the figures of Section 4. Flow 
rates into the 38-mm boreholes around the H9 heater are low compared to the 
H10 boreholes, and the decay times are longer in the H10 holes. This effect 
is not surprising, given that the stress levels and stress gradients are higher 
around the 5.0 kW H10 heater than around the 3.6 kW H9 heater. In the time 
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scale drift the geometry and power distribution are quite different. The time-
varying flow components in the time scale heater holes are an order-of-magni-
tude greater than in the full scale instrumentation holes. 

4) The water volunes attributed to crack closure (Fig. 5.3) are one to 
two liters in the 38-mm instrumentation boreholes, and these volumes are com­
patible with estimates of the available crack porosity within a 1/2 m radius 
of a borehole. 

5) Total water volumes (Fig. 5.4; Table 5.1) range over 5-1/2 orders of 
magnitude, from 0.1 liter to over 10,000 Titers collected over the 500 to 600 
day time periods. The resulting frequency distribution, plotted against loga­
rithmic decrements of inflow is Gaussian with some skewing to the high flow 
rates. Despite the inclusion of the crack closure component, the distribution 
is believed to be representative of the permeability distribution in this suite 
of boreholes. 

6) The H9 and H10 heaters in 406 mm boreholes in the full scale drift 
developed 3.6 and 5.0 kU of power over their 2.44 m length. Inflow pt .ed at 
about 1400 ml per day within 3 to 6 days after turn-on in these two holes, 
then declined to zero within the next 30 days (Appendix B). However, in the 
time scale heater boreholes, the initial pulse of inflow took much longer to 
decay (Figs. 4.13 - 4.16) and 7 of 8 holiis continued to flow throughout the 
experiment. The higher levels of sustained flow in the time scale heater 
boreholes could be due to a combination of factors: i) overall, rock permea­
bility 1n the time scale drift appears to be greater than in the full scale 
drift, ii) the thermal output of the time scale heaters was initially 1.125 
kW over their 1-m length, declining to 0.55 kW during the experiment. Due to 
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the dimensional scaling (Chan and Cook, 1979), the stresses close to a 

time scale heater hole should be approximately equal to the stresses around 

the H9 heater hole during the Ini t ial operation of the time scale heaters. 

As the power levels in the time scale heaters decreased, the stresses declined. 

I t seems possible that a low permeability "skin" formed around the full 

scale heaters which lasted longer in time and was more extensive spatially 

than around the time scale heaters. 111) the time scale heater holes were 

deeper than the full scale heater holes, and the heater lengths were shorter, 

so a much smaller fraction of heater length to total open borehole length was 

available for water infi ltration into the time s-ale heater holes. 

7) Heat loss from the full scale heater holi?s due to water extraction 

was negligible because the amounts extracted were small and the duration 

of flow was short. Heat loss from the time scale heater holes is estimated 

at no more than 3% at any time during the operation of H2, which was the 

highest flow hole. Power losses from H4 are estimated to have been less than 

2% while the remaining six heater holes lost less than IS. 

8) Inflow into t .hole U12 is anomalous among all the 38-mm boreholes 

(Fig. 4.11). Flow increased gradually after turn-on of the peripheral 

heaters, reaching a level much higher than that recorded before peripheral 

heater turn-on or after turn-off. The record suggests the opening of a 

fracture(s) after peripheral turn-on, possibly in the rock immediately below 

the drif t floor where net compressivs stresses are reduced with the additional 

heating. With turn-off of the heaters, the net stress would again increase, 

allowing the fracture(s) to close. 
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9) Inflow Into the tine scale herter hrvies Increased dramatically when 

packers were Installed 1n borehole Rl In the ventilation dr i f t , although I t 1s 

located 40 m from the t i M scale holes. The coincidence establishes the exist­

ence of pemeable flow paths among Rl and the tine scale holes. I t also dem­

onstrates that experiments must be well separated I f such Interference effects 

are to be avoided. 

