DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, mates any warranty, express or Implied, of assumes any legal liability or reaponalbility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its uso would not infringe privately owned rights. Referonce herein to any specific commercial product, process, or service by trade name, trademark, inanufacturer, or otherwise does not necoesurly constitute or imply its endorsement, reconmendation, or favoring by the United States Government or any agency thereof. The vows and opinions of authors expressed herein do not necemarily state or reflect those of the United States Government or any agency thereof.

Solar-Wind Magnetosphere Fnergy Input Functions

L. F. Bargatze $1,2,3$, R. L. McPherron 1,2 , and D. N. Baker ${ }^{3}$
${ }^{1}$ Department of Earth fand Space Sciences University of California at Los Angeles Los Angeles, CA 90024
${ }^{2}$ Institute of Geophysics and Planetary Physics University of California at Los Angeles Los Angeles, CA 90024
${ }^{3}$ University of California, Los Alamos National Laboratory Los Alamos, NM 87545
IGPP Publication \$2632 submitted to the Proceedings of the Chapran Cnnference on Solar Wind-Magnetosphere Energy Coupling

A new formula for the solar wind-magnetosphere energy input parameter, P_{i}, is sought by applying the constraints imposed by dimensional analysis. Applying these constraints yields a general equation for P_{i} which is equal to $\rho V^{3} \ell_{C F}^{2} F\left(M_{A}, \theta\right)$ where, ρV^{3} is the solar wind kinetic energy deusity and $\ell_{C F}^{2}$ is the scale size of the magnetosphere's effective energy "collection" region. The function F which depends on M_{A}, the Alfven Mach number, and on θ, the interplanetary magnetic field clock angle is included in the general equation for P_{i} in order to model the magnetohyarodynamic processes which are responsible for solar wind-magnetosphere energy transfer. By assuming the forn of the function F, it is possible to further constrain the formula for P_{i}. This is accomplished by using solar wind data, zeomagnetic activity indices, and simple statistical methods. It is found that P_{i} is proportionel to $\left(\rho V^{2}\right)^{1 / 6} \operatorname{VBG}(\theta)$ where, ρV^{2} is the solar wind dynamic pressure and $\operatorname{VBO}(\theta)$ is a rectified version of the solar wind motional electric field. Furthermore, it is found that $G(\theta)$, the gating function which modulates the energy input to the magnetosphere, is well represented by a "leaky" rectifier function such as $\sin ^{4}(\theta / 2)$. This function allows for enhanced energy input when the interplanetary magnetic field is oriented southward. This function also allows for some energy input when the interplanetary magnetic field is oriented northward.

In troduction

An important goal of solar-terrestrial physics is to understand how the rate of solar wind-magnetosphere energy transfer depends upon interplanetary and magnetospheric parameters. In the past, simple cross-correlacion analyses have been used to establish the causal connection between enhanced geomagnetic activity and the variations of single solar wind parameters such as the solar wind plasma speed (V), the interplanetary magnetic field (IMF) strengtin (B), and the north-south orientation of the IMF vector (see review by Baker, 1985, in this volume, and references therein). Later, researchers began developing more complex formulas to correlate with geomagnetic indices. Such formulas include $\varepsilon=V B^{2} \ell_{0}^{2} \sin ^{4}(\theta / 2) \quad\left(\ell_{0}=7\right.$ earth radii, θ is the IMF clock angle defined below), $V^{2} B_{s}$, and $V B_{s}\left(B_{s}=-B_{Z}\right.$ if $B_{Z} \leqslant 0.0, B_{s}=0.0$ otherwise).

Here, we take a slightly different approach. Before cross-correlating any variables, we use the constraints imposed by dimensional analysis as a guide to develop a general formula for P_{1}, the rate of solar windmagnetosphere energy transfer (Vasyliunas et al., 1982). This general equation is listed below:

$$
\begin{equation*}
P_{i}=D V^{3} \ell_{C F}^{2} F\left(M_{A}, \theta\right) \tag{L}
\end{equation*}
$$

where, D is the solar wind plasma density, $\ell_{C F}$ is the Chapman-Ferraro scale length $\quad\left(\ell_{C F} \rightarrow\left(M_{E}^{2} / \mu_{0} v^{2}\right)^{1 / 6}\right), \quad M_{A}$ is the Alfven Mach number $\left(M_{A}^{2}-\left(\mu_{o} \rho V^{2} / B_{T}\right)^{1 / 2}\right), \theta$ is the IMF clock angle, and F is a function whose dependence upon M_{A} and θ will be discussed below. Other quantities in these formulas include M_{E}, the carth ${ }^{-1}$ magnetic dipole moment, μ_{0}, the permeability of free space, B_{T}, the magnitude of the vectoi sum of the IMF

Abstract

B_{Y} and B_{Z} components measured using geocentric solar magnetospheric (GSM) coordinates, and θ, the angle equal to the arc subtended by the GSM $2-a x i s$ $+$ and the B_{T}

Equation 1 explicitly assumes that the amount of energy which is transferred from ths solar wind to the magnetosphere is proportional to the amount of solar wind kinetic energy that is intercepted by an energy "collection" region on the magnetopause. Equation lincludes the function F in order to model the magnetohydrodynamic interactions which are responsible for the energy transfer. Here, we assume as did Vasyliunas et al. (1982) that $F=M_{A}^{-2 \alpha} G(\theta)$ where, α is the MHD coupling exponent, and $G(\theta)$ is a function which modulates the rate of energy input depending upon the orientation of the IMF.

Unfortunacely, the energy input rate cannot be directly measured. It is customary instead to approximate P_{i} by using various indices of geomagnetic activity. In this study, we use the $A L$ index to estimate P_{1}. This index is sensitive to the emount of current which flown in the westward electrojet (Baumjohann, 1985, this volume). The al index, however, does not respond instantanuously to the rate of solar wind energy input. Hence, one must account for the time delay between solar wind energy input and the enhancement of current flow in the westward electrojet. We do this by convolving an average AL index impulse response filter, f, with the solar wind input tine series (see papers by Bargatze et al., 1985; McPherronetal., 1985; and Clauer, 1985; all this volume). In this light, Equation 1 becomes:

$$
\begin{equation*}
P=f *\left(o V^{3} \& \frac{2}{C F} M_{A}^{-2 \alpha} k G(\theta)\right) \tag{2}
\end{equation*}
$$

Where the star represents convolution and the normazation constant kas been introduced such that $G(\theta)$ is now defined to vary between 0.0 and 1.0 . In going from Equation 1 to Equation 2, the 1 -subscript has been dropped from P_{i}; this is done to emphasize the fact thet the al index, a geomagnetic activity index, has been used to estimate P_{i}, the solar wind energy input parameter.

In the remainder of this study, three different methods are employed to investigate the dependence of P_{i} upon solar wiad variables. Each of these methods is based on a simple statistical technique and on modified version of Equation 2. The analyses were completed using a data base that includes IMP-E solar wind data from 1973-4, ISEE-3 solar wind data from 1978, and the corresponding values of the AL index. The results are presented in three separate sections below.

REGRESSION ANALYSIS RESULTS

The formula which provides the basis for the regression analysis is easily obtained from Equation 2 after substituting for the Chapman-Ferraro scale length:

$$
\begin{equation*}
\log \left(\frac{P}{\mu_{0}^{-1 / 3} M_{E}^{2 / 3} S_{D}^{2 / 3} V^{7 / 3}}\right)=\alpha \log \left(M_{A}^{-2}\right)+\log (k f * G(\theta)) \tag{3}
\end{equation*}
$$

Fquation 3 is that for a straight line, $Y=x X+B$, where, X and Y are logarithmic variables, α is the line's slope, and $\log (k f * G(\theta))$ is the linés Y-axis intercept. Strictly speaking, Equation 3 is a valid representation of Equation 2 if and only if the quantities $\mathrm{ov}^{3} \mathrm{CF}_{\mathrm{CF}}^{2}$ and $\mathrm{M}_{\mathrm{A}}^{2}$
-6-
are epproximately constant since these terms have been removed from the convolution with the impulse response function, f.