10) I f the crack closure mechanism Is correct, then water migration can 

be expected In similar heater tests In saturated rock, even 1f the rock poros­

ity Is quite low. Furthermore, these results provide some experience base for 

planning future coupled thernomechanlcal-hydrologlcal experiments 1n that more 

than one mechanism can be operative In producing time-dependent changes In wa­

ter migration. 
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Appendix A - HOLE-BV-HOLE USTINGS OF EVENTS RELATED TO DATA 

Below are tables of identifiable data anomalies. They have 
been included on the individual water inflow records stored in 
PSS. 

DATA DWEGCIARITIES - Full-Scale #1 - p . 1/2 

hole date day of 
experiment 

cot 

C2 07/13/78 -41 1 
11/02/78 71 2 
12/14/78 113 3 
12/20/78 119 3 
12/25/78 124 3 
01/04/79 134 3 01/10/79 140 3 
01/17/79 147 3 
01/31/79 161 3 
02/06/79 167 3 
02/13/79 174 3 
03/06/79 195 3 
03/13/79 202 3 
07/13/79 324 
07/24/79 335 
07/31/79 342 
08/01/79 343 
08/02/79 344 
08/14/79 356 

H9 06/16/78 -68 
T13 07/12/78 -42 
T14 07/13/78 -41 
T15 07/13/78 -41 
T16 07/14/78 -40 
T17 07/14/78 -40 
T18 07/14/78 -40 
U2 07/12/78 -42 

01/17/79 147 
01/24/79 154 
09/26/79 399 2 

code comment 

i n i t i a l dewatering 
change in length of dewatering tubes 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
zero inflow - no explanation 
suction l ine clogged or broken 
suction l ine clogged or broken 
suction l ine clogged or broken 
suction l ine clogged or broken 
suction l ine clogged or broken 
suction l ine clogged or broken 

in i t i a l dewatering 

in i t i a l dewatering 

in i t i a l dewatering 

in i t ia l dewatering 

in i t ia l dewatering 

i n i t i a l dewatering 

in i t i a l dewatering 

i n i t i a l dewatering 
zero inflow - no explanation 
zero inflow - no explanation 
gauge reinstalled 
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DATA IRREGULARITIES - lull-Scale t l - p. 2/2 

hole date day of 
experiment 

cot 

113 07/12/78 
12/20/78 
02/13/79 
09/26/79 

-42 
119 
174 
399 

1 
2 
2 
2 

U4 07/12/78 -42 1 
US 03/13/79 202 2 
U7 07/14/78 

12/14/78 
12/20/78 
12/28/78 
08/14/79 

-40 
113 
119 
127 
356 

1 
2 
2 
2 
2 

U8 07/13/78 
10/23/78 
12/20/78 
07/17/79 
08/21/79 
09/11/79 

-41 
61 
119 
328 
363 
384 

1 
2 
2 
1 
2 
2 

U9 07/12/78 -42 i 

U10 07/12/78 -42 1 

code comnent 

initial dewatering 
high inflow - prob. w. dewatering sys. 
data averaged over 55 days 
high inflow - dewatering tubes changed 

initial dewatering 

high inflow - dewatering tubes changed 

initial dewatering 
low inflow - dewatering tubes changed 
low inflow - dewatering tubes changed 
low inflow - dewatering tubes changed 
high inflow - dewatering tubes changed 

initial dewatering 
high inflow - dewatering tubes changed 
zero inflow - dewatering system removed 
fictitious data to adjust next period 
high inflow - dewatering tubes changed 
low inflow - dewatering tubes changed 

initial dewatering 

initial dewatering 



95 

DMA nWEGUIARITIES - lu l l -Scale #2 - p . 1/3 

icle date 

C4 

C5 

08/07/78 
08/09/78 
11/08/78 
12/14/78 
12/20/78 
12/28/78 
03/06/79 247 
03/08/79 249 
03/09/79 250 

Ml 02/05/79 

day of code comment 
experiment 

36 2 high inflow - gauge reinstalled 
38 2 low inflow - gauge reinstalled 

129 2 high inflow - gauge reinstalled 
165 2 dewatering system modified 
171 2 dewatering system modified 
179 2 <?«watering system modified 