To use Equation 3, the data set was separated into twelve bins depending on the value of $G^{-1}(f * G(\theta))$ where, $G(\theta)$ is assumed to be equal to $\sin ^{4}(\theta / 2)$ and G^{-1} is its trigonometric inverse function. Each bia corresponds to a 15° range in θ startingwith $0^{\circ} \leqslant \theta<15^{\circ}$ (a nearly northward IMF) and ending with $165^{\circ}<\theta<180^{\circ}$ (a nearly southward IMF). The data within each bin were used s input to a simple linear regression analysis routine in order to estimate the slope and intercept of the best fit line through the distribution.

Figure 1 is a scater plot of the logarithmic variables which was made by assuming that P is equal to the $A L$ index multiplied by an energy conversion factor of $3 \times 10^{8}((\mathrm{~J} / \mathrm{s}) / \mathrm{nT})$ (Perreault and Akasofu; 1978). For this figure, the value of θ was restricted to lie between 135° and 150°. The best fit line has a slope equal to 0.54 ; the linear correlation coefficient is equal to 0.66. Figure 2 is a summary of all of the a-slope estimates plotted as a function of θ. The error in the a-estimates are showa using $2-\sigma$ error bars. For northward IMF, almost all of the slope estimates lie between 0.0 and 0.4 ; however, all of the corresponding regression coefficients are smalle= than 0.3 . For southiard IMF, all but one of the slope estimates lie between 0.4 and 0.0 . The regression coefficients are higher reaching values near 0.7 .

HISTOGRAM ANALYSIS RESULES

For this section only, we define a new MHD coupling exponent, a', which is equal to $1.0-x$. We do this in order to directly compare the results of this section with the results of histogram analysis performed
by Kan and Akasofu (1982). Given that $a^{\prime}=1.0-a$, one can readily manipulate Equation 2 to yield:

$$
\begin{equation*}
P=f *\left(\frac{1}{u_{0}} V B_{T}^{2} k \ell_{C F}^{2} M_{A}^{2 a^{-}} G(\theta)\right) \tag{4}
\end{equation*}
$$

The histogram analysis equation is obtained directly from Equation 4 by solving for a^{-}explicitly:

$$
\begin{equation*}
\left.a^{-}=\log \left[P / f f *\left(\frac{1}{U_{0}} V B_{T}^{2} k \ell_{C F}^{2} G(\theta)\right)\right)\right] / \log \left(M_{A}^{2}\right) \tag{5}
\end{equation*}
$$

To perform the analysis, it is assumed once again that P is proportional to the AL index and that $G(\theta)$ is equal to $\sin ^{4}(\theta / 2)$. Then, each set of data points is used as input to Equation 5 to obtainanestimate of a^{-}. The "best" estimate of a° ls determined by histogramming all of the a^{-}-estimates to find the most frequently occurring a^{\prime}-value.

Figure 3 shows the result of the AL histogram analysis. Note that the distribution peaks between 0.5 and 0.55 and that the half-width of the distribution which provides an estimate of error is about 0.1. This result is in accord with the regression analysis results which suggest that a is equal to 0.5 (since $a=1.0-a^{-}$).

GATING FUNCTION ANALYSIS

Rearranging Equation 2, one obtains the formula used to calculate the empirical dependence of $G(\theta)$ upon θ :

$$
\begin{equation*}
G(\theta)=\frac{P}{f *\left(D V^{3} k \ell C_{F^{\prime}}^{2} A^{-1}\right)} \tag{6}
\end{equation*}
$$

Note that a was assumed to be equal to 0.5 to yield this equation. Before analysis, the data were separated into twelve bins depending on the average value of θ. Each data bin corresponds to a 15° range in θ. The binned data sets were then used as input to Equation 6 in order to find the aver $-f G(\theta)$ within each bin. Since the $G(\theta)$ term has been rewoved from the conyolution with f, we have limited the analysis to include only those intervels during which θ was approximately constant.

The results are displayed in Figure 4 . Also ploted are two soidd lines which show the variation $\sin ^{4}(\theta / 2)$ and $U(e) \cos (\theta)$ versus θ $\left(U(\theta)=0.0\right.$ if $\theta \leqslant 90^{\circ}$ and $U(\theta)=-1.0$ if $\theta>90^{\circ}$). These are the gating functions used in the definitions of ε and V_{s} respectively. In figure $4 a$, the $G(\theta)$-estimates have been normalized such that they approach 1.0 at $\theta=180^{\circ}$. Note that the $G(\theta)$-estimutes do not approact zero asymptotically as θ approaches 0°. This is likely due $=0$ the errors involved in the analysis or perhaps due to the effects of energy input to the magne tosphere via viscous processes (Axford, 1964). This "error" baseline corresponds to an Ah index value of abuut - 50 nT . Figure 40 shows the $G(\theta)$-estimates renurmalized after the "error" baseline has been subtracted out. These estimates agree quite well with the $\sin ^{4}(\theta / 2)$ curve.

CONCLUSION
In summary, we have used the constraints imposed by dimensional analysis and three different statistical techniques to examine the relationsinip governing energy transfer from the solar wind to the
magnetosphere. Two of these techniques, the regression techaique and the histogran technique, have been used to find whether F_{i} is better represented uy parameter such as ε which is related to flow of energy described by the Poynting vector of the solar wind or by parameter such as VB_{s} which is related to the solar wind motional electric field. Both the regression analysis results and the histogran analysis results suggest that the MHD coupling exponent, α, is equal to 0.5 ± 0.1. If a is equal to 0.5, the rate of energy transfer is given by $\rho V^{3} k \ell_{C F_{A}}^{H_{A}}{ }^{-1}(\theta)$. This function is proportional to $\left(D V^{2}\right)^{1 / 6} V B G(\theta)$ where, $o V^{2}$ is the solar wind dynamic pressure and $\operatorname{VBG}(8)$ is a rectified version of the soler wind motional electric field. Thus, the results scggest that p_{i} is more closely related to the strength of the solar wind motional electric field. Since P_{i} depends upon the solar winj dynamic pressure, the scale length of the magnetosphere which is inversely proportional to ov also plays an important role in determining the rate of energy transfer.

The above conclusions differ from the conclusions reached by Kan and Akasofu (1982) who found that $P_{i}=\varepsilon$. Their conclusion is based on a histogram analysis similar to the one presented here except that they modeled P_{i} using U_{T}, a measure of the total rate of magnetospheric energy dissipation (Perreault and Akasofu, 1978). However, it appears that they have not performed a completely general analysis. In particular, they have implicitly chosen a value for the constant k which is about an order of magnitude larger than the value of k that we have found using the regression techníque and the 1973 data base which includes U_{T} (the ${ }^{U} T$ results are not presented here due to lack of space; they are in general agreement with the AL index results). Referring back to Equation 3, one finds that the constant k determines the Y-axis intercept of the line which
best relates the two logarithnic variables. Hence, one cannot freely assume ary value for k in order to perform histogras analysis; it is crucial to use alue of k which is consistent with the results of regression analysis.

The results of the gating function analysis suggest that $G(\theta)$ is best represented by a "leaky" rectifier function such as sin ${ }^{4}(\theta / 2)$ which is used in the definition of E. We use the term leaky since a function like $\sin ^{4}(\theta / 2)$ allows for a small amount of energy input when the IMF is northward. In contrast, the half-wave rectifier function ilke that used in the definition of $V \mathrm{~S}_{\mathrm{s}}$ does not allow for any energy input when the IMF is northward. Both, of course, allow for eahanced energy input when the IMF is oriented southward.

The highest correlation coefficients of the analyses presented here Lie near 0.7. If the correlation coefficients were much lower, one might question the validity of the theoretical guidelines provided by dimensional analysis which were used to obtain the original, general formula for P_{i}. Still, the magnitude of the correlation coefficients suggests that the model that we have used here could be improved. In fact, Vasyliunas et al. (1982) have suggested using a more complete model that inzorporates magnetosphere-ionosphere coupling. Unfortunately, we cannot test tinis model until a high-time resolution data base which includes the ionospheric Pedersen conductivity becomes available.