2 vacuum l ine clogged with sand 
2 vacuum l ine clogged with sand 
2 vacuum l ine clogged with sand 

218 1 anoint includes inflow from 
H17 and HIS 

H17 02/05/79 218 H17 cork open when Hll 
dewatered 

H18 02/05/79 218 H18 cork open when Hll 
dewatered 

08/25/78 
09/29/78 
10/02/78 
10/04/7S 

11/24/78 
01/11/79 
11/03/78 
08/14/79 
08/16/79 

08/21/78 
11/17/78 
07/03/78 
03/02/79 
03/05/79 
03/06/79 

012 07/03/78 

T19 

T21 

T22 

T23 

Ull 

54 
89 
92 
94 

145 
193 
124 
408 
410 
50 
138 
1 

243 
246 
247 

1 sanple lost 
2 TC reinstalled 
2 TC reinstalled 
2 TC reinstalled 

2 TC installed - backfilled with sand 
2 system vacuum pump replaced 
2 TC reinstalled 
2 miners spraying water outside Exp. #2 
2 miners spraying water outside Exp. #2 
1 sanple lost 
2 TC reinstalled 
1 initial dewatering 
3 very high inflow 
3 very high inflow 
3 high Inflow 

1 initial dewatering 



96 

MTA ntRBGUURXTIES - mil-Scale #2 - p. 2/3 

hole date day of code comment 
experiment 

07/03/78 1 1 initial dewatering 
08/25/78 54 1 value averaged over 53 days 
09/29/78 89 3 zero inflow 
10/02/78 92 3 high inflow 
01/24/79 206 3 zero inflow 
01/31/79 213 3 zero inflow 
02/08/79 221 3 high inflow 
03/20/79 261 3 low inflow 
03/21/79 262 3 zero inflow 

07/03/78 1 1 initial dewatering 
07/04/78 2 •1 initial dewatering 
07/05/78 3 1 initial dewatering 
07/06/78 4 1 initial dewatering 
07/07/78 5 1 initial dewatering 
08/28/78 57 1 value averaged over 52 days 
09/01/78 61 3 low inflow 
09/04/78 64 2 high inflow - gauge reinstalled 
11/13/78 134 2 zero inflow - gauge reinstalled 
11/17/78 138 2 low inflow - gauge reinstalled 
11/24/78 145 2 low inflow - gauge reinstalled 
12/01/78 152 2 zero inflow - gauge reinstalled 
12/08/78 159 2 high inflow - gauge removed 
03/21/79 262 3 zero inflow 
03/25/79 266 3 high inflow 
07/13/79 376 2 low inflow - gauge reinstalled 
07/25/79 388 2 high inflow - gauge reinstalled 
07/03/78 1 J. initial dewatering 
07/04/78 2 1 initial dewatering 
07/05/78 3 1 initial dewatering 
07/06/78 4 1 initial dewatering 
07/07/78 5 1 initial dewatering 
07/10/78 8 1 initial dewatering 
07/11/78 9 1 initial dewatering 
08/06/79 400 2 overweekend dewatering 
02/13/80 591 2 low inflow - gauge pulled 
07/03/78 1 1 initial dewatering 
07/12/78 10 1 initial dewatering 
09/25/78 85 2 low inflow - gauge removed 
09/26/78 86 2 high inflow - gauge reinstalled 
04/19/79 291 1 sample lost 
08/03/79 397 3 high inflow 
09/20/79 445 3 high inflow 
09/25/79 450 3 low inflow 



DATA IRREGULARITIES - Full-Scale #2 - p. 3/3 

hole date 

U17 

U18 

U19 

U20 

07/0V78 
08/07/78 
07/03/78 
11/17/78 
11/24/78 
12/01/78 
12/14/78 
12/20/78 
12/28/78 
01/17/79 
01/24/79 
06/14/79 
01/22/80 