Acknowledgements. The IMP-8 magnetometer data were supplied by researchers at the Goddard Space Flight Center and the ISEE-3 magnetume ter deta were supplied by researchers at the Jet Propulsion Laboratory. The AE indices were provided by the World Data Center, Boulder, Coloradn. This work was supported at Los Alamos by the Institute of Geophysics and
Planetary Physics and was done under the auspices of the United States
Department of Energy. This work vas supported at the University of
California at Los Angeles by the National Science Foundation, grant Aim
$83-18200$, by the Office of Naval Research, grant N00014-84-C-0158, and by
the National Aeronautics and Space Administration, grant NGL-05-007-004.

REFERENCES

Axford, W. I., Viscous interaction between the solar wind and the earth's magnetosphere, Planet. Space Sci., 12, 45, 1964.

Baker, D. N., Statistical Analyses in the study of solar wind-magne tosphere couplir:, in Solar Wind-Magnetosphere Coupling, edited by Y. Kartie and J. A. Slavin, (submitted), Pasadena, 1985.

Bargatze, L. F., D. N. Baker, and R. ${ }^{\text {, McPherron, Magnetospheric response }}$ to solar wind variations, in Solar Wind-Magnatosphere Coupling, edited by Y. Kamide and J. A. Slavin, (submitted), Pasadena, 1985.

Baumjohann, W., Merits and limitations of the use of geomagnetic indices in solar wind-magnetosphere coupling, in Solar Wind-Magnetosphere Coupilng, :dited by Y. Kamide and J. A. Slavir, (submitted), Pasadena, 1985.

Claver, C. R., The technique of linear prediction filters applied to studies of solar kind-magnetosphere coupling, in Solar Wind-Magnetospinere. Coupling, edited by Y. Kamide and J. A. Slavin, (submitted), Pasadena, 1985.

Kan, J. R., and S.-I. Akasofu, Dynamo process governing solar windmagne tosphere energy coupling, Planet. Space Sci., 30, 367, 1982.

McPherron, R. L., L. N. Baker, and L. F. Bargatze, Linearfi ers as a method of real-time prediction of geomagnetic activity, in Solar WindMagnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, (submitted), Pasadena, 1985.

Perreault, P. and S.-I. Akasofu, A study of geomagnetic storms, J. Roy. Astron. Soc., 54, 547, 1978.
-13-
Vasylfunas, V. M., J. R. Kan, G. L. Siscoe, and S.-I. Akasofu, Scaling relations governing magnetospheric energy transfer, Planet. Space Sci., 30, 359, 1982.

FIGURE CAPTIONS

Figure 1. The scatter plot of the logarithmic variables, $P / \rho V^{3} \ell_{C F}^{2}$ and M_{A}^{-2}, for θ between 135° and 150° is shown. The slope of the regression line, α, is equal to 0.54 ; the regression coefficient, R, is equal to 0.66 . The constant k_{1} used in defining the ordinate is equal to $\mu_{0}^{-1 / 3} \mu_{E}^{2 / 3} ; k_{1}$ should not be confused to the constant k referred to in the text.

Figure 2. Summary of the α regression results. Values of are plotted versus the IMF clock angle, θ. $2-\sigma$ error bars are plotted for each data point.

Figure 3. The number of occurrences of α^{-}is piotited versus the magnitude of a^{\prime}. Note that a^{\prime} is equal to $1.0-\alpha$.

Figure 4. Empirical estimates of the gating function, $G(\theta)$, arc plotted versus the IMF clock angle, θ. Two functions, $\sin ^{4}(\theta / 2)$ (upper solid curve) and $U(\theta) \cos (\theta)$ (lower solid curve), are shown for comparison. In Figure $4 a$, the empirical $G(\theta)$-values were normalized such that they approach 1.0 for $\theta=180^{\circ}$. In Figure 4b, an "error" baseline was subtracted before normalizing the $G(\theta)$-values.

ESTIMATION OF COUPLING EXPONENT

REPRODUCED FROM
BEST AVAILABLE COPY

SUMMARY OF AL REGRESSION RESULTS

FIGURE 2.
alpha occurrence histogram－－al index

SUMMARY OF AL-G(THETA) RESULTS

SUMMARY OF AL-G(THETA) RESULTS