07/03/78 
04/17/79 
05/02/79 
05/10/79 
05/16,-79 
05/29/79 

07/03/78 
07/04/78 
07/05/78 
07/06/78 
09/25/78 
09/27/78 
10/23/78 
10/25/78 
11/02/78 
12/14/78 
12/20/78 
12/28/78 
01/10/79 
01/17/79 

day of code comment 
experiment 

2 1 initial dewatering 
36 3 low inflow 
1 1 initial dewatering 

138 1 dewatering system not working 
145 1 dewatering system not working 
152 1 detetering system not working 
165 1 dewatering system not working 
171 1 dewatering system not working 
179 1 dewatering system not working 
199 1 dewatering system not working 
206 1 dewatering system not working 
347 2 TC replaced 
569 2 high inflow - new suction line 
1 1 initial dewatering 

289 1 tube clogged 
304 1 tube clogged 
312 1 tube clogged 
318 1 tube clogged 
331 1 dewatering tubes reinstalled 
1 1 initial dewatering 
2 1 initial dewatering 
3 1 initial dewatering 
4 1 initial dewatering 

85 1 amount averaged over 81 days 
87 1 water blown out of hole 
113 2 zero inflow - gauge reinstalled 
115 2 low Inflow - gauge reinstalled 
123 2 high inflow - gauge removed 
165 2 zero inflow - new dewatering tubes 
171 2 zero inflow - new dewatering tubes 
179 2 zero inflow - new dewatering tubes 
192 2 zero inflow - new dewatering tubes 
199 2 low inflow - gauge reinstalled 



98 
DATA IRREGULARITIES - Time-Scale #3 - p. 1/2 

hole date day of cot 
experiment 

HI 06/05/78 
08/18/78 
12/11/78 

5 1 
79 1 
194 3 

H2 06/05/78 
07/01/78 

5 1 
31 1 

H3 06/08/78 
06/09/78 
12/19/78 
02/07/79 
02/28/80 

8 1 
9 1 

202 1 
252 1 
638 3 

H4 06/04/78 
06/05/78 
06/06/78 
06/08/78 
06/30/78 
12/19/78 

4 1 
5 1 
6 1 
8 1 
30 3 
202 1 

H5 06/04/78 
06/05/78 
06/06/78 
01/19/79 

4 1 
5 1 
6 1 

233 1 
ll/lU/79 
11/16/79 
11/19/79 
11/20/79 
02/20/80 

532 1 
534 1 
537 1 
538 1 
630 3 

H6 06/05/78 
10/17/78 
10/18/78 
10/19/78 

5 1 
139 1 
140 1 
141 1 

code comment 

initial dewatering 
puop off (circuit breaker tripped 
unusually low inflow 
initial dewatering 
dewatering system not working 
initial dewatering 
initial dewatering 
water simple taken - ant. not recorded 
water simple taken - ant. not recorded 
unusually low inflow 
dewatering system not working 
initial dewatering 
initial dewatering 
several liters blown out of hole 
unusually low inflow 
water sample taken - ant. not recorded 
initial dewatering 
initial devatering 
initial dewatering 
very high inflow - activity in W3 
high inflow - hole Bl closed 
high inflow - hole HI closed 
high inflow - hole HI closed 
high inflow - hole HI closed 
zero inflow 

initial dewatering 
problem with dewatering system 
problem with dewatering system 
problem with dewatering system 



99 
DM* IRREGULARITIES - Tine-Scale #3 - p. 2/2 

date 

06/04/78 4 1 
06/05/78 5 1 
06/06/78 6 1 
08/01/78 62 1 
08/14/78 75 3 
06/04/78 4 1 
06/05/78 5 1 
06/06/78 6 1 
06/07/78 7 1 
07/11/78 41 1 

comment 

initial dewatering 
initial dewatering 
initial dewatering 
problem with dewatecing systan 
unusually low inflow 
initial dewatering 
initial dewatering 
initial dewatering 
initial dewatering 
punp stopped 

day of code 
experiment 
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